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Herbrand Theorem, Equality, and Compactness

The Herbrand Theorem

We now consider a complete method for proving the unsatisfiability of sets of first-order
sentences which is an alternative to LK. This forms the basis of the resolution proof method
for the predicate calculus, which is used extensively by automated theorem provers. (See pp
6-9 for propositional resolution.)

Definitions (quantifier-free, ∀-sentence, ground instance): A formula A is quantifier-
free if A has no occurrence of either of the quantifiers ∀ or ∃. A ∀-sentence is a sentence of
the form ∀x1...∀xkB where k ≥ 0 and B is a quantifier-free formula. A ground instance of
this sentence is a sentence of the form B(t1/x1)(t2/x2)...(tk/xk), where t1, ..., tk are ground
terms (i.e. terms with no variables) from the underlying language.

Notice that a ground instance of a ∀-sentence A is a logical consequence of A. Therefore if
a set Φ0 of ground instances of A is unsatisfiable, then A is unsatisfiable.

Definition: An L-truth assignment (or just truth assignment) is a map

τ : {L − atomic formulas} → {T, F}

We extend τ to the set of all quantifier-free L-formulas by applying the usual rules for
propositional connectives (see page 3).

The above definition of truth assignment is the same as in the propositional calculus, except
now we take the set of atoms to be the set of L-atomic formulas. Thus we say that a set
Φ0 of quantifier-free formulas is propositionally unsatisfiable if no truth assignment satisfies
every member of Φ0. Note that this is different from simply saying that Φ0 is unsatisfiable,
by which we mean that there is no structure M and object assignment σ which satisfies Φ0

(see page 23).

Lemma: If a set Φ0 of quantifier-free sentences is propositionally unsatisfiable, then Φ0 is
unsatisfiable (in the first-order sense).

The converse of the Lemmas is also true, provided that Φ0 does not contain =. This follows
from the Herbrand Theorem below.

Proof of Lemma: We prove the contrapositive: Suppose that Φ0 is satisfiable, and let M
be a structure and σ an object assignment such that M satisfies Φ0 under σ. Then M and
σ induce a truth assignment τ by the definition Bτ = T iffM |= B[σ], where B is an atomic
formula. Then Bτ = T iff M |= B[σ] for each quantifier-free sentence B, so τ satisfies Φ0.
�
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We can now state our simplified proof method, which applies to sets of ∀-sentences without
=: Simply take ground instances of sentences in Φ until a propositionally unsatisfiable set Φ0

is found. The method does not specify how to check for propositional unsatisfiability: any
method (such as truth tables) for that will do. Notice that by propositional compactness,
it’s sufficient to consider finite sets Φ0 of ground instances. The Herbrand theorem states
that this method is sound and complete.

Herbrand Theorem: Let L be a first-order language without = and with at least one
constant symbol, and let Φ be a set of ∀−L-sentences. Then Φ is unsatisfiable iff some finite
set Φ0 of L-ground instances of sentences in Φ is propositionally unsatisfiable.

Herbrand with Equality: The above theorem holds when the language L includes =,
provided Φ includes the equality axioms EL for L (next section, page 44).

We suppose that L does not contain = for the remainder of this section.

Notation: c, d, e stand for constant symbols.

Example: Let
Φ = {∀x(Px ⊃ Pfx), P c,¬Pffc}.

Then the setH of ground terms is {c, fc, ffc, ...}. We can take the set Φ0 of ground instances
to be

Φ0 = {(Pc ⊃ Pfc), (Pfc ⊃ Pffc), P c,¬Pffc}.

Then Φ0 is propositionally unsatisfiable, so Φ is unsatisfiable.

Proof (Soundness direction of Herbrand Theorem): We’ve already proved this: If Φ0

is propositionally unsatisfiable, then by the above lemma, Φ0 is unsatisfiable, and hence Φ
is unsatisfiable (because each ground instance is a logical consequence of Φ).

Proof (Completeness direction of Herbrand Theorem): We prove the contrapositive:
If every finite set of ground instances of Φ is propositionally satisfiable, then Φ is satisfiable.

Let Φ0 be the set of all ground instances of Φ (using ground terms from L). Assuming
that every finite subset of Φ0 is propositionally satisfiable, it follows from the propositional
compactness theorem (page 15, Form 3) that the entire set Φ0 is propositionally satisfiable.
Let τ be a truth assignment which satisfies Φ0. We use τ to construct an L-structure M
which satisfies Φ. We use a term model, similar to that used in the proof of the Completeness
Lemma (see page 32).

