This is a small rephrasing of Step 1 of the proof of Theorem 14.4 in the text, showing that PARITY is not in \(\text{AC}_0^0(3) \).

Roughly speaking, Step 1 shows that the gates in an \(\text{AC}_0^0(3) \) circuit with \(n \) inputs can be well approximated by a polynomial of degree \(\sqrt{n} \) over the field \(\text{GF}[3] = \{0, 1, -1\} \). Then Step 2 shows that \(\oplus(x_1, \ldots, x_n) \) cannot be so approximated.

Here is the precise statement and proof of Step 1.

Lemma 1 Let \(C \) be a \(\text{AC}_0^0(3) \) circuit of depth \(d \) with \(n \) inputs \(x_1, \ldots, x_n = \vec{x} \) and \(S \) gates. Then for all \(\ell \geq 1 \) there is a polynomial \(\tilde{g}(\vec{x}) \) over \(\text{GF}[3] \) of degree at most \((2^{\ell})^d \) such that \(\tilde{g}(\vec{x}) = g(\vec{x}) \) for all but a fraction of at most \(S/2^\ell \) inputs \(\vec{x} \in \{0, 1\}^n \), where \(g \) is the output gate of the circuit.

Proof: We use induction on the depth \(d \), fixing \(\ell \geq 1 \). The induction hypothesis states that \(\tilde{g}(\vec{x}) \in \{0, 1\} \) for all \(\vec{x} \in \{0, 1\}^n \), and the approximating polynomial \(\tilde{g}(\vec{x}) \) has degree at most \((2^\ell)^d \). We will show that for each gate \(g \), the approximating polynomial \(\tilde{g}(\vec{x}) \) introduces at most a fraction \(1/2^\ell \) more errors on the input set \(\{0, 1\}^n \).

The base case is \(d = 0 \), where \(g = x_i \) for some input \(x_i \). Then define the polynomial \(\tilde{g}(\vec{x}) = x_i \). Then \(\tilde{g} \) has degree \(1 = (2^\ell)^0 \), and there are no errors.

For the induction step, assume that gate \(g \) has depth \(d \geq 1 \), and the induction hypothesis applies to all gates \(f \) of depth at most \(d - 1 \).

Case 1: \(g = \neg f \) for some gate \(f \) in the circuit.
Then define \(\tilde{g} = 1 - \tilde{f} \). Then no new errors are introduced, and \(\tilde{g} \) and \(\tilde{f} \) have the same degree.

Case 2: \(g = \text{MOD}_3(f_1, \ldots, f_k) \). Then define

\[
\tilde{g} = \left(\sum_{i=0}^{k} \tilde{f}_i \right)^2
\]

The reason for squaring the sum is that \((-1)^2 = 1\) and \(0^2 = 0\), so that \(\tilde{g}(\vec{x}) \) is in \(\{0, 1\} \) for all \(\vec{x} \in \{0, 1\}^n \). Then no new errors are introduced, and the degree of \(\tilde{g} \) is double the largest degree of any \(\tilde{f}_i \). Thus the degree of \(\tilde{g} \) is at most \(2 \cdot (2^\ell)^{d-1} \leq (2^\ell)^d \).

Case 3: \(g \) is the AND or OR of other gates. (This is the difficult case.) Without loss of generality we may assume \(g \) is an OR gate, since the AND gates can be expressed as OR gates using DeMorgan’s laws. Thus

\[
g = \bigvee_{i=1}^{k} f_i
\]

We could try setting \(\tilde{g} = 1 - \prod_{i=1}^{k} (1 - \tilde{f}_i) \). This would introduce no new errors, but the degree would increase by a factor of \(k \), which could be much more than the factor of \(2^\ell \) which we allow.

So instead we make an approximation, and introduce errors.
CLAIM: If there is at least one \(j \) such that \(\tilde{f}_j \neq 0 \), then given a random \(k \)-tuple \(T = (c_1, \ldots, c_k) \) of field elements in \(\text{GF}[3] \), the probability that \(\sum_i c_i \tilde{f}_i = 0 \) is at most 1/3.

Proof: The set \(\{(c_1, \ldots, c_k) \mid \sum_i c_i \tilde{f}_i = 0\} \) is closed under linear combinations, and hence is a subspace of the vector space of \(k \)-tuples of elements in \(\text{GF}[3] \). It is a proper subspace, since \(\tilde{f}_j \neq 0 \). Every vector space of dimension \(m \) over \(\text{GF}[3] \) has \(3^m \) elements. Hence this subspace (consisting of the ‘bad tuples’) consists of at most \(3^{k-1} \) of the \(3^k \) tuples \((c_1, \ldots, c_k) \).

This proves the CLAIM. Now randomly pick \(\ell \) tuples \(T_1, \ldots, T_\ell \) with \(T_i = (c_{i1}, \ldots, c_{ik}) \) (with each \(c_{ij} \in \text{GF}[3] \)) and define

\[
p_i(x) = \left(\sum_j c_{ij} \tilde{f}_j \right)^2
\]

Now define

\[
\tilde{g}(x) = 1 - \prod_{i=1}^{\ell} (1 - p_i)
\]

Since \(p_i(x) \in \{0, 1\} \) for \(x \in \{0, 1\}^n \) it follows that \(\tilde{g}(x) = \text{OR}(p_1, \ldots, p_\ell) \). Then the degree of \(\tilde{g} \) is at most \(2\ell \cdot (2\ell)^{d-1} = (2\ell)^d \). Also, by the CLAIM, for each \(x \in \{0, 1\}^n \)

\[
\Pr_x[\tilde{g}(x) \neq \bigvee_{i=1}^k \tilde{f}_i] \leq 1/3^\ell < 1/2^\ell
\] \hfill (1)

Let’s say a pair \((x, (T_1, \ldots, T_\ell)) \) is BAD if \(\tilde{g}(x) \neq \bigvee_{i=1}^k \tilde{f}_i \). By (1) at most a fraction \(1/2^\ell \) of the pairs are BAD, and hence there exists a choice \((T_1, \ldots, T_\ell) \) which is not BAD for all but a fraction \(1/2^\ell \) of elements \(x \in \{0, 1\}^n \). We use this choice for \(T_1, \ldots, T_\ell \), so \(\tilde{g} \) differs from \(\bigvee_{i=0}^k \tilde{f}_i \) on at most a fraction \(1/2^\ell \) of inputs \(x \).

Finally note that there are \(S \) gates in the circuit, and for each gate \(g \), the approximating polynomial \(\tilde{g} \) introduces at most a fraction \(1/2^\ell \) further errors on the input set \(\{0, 1\}^n \). Hence the output approximating polynomial \(\tilde{g} \) differs from the output gate \(g \) on at most a fraction \(S/2^\ell \) of the inputs.

Using the Lemma, we choose \(\ell = (1/2)n^{1/2d} \). Then the degree of \(\tilde{g} \) is at most \((2\ell)^d = (n^{1/2d})^d = \sqrt{n} \). Step 2 shows that no polynomial over \(\text{GF}[3] \) of degree \(\sqrt{n} \) agrees with \(\oplus(x_1, \ldots, x_n) \) on more than a fraction of 49/50 of inputs \(x \in \{0, 1\}^n \), so the fraction of errors is at least 1/50. Thus if the circuit has depth \(d \) and \(S \) gates and computes \(\oplus(x) \), then

\[
S/2^\ell \geq \text{error fraction of } \tilde{g} \geq 1/50
\]

so \(S \geq (1/50)2^{(1/2)n^{1/2d}} \).