1. Give a sentence A which has an infinite model, but no finite model. Your sentence should involve only one binary predicate symbol P, and no function symbols.

You should specify an infinite model for A, but you need not justify your claim that A has no finite model.
2. Let \mathcal{L} be a language consisting of an infinite set $\{c_1, c_2, \ldots\}$ of constant symbols, a binary predicate symbol P, and the equality symbol \equiv. Let Γ be the set of sentences

$$\Gamma = \{c_i \neq c_j \mid i, j \in \mathbb{N}, i < j\}$$

Let A be an \mathcal{L}-sentence such that $\Gamma \models A$. Prove that A has a finite model.
3. Give an LK-Φ proof showing that $\Phi \models B$, where

Φ is $\{\forall x \exists y Pxy\}$

B is $\exists x \exists y \exists z (Pxy \land Pyz)$

If you cannot give such a proof, then explain in English why B is a logical consequence of Φ, for part credit.
4. Give an LK proof of the sequent

\[s_0 \neq ss_0 \rightarrow \forall x(x \neq s_0 \lor x \neq ss_0) \]

(Here \(t \neq u \) stands for \(\neg t = u \).)

You may leave out weakenings and exchanges.

Start by giving the specific instances of the LK equality axioms that you need in your proof.

Here are the LK equality axioms:

- **EL1:** \(\rightarrow t = t \)
- **EL2:** \(t = u \rightarrow u = t \)
- **EL3:** \(t = u, u = v \rightarrow t = v \)
- **EL4:** \(t_1 = u_1, \ldots, t_n = u_n \rightarrow ft_1 \ldots t_n = fu_1 \ldots u_n \), for each \(f \) in \(\mathcal{L} \), where \(f \) is an \(n \)-ary function symbol.
- **EL5:** \(t_1 = u_1, \ldots, t_n = u_n, Pt_1 \ldots t_n \rightarrow Pu_1 \ldots u_n \), for each \(P \) in \(\mathcal{L} \), where \(P \) is an \(n \)-ary predicate symbol.