Let the universe M of M be the set H of all ground L-terms.

For each n-ary function symbol f define

fM(t1, ..., tn) = ft1...tn.

(In particular, cM = c for each constant c, and it follows by induction that tM = t for each
ground term t.)
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For each n-ary predicate symbol P of L, define

PM = {〈t1, ..., tn〉 : (Pt1...tn)τ = T}

This completes the specification ofM. It follows easily by structural induction thatM |= B
iff Bτ = T for each quantifier-free L-sentence B. Thus M |= B for every ground instance
B of any sentence in Φ. Since every member of Φ is a ∀-sentence, and since the elements
of the universe are precisely the ground terms, it follows that M satisfies every member of
Φ. (A formal proof would use the Basic Semantic Definition (page 22) and the Substitution
Theorem (page 26)). �

Exercise 1 Fill in the details in the above argument.

Exercise 2 Prove that a satisfiable set of ∀ sentences without = and without function sym-
bols except the constants c1, ..., cn for n ≥ 1 has a model with exactly n elements in the
universe. Give an example with one binary predicate symbol P showing that n− 1 elements
would not suffice in general. (Hint: Think of P as <.)

We show how to generalize the above method, by adding equality axioms, to the case in
which L has = in the next section. We now show how to generalize the method to arbitrary
sentences without equality.

Prenex Form

Definition: We say that a formula A is in prenex form if A has the form Q1x1...QnxnB,
where each Qi is either ∀ or ∃, and B is a quantifier-free formula.

Theorem: There is a simple procedure which, given a formula A, produces an equivalent
formula A′ in prenex form.

Proof: First rename all quantified variables in A so that they are all distinct (see page 27).
Now move all quantifiers out past the connectives ∧,∨,¬ by repeated use of the equivalences
below. (Recall that by the Replacement Theorem, page 27, we can replace a subformula in
A by an equivalent formula and the result is equivalent to A.)

In each of the following equivalences, we must assume that x does not occur free
in C.

(∀xB ∧ C)⇐⇒ ∀x(B ∧ C)
(∀xB ∨ C)⇐⇒ ∀x(B ∨ C)
¬∀xB ⇐⇒ ∃x¬B
(∃xB ∧ C)⇐⇒ ∃x(B ∧ C)
(∃xB ∨ C)⇐⇒ ∃x(B ∨ C)
¬∃xB ⇐⇒ ∀x¬B
�
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Skolem Functions: To explain how to apply the Herbrand Theorem to a sentence A that
is not universal, it is convenient (but not absolutely necessary) to first put A in prenex
form. Then we get rid of the existential quantifiers by replacing each existentially quantified
variable y by a function symbol fy(x1, ..., xk), where x1, ..., xk are the universally quantified
variables preceding y in the prefix. The function symbol fy is called a Skolem function.

The simplest case is when the existential quantifier has no universal quantifier in front of it:
say A is ∃yB, where now B can be any formula. Then we replace y by a new constant c.

Lemma: ∃yB is satisfiable iff B(c/y) is satisfiable, provided c does not occur in B. More
generally, if Φ is a set of formulas, then {∃yB}∪Φ is satisfiable iff {B(c/y)}∪Φ is satisfiable,
provided that c does not occur in B, nor in any formula in Φ.

Proof: IfM |= ({B(c/y)} ∪Φ)[σ], then alsoM |= ({∃yB} ∪Φ)[σ], since cM[σ] satisfies the
existential quantifier in ∃yB. Conversely, if M |= ({∃yB} ∪ Φ)[σ], then we can change M
to M′ by setting cM

′
equal to an element in M satisfying the existential quantifier in ∃yB.

Then M′ |= B(c/y), and also M′ |= Φ[σ], because c does not occur in Φ. �

Now consider the case ∀x∃yB. If this holds in a structure, then for each value of x we can
choose a value f(x) for y making B true.

Lemma: ∀x∃yB is satisfiable iff ∀xB(fx/y) is satisfiable, provided f is a unary function
symbol which does not occur in B. More generally, if Φ is a set of formulas, then {∀x∃yB}∪Φ
is satisfiable iff {∀xB(fx/y)} ∪ Φ is satisfiable, provided that f does not occur in B, nor in
any formula in Φ.

