Due: Friday, November 17, beginning of tutorial

1. Prove or disprove:

There is a primitive recursive function \(f(x, y) \) such that for every unary primitive recursive function \(g(x) \) there is a number \(a \in \mathbb{N} \) such that

\[
g(x) = f(a, x)
\]

for all \(x \in \mathbb{N} \).

Solution:
We will disprove this by a simple diagonal argument.

Suppose such a primitive recursive function \(f(x, y) \) exists.

Let \(D(x) = f(x, x) + 1 \) Then \(D \) is a primitive recursive function, so there is a number \(d \) such that

\[
D(x) = f(d, x)
\]

for all \(x \in \mathbb{N} \). In particular \(D(d) = f(d, d) \). But by definition \(D(d) = f(d, d) + 1 \), which is a contradiction. So there can be no such \(f \).

2. Do Exercise 9, page 64 in the Notes. (Show that the functions \(\text{Bit}(x, i) \) and \(\text{NumOnes}(x) \) are primitive recursive.) The functions shown to be primitive recursive on page 65 should be helpful.

Solution:

\(\text{Bit}(x, i) = \text{rm}(q(x, 2^i), 2) \), so Bit is obtained by composition from functions which have been shown to be primitive recursive in the Notes (see page 65), and hence Bit is itself primitive recursive.

\(\text{NumOnes}(x) = \sum_{0 \leq i \leq x} \text{Bit}(x, i) \), so that NumOnes is obtained by a bounded sum (see page 63) from a primitive recursive function, so that it is itself primitive recursive.

3. Let Primes be the set of prime numbers.

Let \(A = \{x \mid \text{dom} \{x\}_1 = \text{Primes}\} \).

Is \(A \) r.e.? Is \(A^c \) r.e.? Justify your answers. (Do not use Rice’s Theorem.)

Solution:

Neither \(A \) nor \(A^c \) is r.e.

To show \(A \) is not r.e. it suffices to show \(H^c \leq_m A \), since \(H^c \) is not r.e (see page 73 of the Notes for the definition of \(H \)).

Thus we want a total computable function \(f(x) \) such that program \(\{x\} \) fails to halt on input 0 iff \(\text{dom} \{f(x)\}_1 = \text{Primes} \).

By the special case of the S-m-n theorem (page 73) it suffices to give a computable function \(g(x, y) \) such that \(g(x, y) = \infty \) iff \(y \in \text{Primes} \), so \(\{f(x)\}_1(y) = \infty \) iff \(y \in \text{Primes} \). Now simply note that this definition of \(g(x, y) \) is computable, by definition by cases.
To show A^c is not r.e. it suffices to show $H^c \leq_m A^c$, which is the same as showing $H \leq_m A$. The proof is almost the same as above, except we replace Primes with the complement of Primes in defining $g(x, y)$.

Thus we want a total computable function $f(x)$ such that program $\{x\}$ halts on input 0 iff $\text{dom}(\{f(x)\}_1) = \text{Primes}$.

By the special case of the S-m-n theorem it suffices to give a computable function $g(x, y)$ such that $g(x, y) = \infty$ iff $y \notin \text{Primes}$, so $\{f(x)\}_1(y) = \infty$ iff $y \notin \text{Primes}$. Again simply note that this definition of $g(x, y)$ is computable, by definition by cases.

4. Let $B = \{x \mid \text{ran}(\{x\}) \text{ has at most one number}\}$.

Is B r.e.? Is B^c r.e.? Justify your answers. (Do not use Rice’s Theorem.)

Solution:

B is not r.e., but B^c is r.e.

To show B^c is r.e., we use the ”certificate” characterization of r.e. sets – this is item iii) in the bottom of page 77 in the Notes. Given an input x to B, we must give a certificate c which we can use to verify that $x \notin B$; i.e. we can use c to show that the range of the function $\{x\}$ has at least two distinct numbers. This certificate is a number coding the tuple (r_1, y_1, r_2, y_2), where r_1 and r_2 are inputs to the program $\{x\}$ and y_1 and y_2 code the (halting) computations of program $\{x\}$ on inputs r_1 and r_2 respectively, and $U(y_1) \neq U(y_2)$, where U is the output function (see bottom of page 68 in the Notes).

We can formalize this by using the Kleene T-predicate. Thus given an input x we can verify that (r_1, y_1, r_2, y_2) is a suitable certificate for x if

$$T_1(x, r_1, y_1) \land T_1(x, r_2, y_2) \land (U(y_1) \neq U(y_2))$$

To show that B is not r.e., we show $H^c \leq_m B$, which is the same as showing $H \leq_m B^c$. Thus we want a total computable function $f(x)$ such that

$$\{x\}_1(0) \neq \infty \iff \text{ran}(\{f(x)\}_1) \text{ has at least 2 distinct numbers}$$

By the special case of the S-m-n theorem, we want a computable function $g(x, y) = \{f(x)\}_1(y)$ as above. For this, we simply define

$$g(x, y) = y \cdot (\{x\}_1(0) + 1) = y \cdot (\Phi_1(x, 0) + 1)$$

where Φ_1 is the universal function (page 69).