# Formalizing Randomized Matching Algorithms 

Stephen Cook<br>Joint work with Dai Tri Man Lê<br>Department of Computer Science<br>University of Toronto<br>Canada

The Banff Workshop on Proof Complexity 2011

## Feasible reasoning with VPV

## The VPV theory

- A universal theory based on Cook's theory PV ('75) associated with complexity class P (polytime)
- With symbols for all polytime functions and their defining axioms based on Cobham's Theorem ('65).
- Induction on polytime predicates: a derived result via binary search.
- Proposition translation: polynomial size extended Frege proofs


## Feasible reasoning with VPV

## The VPV theory

- A universal theory based on Cook's theory PV ('75) associated with complexity class P (polytime)
- With symbols for all polytime functions and their defining axioms based on Cobham's Theorem ('65).
- Induction on polytime predicates: a derived result via binary search.
- Proposition translation: polynomial size extended Frege proofs
- We are mainly interested in $\Pi_{2}$ (and $\Pi_{1}$ ) theorems $\forall X \exists Y \varphi(X, Y)$, where $\varphi$ represents a polytime predicate.
- A proof in VPV is feasibly constructive: can extract a polytime function $F(X)$ and a correctness proof of $\forall X \varphi(X, F(X))$.
- Induction is restricted to polytime "concepts".


## Feasible proofs

Polytime algorithms usually have feasible correctness proofs, e.g., - the "augmenting-path" algorithm: finding a maximum matching

- the Hungarian algorithm: finding a minimum-weight matching - ...
(formalized in VPV, see the full version on our websites)


## Feasible proofs

Polytime algorithms usually have feasible correctness proofs, e.g.,

- the "augmenting-path" algorithm: finding a maximum matching
- the Hungarian algorithm: finding a minimum-weight matching
- ...
(formalized in VPV, see the full version on our websites)


## Main Question

How about randomized algorithms and probabilistic reasoning?
"Formalizing Randomized Matching Algorithms"

## How about randomized algorithms?

Two fundamental randomized matching algorithms
(1) $\mathrm{RNC}^{2}$ algorithm for testing if a bipartite graph has a perfect matching (Lovász '79)
(2) $\mathrm{RNC}^{2}$ algorithm for finding a perfect matching of a bipartite graph (Mulmuley-Vazirani-Vazirani '87)

Recall that:

$$
\begin{gathered}
\text { Log-Space } \subseteq{N C^{2} \subseteq P}^{R N C^{2} \subseteq R P}
\end{gathered}
$$

## Remark

The two algorithms above also work for general undirected graphs, but we only consider bipartite graphs.

## How about randomized algorithms?

Two fundamental randomized matching algorithms
(1) $\mathrm{RNC}^{2}$ algorithm for testing if a bipartite graph has a perfect matching (Lovász '79)
(2) $\mathrm{RNC}^{2}$ algorithm for finding a perfect matching of a bipartite graph (Mulmuley-Vazirani-Vazirani '87)

Recall that:

$$
\begin{gathered}
\text { Log-Space } \subseteq \mathrm{NC}^{2} \subseteq \mathrm{P} \\
\mathrm{RNC}^{2} \subseteq \mathrm{RP}
\end{gathered}
$$

## Remark

The two algorithms above also work for general undirected graphs, but we only consider bipartite graphs.

## Lovász's Algorithm

## Problem:

Given a bipartite graph $G$, decide if $G$ has a perfect matching.

replace ones with
$\xrightarrow{\text { distinct variables }} \xrightarrow[\sim]{\sim} M_{G}=\left[\begin{array}{ccc}x_{11} & 0 & x_{13} \\ x_{21} & x_{22} & 0 \\ 0 & x_{32} & x_{33}\end{array}\right]$

## Edmonds' Theorem (provable in VPV)

$G$ has a perfect matching if and only if $\operatorname{Det}\left(M_{G}\right)$ is not identically zero.

## Lovász's Algorithm

## Problem:

Given a bipartite graph $G$, decide if $G$ has a perfect matching.

replace ones with
$\xrightarrow{\text { distinct variables }} \xrightarrow[\sim]{\sim} M_{G}=\left[\begin{array}{ccc}x_{11} & 0 & x_{13} \\ x_{21} & x_{22} & 0 \\ 0 & x_{32} & x_{33}\end{array}\right]$

## Edmonds' Theorem (provable in VPV)

$G$ has a perfect matching if and only if $\operatorname{Det}\left(M_{G}\right)$ is not identically zero.