Proof: Formalize the argument preceding the Lemma. �

More generally, we construct the functional form of a prenex formula A by removing each
existential quantifier ∃y in the prefix and replacing y in the formula by fyx1...xk, where fy
is a new function symbol, and x1, ..., xk are the universally quantified variables that precede
the quantifier ∃y in the prefix.

Important: To form the functional forms of a set of sentences, it is necessary to make every
Skolem function symbol introduced distinct from all Skolem function symbols in all other
formulas.

Theorem: A set Φ of sentences is satisfiable iff the set of functional forms of sentences in
Φ is satisfiable.

Our more general proof method applies to an arbitrary set Φ of sentences without equality.
We first put each sentence of Φ in prenex form, then in functional form, and then apply the
Herbrand Theorem. It can be made to apply to sentence with = by including the equality
axioms E1,...,E5 (below) in Φ.

Example: We can use this method to show that the set

{(∀xPx ∨ ∀xQx),¬∀xPx,¬∀xQx}
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is unsatisfiable. The prenex form of the first sentence is ∀x∀y(Px ∨Qy). The prenex forms
of the last two sentences are ∃x¬Px and ∃x¬Qx, respectively. Their functional forms are
¬Pc and ¬Qd (we must plug in distinct constants for the distinct existential quantifiers).
Thus we are to show that the set

{∀x∀y(Px ∨Qy),¬Pc,¬Qd}

is unsatisfiable. By the Herbrand Theorem, it suffices to find a set of ground instances which
is propositionally unsatisfiable. In fact, the last two formulas are already ground instances,
and we need only take one ground instance of the first formula. Thus the propositionally
unsatisfiable set of ground instances is

{(Pc ∨Qd),¬Pc,¬Qd}.

We can check that this set is propositionally unsatisfiable by checking that each of the four
truth assignments to the two atomic formulas Pc,Qd falsifies at least one of the three above
formulas.

Equality Axioms

Definition: A weak L-structure M is an L-structure in which we drop the requirement that
=M is the equality relation (i.e. =M can be any binary relation on M .)

Are there sentences E (axioms for equality) such that if M is any (proper) structure (i.e.
=M is the equality relation) thenM satisfies E and every weak structureM′ such thatM′

satisfies E must be a proper structure (i.e. =M
′

is equality)?

No such set E of axioms exists. The reason is that if M is any (proper) structure with
universe M , and m ∈ M and m′ /∈ M then we can define M ′ = M ∪ {m′} and define
(m,m′) ∈=M

′
and let M′ be the same as M except it has universe M ′ and M′ on m′

acts like M on m. Then for all formulas A and all object assignments σ, M |= A[σ] iff
M′ |= A[σ], but M′ is not a proper structure. (In general, we can always inflate a point in
a model to a set of points, if = is not present.)

Exercise 3 Show that for every integer k ≥ 1 there is a sentence ϕ with vocabulary {; =}
for which the following holds: ϕ is satisfied by a structure with universe M iff M has exactly
k elements.

Exercise 4 In contrast to the above, show that if Φ is any satisfiable set of first order
sentences not involving =, then Φ has a model with an infinite universe. Use the idea of
“inflating” a point, discussed in the preceding paragraph.

Example: The sentence
A =syn ∀x∀y(x = y)

has a model M1 consisting of one element, and in fact every model (in our sense) of this
sentence must have a universe of a single element. But now let M be any nonempty set
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(possibly infinite), and define the weak model Mall with universe M such that =Mall is
M ×M (i.e.=Mall holds for all pairs of elements of M .) Note that Mall |= A. We claim
that if E is any set of equality axioms (by which we mean any set of valid formulas with
vocabulary L consisting of = alone) then Mall |= E [σ] for any σ. This is because M1 |= E
(because E consists of valid formulas) and by structural induction on B, it is easy to see
that any formula B involving only = is satisfied byMall iff it is satisfied byM1, (no matter
what object assignments σ are chosen).

Nevertheless every language L has a standard set EL of equality axioms which satisfies the
Equality Theorem below.

