1. Let MAXSIZE be the set of all sets $A \subseteq \{0,1\}^*$ such that for every circuit family $\langle C_n \rangle_{n \in \mathbb{N}}$ which computes A, every set $B_n \subseteq \{0,1\}^n$ can be computed by a circuit of size at most $|C_n|$. Note that by Shannon’s theorem, $|C_n| \geq 2^n/n$, for $n \geq 2$.

Recall that the complexity class $E = \text{DTIME}(2^{O(n)}) = \bigcup_c \text{DTIME}(2^{cn})$.

(a) Show that there is $A \in E^{PH}$ such that $A \in \text{MAXSIZE}$.

Hint: See the proof of Kannan’s Theorem given in class.

Solution:
For each $n \in \mathbb{N}$ let s_n be the largest s such that there is a circuit C_n of size s with n inputs and one output such that C_n is not equivalent to any smaller circuit.

Note that using DNF (disjunctive normal form) we know $s_n = O(n2^n) = O(2^{2n})$.

Define A as follows: $x \in A$ iff $C(x) = 1$, where C is the lexicographically first circuit of size s_n with $|x|$ inputs and one output which is not equivalent to any smaller circuit.

Then by definition $A \in \text{MAXSIZE}$.

Let $B = \{\langle x, y \rangle : x \in A$ and $|y| = 2^{|x|}\}$. Then $B \in PH$, because the condition $|y| = 2^{|x|}$ can be checked in time polynomial in $(|x|, |y|)$, and the condition $x \in A$ above can be expressed by a polytime relation preceeded by quantifiers bounded in length by a polynomial in $2^{|x|}$.

To show that $A \in E^{PH}$ it suffices to show that $A \in E^B$. In fact a Turing machine M with oracle B can compute A as follows: On input x, M writes $\langle x, y \rangle$ on its oracle tape, where y is a string of 1’s of length $2^{|x|}$. Then M accepts x iff the oracle B returns YES. Note that M runs in time $O(2^{|x|})$.

(b) Show that if $\text{NP} \subseteq \text{P/poly}$ then there is $A \in \text{E}^{\Sigma_2^p}$ such that $A \in \text{MAXSIZE}$.

Solution:
If $\text{NP} \subseteq \text{P/poly}$ then by the Karp/Lipton Theorem the polynomial hierarchy PH collapses to Σ_2^p. So (b) follows from (a).

(c) Show that if $\text{P} = \text{NP}$ then there is $A \in \text{E}$ such that $A \in \text{MAXSIZE}$.

Solution:
If $\text{P} = \text{NP}$ then $\text{PH} = \text{P}$, so by (a) it follows that the set A defined in part (a) is in E^P. But we can show that $\text{E}^P = \text{E}$ as follows.

Let M^C be an oracle TM computing A, where $C \in \text{P}$, and M runs in time $O(2^{cn})$. We may assume that some TM computes C in time $O(n^k)$, for some k. Then on input x of length n, each oracle query made by M^C has length $O(2^{cn})$, and can be answered in time $O(2^{cn}) = O(2^{ckn})$. Further M^C can make only $O(2^{cn})$ such queries. Hence a TM with no oracle can simulate M^C in time $O(2^{ckn} \cdot 2^{cn}) = O(2^{dn})$ for some constant d.

2. (See Exercise 6.13 in text). A Boolean formula can be viewed as a Boolean circuit in which every node (except the input nodes) has out-degree 1. Show that a language is computed by a polynomial size family of formulas iff it is in NC^1.

Hint: The graph underlying the formula (after inputs are deleted) is a rooted tree in which each node has at most two children (its inputs). Show that every such tree with $m \geq 2$ leaves has a subtree with between $m/3$ and $2m/3$ leaves.

Solution:
First we show that every language in NC^1 can be computed by a polynomial size family of formulas. A simple induction on d shows that every Boolean circuit of depth d is equivalent to a formula of size at most $O(2^d)$. For the induction step, note that the output gate of the circuit has fan-in at most 2, and we can apply the induction hypothesis to each input gate.

