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Gödel’s Incompleteness Theorems

In the early 1900’s there was a drive to find adequate axiomatic foundations for mathematics.
Russell’s paradox (If S is the set of all sets that do not contain themselves, does S contain
itself?) helped to point out how difficult it is to find a good axiom system for set theory.
David Hilbert, the most prominent mathematician of the time, proposed a program of finding
axiom systems, and proving them consistent by “finitary” means; that is finite combinatorial
methods that do not involve questionable set-theoretic constructions. Gödel’s 1931 paper
effectively destroyed hopes for the success of this program. Gödel proved that PA cannot
even prove its own consistency, let alone the consistency of a more powerful system such as
set theory.

In his 1931 paper Gödel proved two results (his two “incompleteness theorems”). The second
incompleteness theorem states that the consistency of PA cannot be proved in PA. Here we
prove the first incompleteness theorem, and outline the proof of the second. (In fact, Gödel
did not include a complete proof of his second theorem, but complete proofs now appear in
text and reference books.)

Here we consider only the theory PA, although the first incompleteness theorem applies to
any consistent extension of RA, and the second incompleteness theorem applies to “nice”
theories of arithmetic, which in general must include some form of induction among their
axioms.

The first theorem formulates a sentenceG which asserts “I am not provable”, and the theorem
states that indeed G is not provable in PA, so G is true. By soundness of PA, ¬G is also
not provable in PA. The method of constructing G follows the method of constructing the
sentence “I am false” in the proof of Tarski’s Theorem. (Historically, Gödel’s theorems came
first.)

Let Γ be the set of axioms of PA. Thus Γ consists of P1,...,P6, together with the induction
axioms. Let Proof(x, y) be the recursive relation “y codes an LK −Γ proof of the sentence
coded by x”. Thus ∃yProof(n, y) holds iff n = #A, where A is a sentence provable in PA.
Let d(x) be the diagonal substitution function (defined on page 89). Recall that d(n) =
sub(n, n) = #A(sn) when #A(x) = n. Then d(x) is total and computable, so the relation
S(x) is r.e., where

S(x) = ∃yProof(d(x), y)

Let A(x) be an ∃∆0 formula which represents S(x) in RA (and hence in PA). Then for all
n ∈ N,

∃yProof(d(n), y) ⇔ PA ` A(sn) (1)

Let e = #¬A(x), so
d(e) = #¬A(se) (2)
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Let
G =syn ¬A(se)

so #G = d(e). Since A(x) represents the relation ∃yProof(d(x), y), it follows that the
formula ¬A(se) asserts that the formula whose number is d(e) is not provable in PA. But
that formula is ¬A(se), so this formula, i.e. the formula G, asserts “I am not provable”.

Gödel’s First Incompleteness Theorem: If PA is consistent, then PA does not prove
G.

Remark: Note that in this course we take for granted that PA is consistent. The reason
that Gödel did not, is that there is no known “finitary” proof that PA is consistent. Our
proof of consistency involves the assertion that PA is sound. That is, all of the axioms of
PA are true in the standard model N, and hence all logical consequences of these axioms
are true in N. But this proof is not finitary, because it involves an induction on a statement
mentioning the infinite set N.

Proof: We prove the contrapositive. Suppose that PA ` G, i.e. PA ` ¬A(se). Then
sentence number d(e) is provable, so ∃yProof(d(e), y) holds. Hence PA ` A(se), by the
left-to-right direction of (1). Thus PA proves both a formula and its negation, so it is
inconsistent. �

The above proof is finitary, in that it involves only finite objects. Later we will argue, as
Gödel did, that the proof can be formalized in PA. It is important that the proof only uses
the left-to-right direction of (1), since this direction is finitary: From a proof of the sentence
whose number is d(n) one can construct a proof of the sentence A(sn). Our proof of the
converse direction of (1) is not finitary, since it involves the soundness of PA. It is not clear
that PA can prove this converse direction. However, using the right-to-left direction we can
prove the following:

Proposition: If PA is sound, then PA does not prove ¬G.