Equality Axioms of L (EL)

E1: ∀x(x = x) (reflexivity)
E2: ∀x∀y(x = y ⊃ y = x) (symmetry)
E3: ∀x∀y∀z((x = y ∧ y = z) ⊃ x = z) (transitivity)
E4: ∀x1...∀xn∀y1...∀yn(x1 = y1 ∧ ...∧xn = yn) ⊃ fx1...xn = fy1...yn for each n ≥ 1 and each
n-ary function symbol f in L.
E5: ∀x1...∀xn∀y1...∀yn(x1 = y1 ∧ ... ∧ xn = yn) ⊃ (Px1...xn ⊃ Py1...yn) for each n ≥ 1 and
each n-ary predicate symbol P in L other than =.

Axioms E1,E2, E3 assert that = is an equivalence relation. Axiom E4 asserts that functions
respect the equivalence classes, and Axiom E5 asserts that predicates respect equivalence
classes. Together the axioms assert that = is a congruence relation with respect to the
function and predicate symbols.

Remark: The Equality Axioms are valid sentences.

Definition: A set Φ of formulas is weakly satisfiable iff Φ is satisfied by some weak struc-
ture (i.e. a structure that treats = as an any binary predicate symbol) under some object
assignment σ.

Equality Theorem: Let Φ be any set of L-formulas. Then Φ is satisfiable iff Φ ∪ EL is
weakly satisfiable.

Let us define Φ |=w A to mean that for every weak L-structure M and every object assign-
ment σ, if M |= Φ[σ] then M |= A[σ] (i.e. Φ ∪ {¬A} is not weakly satisfiable).

Corollary 1: Φ |= A iff Φ ∪ EL |=w A.

Corollary 2: ∀Φ |= A iff A has an LK −Ψ proof, where Ψ = Φ ∪ EL.

Corollary 1 follows immediately from the Equality Theorem and the observation that Φ |= A
iff Φ ∪ {¬A} is unsatisfiable.

Corollary 2 follows from Corollary 1 and the derivational completeness of LK (see the the-
orem page 32), where in applying that theorem we treat = as just another binary relation
(so we can assume L does not have the official equality symbol).
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Proof of Equality Theorem: The ONLY IF (=⇒) direction is obvious, because every
structure M must interpret = as true equality, and hence M satisfies the equality axioms
EL.

For the IF (⇐=) direction, suppose that M is a weak L-structure with universe M , such
that M satisfies Φ ∪ EL under some object assignment σ. Our job is to construct a proper
structure M̂ and object assignment σ̂ such that M̂ satisfies Φ under σ̂.

Denote =M by ∼. In general ∼ is not the equality relation, but it does satisfy the equality
axioms E1,...,E5, so it is an equivalence relation on M . If u ∈ M , then we use the notation
[u] for the equivalence class of u. Thus

[u] = {v ∈M |v ∼ u}

Note the following properties of ∼ and [u]:
(i) u ∼ v iff [u] = [v].
(ii) u 6∼ v iff [u] ∩ [v] = ∅.

We define the elements of the universe M̂ of M̂ to be the equivalence classes of ∼. Each
relation PM induces a relation P M̂ on M̂ and each function fM induces a function fM̂

on M̂ . Specifically, for every variable x, every L-function symbol f , and every L-predicate
symbol P ,

fM̂([u1], ..., [un]) = [fM(u1, ..., un)] (1)

< [u1], ..., [un] >∈ P M̂ iff < u1, ..., un >∈ PM (2)

It is important to check that (1) and (2) give consistent definitions of fM̂ and P M̂, indepen-
dent of the choices of the representatives u1, ..., un for the equivalence classes [u1], ..., [un].
This consistency follows from equality axioms E4 and E5 and (i) above.

Now define the object assignment σ̂ on M̂ by

σ̂(x) = [σ(x)] (3)

for each variable x.

Lemma 1: tM̂[σ̂] = [tM[σ]] for each L-term t.

Proof: Structural induction on terms. The base case is (3), and the induction step uses (1)
and the Basic Semantic Definition.

Lemma 2: For every formula A and object assignment σ,

M̂ |= A[σ̂] iff M |= A[σ]

Proof: Structural induction on formulas A. The base case (A is atomic) follows from (2)
and Lemma 1, and the Basic Semantic Definition. The induction step follows from the Basic
Semantic Definition.
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This completes the proof of the Equality Theorem.