The n-th circuit C_n in an NC^1 circuit family has depth $O(\log n)$, so the corresponding formula has size $2^{O(\log n)} = n^{O(1)}$ (polynomial size).

For the converse, we need to prove the Hint. Let T be a binary rooted tree with $m \geq 2$ leaves. Starting at the root of T, and walk toward the leaves, always choosing the subtree with at least half of the number of leaves of the current subtree. Stop when reaching a subtree T' with at most $2m/3$ leaves. Then T' has at least $m/3$ leaves since the previous subtree has more than $2m/3$ leaves. Thus T' is the desired subtree.

Now we show that a polynomial size family of formulas can be converted to an equivalent circuit family of depth $O(\log s)$. It suffices to show how to convert a formula φ with s leaves to an equivalent circuit of depth $O(\log s)$. (We may assume that all nodes have fan-in 2, by pushing not gates to the leaves, using DeMorgan’s laws.)

Now we prove by induction on $s \geq 4$, that a formula φ with s leaves is equivalent to a formula φ' with depth at most $C \log_2 s$, where the constant C will be determined. If $s \leq 4$, let $\varphi' = \varphi$. Otherwise apply the Hint to the tree structure of φ to obtain a subformula ψ with between $s/3$ and $2s/3$ leaves. Let $\hat{\varphi}(y)$ be φ with the subformula ψ replaced by a new variable y. Thus φ is the same as $\hat{\varphi}(\psi)$, and φ is equivalent to φ_1, which is given by

$$\varphi_1 = (\psi \land \hat{\varphi}(1)) \lor (\neg \psi \land \hat{\varphi}(0))$$

Note that $\hat{\varphi}(1)$ and $\hat{\varphi}(0)$ each have at most $2s/3$ leaves which are variables, and in general we may replace a formula involving the constants 0 and 1 and variables with an equivalent formula of no greater depth without the constants.

Finally let φ' be φ_1 with the equivalents of subformulas ψ, $\hat{\varphi}(1)$, and $\hat{\varphi}(0)$ replaced by equivalent small depth formulas given by the induction hypothesis. Thus the depth of φ' is at most $C \log_2((2/3)s) + 3$. This is at most $C \log_2 s$, provided $C \geq 3/\log_2(3/2)$.

3. Do problem 7.1, page 141 in the text. (One can efficiently simulate choosing a random number from 1 to N using coin tosses.)

Solution:
Given $N \geq 1$ and δ with $0 < \delta < 1$ we are to give a probabilistic algorithm A running in $\text{poly}(\log N \log(1/\delta))$ time with output in $\{1, \ldots, N, ?\}$ such that
(1) conditioned on not outputting ?, A’s output is uniformly distributed in $[N]$, and
(2) the probability that A outputs ? is at most δ.

Let n be the smallest integer such that $2^n \geq N$. Repeat $\lceil \log(1/\delta) \rceil$ times:

Choose a random number t between 1 and 2^n by choosing n random bits. If $t \leq N$ then output t and halt.

Output ?

4. Do Problem 7.10, page 142 in the text. (The random walk idea for showing connectivity does not work for directed graphs.)

Solution:
Let G_n be the graph on vertices $\{1, \ldots, n\}$ in which $s = 1$, $t = n$, there is an edge from i to $i + 1$ for $1 \leq i < n$, and an edge from i to 1 for $1 < i \leq n$. (Note that G_n is strongly connected).

Then the probability of reaching t from s without returning to s is 2^{2-n}.

Let E be the expected number of returns to s before reaching t. Then either there are no returns, or there is at least one return, so

$$E = 2^{2-n} \cdot 0 + (1 - 2^{2-n}) \cdot (1 + E)$$

Solving this equation gives $E = 2^{n-2} - 1$. Hence the expected number of edges traversed before reaching t is $\Omega(2^n)$.
