1. a) Show that \oplus (Parity) is AC^0-reducible to binary multiplication. Here binary multiplication is the function $MULT: \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^{2n}$ is defined by $MULT(x, y) = z$ if z if $a \cdot b = c$ where strings x, y, z represent natural numbers a, b, c in binary.

To show the AC^0 reduction, define an AC^0 function f such that $f(x) = (y, z, i)$, where the string x has an odd number of 1’s iff the ith bit of $MULT(y, z)$ is 1. Do this as follows: Specify a number k, and let y be x with each of its consecutive bits separated by k 0’s, and let z be constructed similarly. (The idea is to remove the carries that would arise from normal long-hand multiplication of x times y.) Show that this is an AC^0 reduction.

b) Conclude that $MULT$ is not an AC^0 function.

2. The point of this exercise is to show that Theorem 14.4, page 291 (Razborov-Smolensky) generalizes to the case that p and q are positive powers of distinct primes. (We use $AC^0(m)$ for $ACC0(m)$.)

(a) Show that if $a, b > 1$ then MOD_a is in $AC^0(ab)$.
(b) Show that if $a, b > 1$ then MOD_{ab} is in $AC^0(a, b)$.
(c) Conclude from the above that if $i, j > 0$ and $m > 1$, then MOD_m is in $AC^0(m^j)$.

3. Let $\#MATCHINGS(G)$ be the number of matchings of a bipartite graph G. (A matching is any set of edges of G such that no two edges in the set share a common vertex.) Let $\#MON2SAT(\varphi)$ be the number of satisfying assignments of a monotone 2CNF formula φ.

Use the fact that $\#MATCHINGS(G)$ is $\#P$ complete to show that $\#MON2SAT(\varphi)$ is $\#P$ complete.

4. Show that $P^{PP} = P^{#P}$. (See page 345 for the definition of PP.)