Equality Axioms for LK

For the purpose of using an LK proof to establish Φ |= A, we can replace the standard
equality axioms E1,...,E5 by the following simpler sequents, where we include an instance of
the sequent for all L-terms t, u, v, ti, ui:

EL1: → t = t
EL2: t = u→ u = t
EL3: t = u, u = v → t = v
EL4: t1 = u1, ..., tn = un → ft1...tn = fu1...un, for each f in L
EL5: t1 = u1, ..., tn = un, P t1...tn → Pu1...un, for each P in L (Here P is not =)

The fact that these sequents suffice for LK proofs involving equality follows from the Equal-
ity Theorem and the Derivational Completeness Theorem (page 32). Note that it is not
necessary to put in universal quantifiers in these equality axioms because quantifiers can be
introduced as needed by the rule ∀-right. In fact, we do not need EL1,...,EL5 for all terms
t, u, v, ti, ui, but only for variables. The reason for including all terms is that it makes it
unnecessary to introduce these quantifiers (unless the quantified axioms are subformulas of
the conclusion), as indicated by Anchored Completeness with Equality below.

Revised Definition: If Φ is a set of L-formulas, where L includes =, then by an LK − Φ
proof we now mean an LK −Ψ proof in the sense of the earlier definition, page 31, where Ψ
is Φ together with all instances of the equality axioms EL1,...,EL5. If Φ is empty, we simply
refer to an LK-proof (but allow axioms EL1,...,EL5).

Example

Let the vocabulary L = [0, s,+; =]. Let the set Φ of axioms consist of all term substitution
instances of the formulas

x+ 0 = x

(x+ sy) = s(x+ y)

(as in the Anchored Completeness Theorem page 37). We want to find an LK − Φ proof of
0 + s0 = s0. We need the following two instances of equality axioms:

EL3 : 0 + s0 = s(0 + 0), s(0 + 0) = s0 → 0 + s0 = s0

EL4 : 0 + 0 = 0 → s(0 + 0) = s0

Here is the LK − Φ proof, where the unlabelled leaves are axioms in Φ:

EL3 → 0 + s0 = s(0 + 0)
cut

s(0 + 0) = s0→ 0 + s0 = s0

EL4 → 0 + 0 = 0
cut

→ s(0 + 0) = s0
cut

→ 0 + s0 = s0

From the above discussion, we have
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Revised Derivational Soundness and Completeness of LK: For any set Φ of formulas
and formula A,

∀Φ |= A iff → A has an LK − Φ proof

Notation: Φ ` A means that there is an LK − Φ proof of → A.

Recall that if Φ is a set of sentences, then ∀Φ is the same as Φ. Therefore

Φ |= A iff Φ ` A, if Φ is a set of sentences

Exercise 5 Give an LK proof of the sequent A→ B, where [10]

A =syn ∀x∃y x = fy
B =syn ∀x∃y x = ffy

Start by giving the specific instances of the LK equality axioms EL1,...,EL5 that you need in
your proof.

You may use abbreviations for formulas in your proof. You do not need to indicate weakinings
or exchanges.

Exercise 6 Consider the following formulas over the vocabulary LA = [0, s,+, ·; =]:

Q1: x+ 0 = x
Q2: x+ sy = s(x+ y)
Q3: x · 0 = 0
Q4: x · sy = (x · y) + x

Let Φ be the set of ground substitution instances of {Q1,Q2,Q3,Q4}, where a ground sub-
stitution instance of A is the result of substituting ground terms for all free variables in A.
(Here a ground term is a term over LA with no variables.)

An example of a sentence in Φ obtained from Q2 is s0 + s0 = s(s0 + 0).

Let A =syn s0 · s0 = s0.

You are to give an LK-Φ proof of A.

Do this as follows:
First list all sentences in Φ that you will need in your LK proof.

Now list all instances of the LK equality axioms EL1, · · · , EL5 given on page 45 that you
will need for the proof. The instances should be specific; for example an instance of EL1 is
→ ss0 = ss0.

Now give the required LK-Φ proof, using names for all of the above sentences. You may
break the tree into pieces for readability if you wish. (Note that no variables appear in your
proof, so you will not need any quantifier rules.)
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We can strengthen the derivational completeness theorem as follows:

Anchored Completeness with Equality: Suppose that Φ is a set of formulas (possibly
with =) closed under substitution of terms for variables, and Γ→ ∆ is a logical consequence
of ∀Φ. Then there is LK −Φ proof of Γ→ ∆ in which every cut formula is either in Φ or it
is an equation of the form t = u, for some terms t, u.