Proof: Suppose PA proves ¬G; i.e. PA proves A(se). By the right-to-left direction of
(1), this implies ∃yProof(d(e), y); that is, PA proves sentence number d(e), so PA proves
¬A(se), so PA proves G. Thus PA is inconsistent, and hence unsound. �

Remark: We say that a theory Σ is ω-consistent provided that for each formula C(x), if
Σ proves ¬C(sn) for each n ∈ N, then Σ does not prove ∃xC(x). Every sound theory is
ω-consistent, but not conversely. It is not hard to see the assumption that PA is ω-consistent
is sufficient to prove the right-to-left direction in (1), and hence this assumption can replace
the stronger assumption that PA is sound, in the above Proposition.

Exercise 1 Show that there is a consistent extension of PA which is not ω-consistent.

Formulating consistency in PA

Let B(x, y) be an ∃∆0 formula which represents Proof(x, y) in RA (and hence in PA).
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Thus for each sentence C,

PA ` C ⇔ PA ` ∃yB(#C, y) (3)

where here (and below) we write B(#C, y) for B(s#C , y).

We require that the formula B(x, y) represent the relation Proof(x, y) in a straightforward
way, so that Lemma 2 and Lemma 3 below both hold.

Recall that A(x) represents the relation ∃yProof(d(x), y) in PA. By constructing the formula
A(x) from B(x, y) in a straightforward manner, we can insure that for each n ∈ N

PA ` A(sn) ⊃ ∃yB(sd(n), y) (4)

Note that PA is consistent iff PA does not prove 0 6= 0. Thus we make the definition

con(PA) =syn ¬∃yB(#0 6= 0, y)

Gödel’s Second Incompleteness Theorem: If PA is consistent, then PA does not prove
con(PA).

This follows from the following Lemma:

Lemma 1: (Gödel) PA ` con(PA) ⊃ G

The Second Incompleteness Theorem follows immediately from the Lemma and the First
Incompleteness Theorem.

The Lemma is proved by formalizing in PA the proof of the First Incompleteness Theorem.
To see that “con(PA) ⊃ G” is an accurate translation of the First Incompleteness Theorem,
note that G is ¬A(se), which asserts that formula number d(e) is not provable in PA; i.e. G
asserts that G is not provable in PA.

Now we formalize the proof of the First Incompleteness Theorem in PA. Thus we must show
that PA proves the contrapositive of the formula in Lemma 1; that is we must show

PA ` A(se) ⊃ ∃yB(#0 6= 0, y) (5)

We need to formalize the left-to-right direction of (1), which involves formalizing the proof
of Corollary 2 to the MAIN LEMMA, page 102. This corollary states that every true ∃∆0

sentence C is provable in RA (and hence in PA). Thus we must show

Lemma 2: For each ∃∆0 sentence C,

PA ` C ⊃ ∃zB(#C, z)

The proof of this Lemma is the main work in the proof of the Second Incompleteness Theo-
rem, and will not be given here. However we note that Lemma 2 is immediate for the case
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in which C is true, since then by Corollary 2 (to the MAIN LEMMA) C has a proof π in
RA, and hence

RA ` B(#C,#π)

because B(x, y) represents Proof(x, y) in RA. Despite this easy argument, the proof of
Lemma 2 for the case in which C is false requires formalizing the proof of Corollary 2 (and
the MAIN LEMMA itself), as mentioned above. (Note that there are false ∃∆0 formulas C
such that ¬C is not provable in PA.)

If we take C =syn A(se) in Lemma 2 we obtain

PA ` A(se) ⊃ ∃zB(#A(se), z) (6)

Now from (4) with n = e and (2) we obtain

PA ` A(se) ⊃ ∃zB(#¬A(se), z) (7)

Finally, (5) follows from (7), (6), and the following lemma:

Lemma 3: For any sentence C,

PA ` ∀x∀z[(B(#C, x) ∧B(#¬C, z)) ⊃ ∃yB(#0 6= 0, y)]
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