This follows from a slight strengthening of the Anchored Completeness Theorem on page 37,
together with the Equality Theorem (and the Revised Definition above). Note that we have
only proved this for the countable case, although it holds in general.

Major Corollaries of Completeness

First recall that a set S is countable if there is a map from N onto S. In other words, S is
countable if its members can be placed into a list S = {s0, s1, s2, ...}. We allow repetitions,
so that all finite sets are countable.

(1) Lowenheim-Skolem Theorem: If a set Φ of sentences from a countable language is
satisfiable, then Φ is satisfiable in a countable universe.

Proof: Suppose that Φ is a satisfiable set of sentences. We apply the proof of the Com-
pleteness Lemma (page 32), treating = as any binary relation, replacing Φ by Φ′ = Φ ∪ EL,
and taking Γ → ∆ to be the empty sequent (always false). In this case Γ → ∆ is not a
logical consequence of Φ′, so the proof constructs a structureM satisfying Φ′ (see page 35).
This structure has a countable universe M consisting of all the L-terms. By the proof of the
Equality Theorem, we can pass to equivalence classes and construct a countable structure
M̂ which satisfies Φ (and interprets = as true equality). �

As an application of the above theorem, we conclude that no countable set of first-order
sentences can characterize the real numbers. This is because if the field of real numbers forms
a model for the sentences, then there will also be a countable model for the sentences. But
the countable model cannot be isomorphic to the field of reals, because there are uncountably
many real numbers.

“Skolem’s Paradox”: The set of real numbers can be characterized as an ordered field such
that every bounded nonempty set of elements has a least upper bound. These conditions
can be stated as first-order sentences in the language of set theory. But according to the
Lowenheim/Skolem Theorem, these sentences have a countable model even though the set
of real numbers is uncountable. The paradox is resolved by realizing that it is impossible
to have first-order axioms for set theory which enforce the condition that all models must
include all sets. Nevertheless, there are axioms of set theory called ZFC (Zermelo-Fraenkel
with the axiom of choice) which apparently suffice for formalizing all proofs in (ordinary)
existing mathematics.

(2) First-Order Compactness Theorem: An infinite set Φ of (first-order) formulas is
unsatisfiable iff some finite subset is unsatisfiable. (See also the three alternative forms,
page 15.)
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Proof: The direction ⇐= is obvious, so we prove the direction =⇒. Assume that Φ is
unsatisfiable. Then according to Corollary 1 of the Equality Theorem (page 44) it follows
that Φ ∪ EL does not even have a weak L model (take A to be any unsatisfiable formula).
Hence we can apply the Completeness Lemma (page 32), since we may treat = like any
binary predicate symbol, and take Γ and ∆ empty (the empty sequent is unsatisfiable) to
conclude that there is a finite subset Γ′ of Φ ∪ EL such that Γ′ → has an LK proof. By
soundness of LK we conclude that Γ′ does not have a weak model. Hence Φ0 ∪ EL does not
have a weak model, where Φ0 = Γ′∩Φ. Hence again by Corollary 1 of the Equality Theorem,
it follows that Φ0 is unsatisfiable. �

(3) Theorem: Suppose L has only finitely many function and predicate symbols. Then
the set of valid L-sentences is recursively enumerable. Similarly for the set of unsatisfiable
L-sentences.

Concerning the third corollary, a set is recursively enumerable if there is an algorithm for
enumerating its members. (This idea will be defined later in these notes.) To enumerate the
valid formulas, enumerate finite LK proofs. To enumerate the unsatisfiable formulas, note
that A is unsatisfiable iff ¬A is valid.

Definition: A set Φ of sentences is decidable if there is an algorithm which, given a sentence
B, determines whether B is in Φ.

Again this notion will be defined formally later.

Later we will show that if L is the language LA of arithmetic, then the set of valid L-sentences
is not decidable. In fact, this is true of every language L which contains at least one binary
predicate symbol other than =.

Exercise 7 (Countable Vaught’s Test, an application of Lowenheim-Skolem): A set Φ of
L-sentences is said to be complete if for every L-sentence A, either Φ |= A or Φ |= ¬A.
Prove that if L is a countable language and Φ is a set of L-sentences such that any two
countable models of Φ are isomorphic, then Φ is complete. (Use the fact that if M and M′

are isomorphic structures, then M |= A iff M′ |= A, for any sentence A.)

Exercise 8 The following set Φ of sentences comprise the axioms for a dense linear order
with first element 0 and last element 1, over the language L = [0, 1 ; <,=].

0 < 1
∀x¬x < x (irreflexive)
∀x∀y∀z((x < y ∧ y < z) ⊃ x < z) (transitive)
∀x∀y(x < y ∨ x = y ∨ y < x) (linear)
∀x∀y∃z(x < y ⊃ (x < z ∧ z < y)) (dense)
∀x(0 = x ∨ 0 < x)
∀x(x = 1 ∨ x < 1)

Note that the structure Q[0, 1] whose universe is the closed interval [0,1] of rational numbers,
with 0, 1, < getting their standard meanings, is a countable model for Φ.
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a) Prove that any two countable models of Φ are isomorphic (i.e. have an order preserving
bijection between them). Hint: Enumerate each of the models u1, u2, ... without repetition
and after initializing the bijection ψ, successively define ψ(u1), ψ(u2), ....

b) Let Q[0, 1] be the L-structure defined above. Prove that for every L sentence A, Q[0, 1] |= A
iff Φ |= A. (Use Exercise 7.)

Exercise 9 (Application of compactness). Show that if a set Φ of sentences has arbitrarily
large finite models, then Φ has an infinite model. (Hint: For each n construct a sentence
An which is satisfiable in any universe with n or more elements but not satisfiable in any
universe with fewer than n elements.)

Exercise 10 (Application of compactness). Let A be a first-order sentence over the language
L = [;R,=] where R is a binary predicate symbol. Suppose that for each n ≥ 3, A has a
model consisting of a directed cycle with n nodes, where R represents the edge relation of a
directed graph. Prove that A has a model M whose universe M includes an infinite path;
i.e. a set of distinct elements v0, v1, ... such that RM(vi, vi+1) holds for all i ≥ 0.

Exercise 11 (Application of compactness). A set Φ of L-sentences is said to be finitely
axiomatizable if there is a finite set Γ of L-sentences such that Φ and Γ have the same set
of models. (Note that Γ is not necessarily a subset of Φ.) Prove that if Φ = {A1, A2, ...} and
for all sufficiently large i

{A1, ..., Ai−1} 6|= Ai

then Φ is not finitely axiomatizable. (Note that it is NOT enough to show that for all i,
{A1, ..., Ai} does not axiomatize Φ.)

Exercise 12 (Application to algebraic fields). Let L be the language [0, 1,+, ·] and let Φ1

be the axioms for a field expressed as L-sentences (0 6= 1, + and · are commutative and
associative, x · (y+ z) = x · y+ x · z, 0 + x = x, 1 · x = x, all elements have additive inverses
and nonzero elements have multiplicative inverses). Let p1, p2, ... be the sequence of prime
numbers, and let p̂i stand for the term ((..(1 + 1) + 1...+ 1) with pi 1’s. Let

Φ2 = {p̂1 6= 0, p̂2 6= 0, ...}

Thus the models of Φ1 ∪ Φ2 are precisely the fields of characteristic 0. Use Exercise 11 to
prove that Φ1 ∪ Φ2 is not finitely axiomatizable.

Nonstandard Models of Arithmetic

Let Ls (the language of successor) be the language [0, s; =]. The standard model Ns for Ls
has universe N, and 0 and s get their standard meanings (zero and successor).
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Let Th(s) (theory of successor) be the set of all sentences of Ls which are true in the standard
model. It turns out that there is a simple (but infinite) complete set of axioms for Th(s),
namely the set Ψs:

S1) ∀x(sx 6= 0) (zero has no predecessor)
S2) ∀x∀y(sx = sy ⊃ x = y) (successor is one-one)
S3) ∀x(x = 0 ∨ ∃y(x = sy)) (every nonzero element has a predecessor)

S4) ∀x(sx 6= x)
S5) ∀x(ssx 6= x)
S6) ∀x(sssx 6= x)
.
.
.

The axioms S4, S5, ... assert that successor cannot form a finite loop.

Obviously each of the above sentences is true in the standard model. It is not obvious, but
true that every sentence true in the standard model is a logical consequence of this set Ψs

of axioms. Thus Th(s) is precisely the set of sentences which are logical consequences of Ψs.
This is a so-called complete theory, meaning that for every Ls sentence A, either A ∈ Th(s)
or ¬A ∈ Th(s) (i.e. either Ψs |= A or Ψs |= ¬A).

Exercise 13 (Application of compactness) Use Exercise 11 to show that Th(s) is not finitely
axiomatizable.

Later we will show that in general, if the set of sentences true in some structure has a nice
axiomatization such as Ψs, then this set is decidable. Thus Th(s) forms a decidable set of
sentences.

A nonstandard model of Th(s) is any model of Th(s) which is not isomorphic to (i.e. is not
a renaming of) the standard model N. It is possible to give a complete characterization of
all of these nonstandard models.

For each set I (I is an “index” set) we construct a model MI of Th(s) as follows. Let the
universe M be N∪ (I ×Z), where Z is the set of integers. Then define 0M to be the zero in
N. Also, sM is the successor function in N, and in I×Z we define s(< x, n >) =< x, n+1 >.

It is easy to see that every axiom in Ψs is true in the structureMI . Hence by the discussion
above, every sentence true in the standard model is also true in MI .

It is not too hard to see that every model of Ψs (and hence every model of Th(s)) is isomorphic
toMI for some index set I. To see this, letM be such a model. Divide the universe M into
equivalence classes, using the equivalence relation: two elements are equivalent if one can be
obtained from the other by finitely many applications of the successor function sM. Then
the equivalence class that contains the element 0M must be isomorphic to N, and every other
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equivalence class is isomorphic to Z. Thus the index set I is the set of equivalence classes,
other than the one containing 0M.

Presburger Arithmetic: Let L+ (the language of addition) be the language [0, s,+; =].
Let N+ be the standard model for L+, and let Th(+) be the set of all sentences of L+ which
are true in the standard model. In 1928, Presburger showed in his PhD thesis that Th(+)
is a decidable set, and has a nice axiomatization.

An example of a nonstandard model for Th(+) can be obtained by the ring Q[x] of polyno-
mials with rational number coefficients. Let the universe M consist of zero, together with all
polynomials in Q[x] with both a positive leading coefficient and an integer constant term.
Define + as polynomial addition, and successor as +1. The result is a nonstandard model
for Presburger Arithmetic. (All sentences in the language L+ which are true in the standard
model are also true in this structure.)

True Arithmetic Recall that LA = [0, s,+, · ; =] is the language of addition and multipli-
cation, and N is its standard model. Let TA (True Arithmetic) be the set of all LA-sentences
which are true in the standard model. It follows from Gödel’s incompleteness theorem (later
in the course) that TA is undecidable, and does not have any decidable set of axioms. TA
does have nonstandard models, but no “nice” nonstandard models. In fact, it has been
shown that in any nonstandard model for TA, the interpretations of + and · cannot be
computable functions.

Theorem: (Application of compactness) TA has a nonstandard model.

Proof: Let c be any constant symbol (not in LA), and let Ψ be the infinite set of sentences

Ψ = {c 6= 0, c 6= s0, c 6= ss0, ...}

It is easy to see that every finite subset of TA∪Ψ is satisfiable, since the standard model, with
c interpreted as some large integer, will satisfy the finite set. Therefore, by the compactness
theorem, TA∪Ψ has a model M. But this model cannot be isomorphic to the standard
model, since the element which interprets c must satisfy all sentences in Ψ, and therefore
cannot be a standard natural number. �

Exercise 14 Although the language LA = [0, s,+, · ; =] does not include the order relation
≤, we can define a ≤ b as follows:

a ≤ b↔ ∃x(a+ x = b)

Under this definition, every model of TA is a totally ordered set, since the properties of a
total order (namely ≤ is reflexive, semi-antisymmetric, transitive, and any two elements are
comparable) can all be expressed by first-order formulas in the vocabulary LA, and all must be
true in the model. Prove that every countable nonstandard model of TA is order-isomorphic
to

N⊕Q× Z
i.e. it begins with a copy of N, and is followed by copies of Z which are densely ordered. (See
the discussion following Exercise 13.)
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Exercise 15 Suppose that L is a language which includes an infinite list c1, c2, ... of constant
symbols. Let Γ be the set of sentences

Γ = {ci 6= cj | i, j ∈ N, i < j}

Let A be a sentence such that Γ |= A. Prove that A has a model with a finite universe.
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