The usual proof is not feasible since. . .
it uses the formula $\operatorname{Det}(A)=\sum_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^{n} A(i, \sigma(i))$, which has $n!$ terms.

## Lovász's Algorithm

|  |
| :--- |
| $a$ |
| $b$ |
| $b$ |\(\left[\begin{array}{lll}d \& e \& f <br>

1 \& 0 \& 1 <br>
1 \& 1 \& 0 <br>

0 \& 1 \& 1\end{array}\right] \quad\)| replace ones with |
| :---: |
| distinct variables |\(\sim M_{G}=\left[\begin{array}{ccc}x_{11} \& 0 \& x_{13} <br>

x_{21} \& x_{22} \& 0 <br>
0 \& x_{32} \& x_{33}\end{array}\right]\)

## Edmonds' Theorem (provable in VPV)

$G$ has a perfect matching if and only if $\operatorname{Det}\left(M_{G}\right)$ is not identically zero.

## Lovász's Algorithm

$\begin{aligned} & \\ & a \\ & b \\ & b\end{aligned}\left[\begin{array}{lll}d & e & f \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right] \quad \begin{gathered}\text { replace ones with } \\ \text { distinct variables }\end{gathered} \quad M_{G}=\left[\begin{array}{ccc}x_{11} & 0 & x_{13} \\ x_{21} & x_{22} & 0 \\ 0 & x_{32} & x_{33}\end{array}\right]$

## Edmonds' Theorem (provable in VPV)

$G$ has a perfect matching if and only if $\operatorname{Det}\left(M_{G}\right)$ is not identically zero.

## Lovász's RNC ${ }^{2}$ Algorithm

- Observation: instance of the polynomial identity testing problem
- $\operatorname{Det}\left(M_{G}^{n \times n}\right)$ is a polynomial in $n^{2}$ variables $x_{i j}$ with degree at most $n$. $\operatorname{Det}\left(M_{G}^{n \times n}\right)$ is called the Edmonds' polynomial of $G$.
- Pick $n^{2}$ random values $r_{i j}$ from $S=\{0, \ldots, 2 n\}$
(1) if $\operatorname{Det}\left(M_{G}\right) \equiv 0$, then $\operatorname{Det}\left(M_{G}\right)(\vec{r})=0$
(2) if $\operatorname{Det}\left(M_{G}\right) \not \equiv 0$, then $\operatorname{Pr}_{\vec{r} \in_{R} S^{n^{2}}}\left[\operatorname{Det}\left(M_{G}\right)(\vec{r}) \neq 0\right] \geq 1 / 2$
- (2) follows from the Schwartz-Zippel Lemma

Obstacle \#1 - Talking about probability

- Given a polytime predicate $A(X, R)$,

$$
\operatorname{Pr}_{R \in\{0,1\}^{n}}[A(X, R)]=\frac{\left|\left\{R \in\{0,1\}^{n} \mid A(X, R)\right\}\right|}{2^{n}}
$$

- The function $F(X):=\left|\left\{R \in\{0,1\}^{n} \mid A(X, R)\right\}\right|$ is in \#P.
- \#P problems are generally harder than NP problems


## Cardinality comparison for large sets

## Definition (Jeřábek 2004 - simplified)

Let $\Gamma, \Delta \subseteq\{0,1\}^{n}$ be polytime definable sets, $\Gamma$ is "larger" than $\Delta$ if there exists a polytime surjective function $F: \Gamma \rightarrow \Delta$.

## A bit of history

A series of papers by Jeřábek (2004-2009) justifying and utilizing the above definition

- A very sophisticated framework
- Based on approximate counting techniques
- Related to the theory of derandomization and pseudorandomness
- Application: formalizing probabilistic complexity classes


## Obstacle \#1 - Talking about probability

- Given a polytime predicate $A(X, R)$,

$$
\operatorname{Pr}_{R \in\{0,1\}^{n}}[A(X, R)]=\frac{\left|\left\{R \in\{0,1\}^{n} \mid A(X, R)\right\}\right|}{2^{n}}
$$

- The function $F(X):=\left|\left\{R \in\{0,1\}^{n} \mid A(X, R)\right\}\right|$ is in \#P.
- \#P problems are generally harder than NP problems


## Obstacle \#1 - Talking about probability

- Given a polytime predicate $A(X, R)$,

$$
\operatorname{Pr}_{R \in\{0,1\}^{n}}[A(X, R)]=\frac{\left|\left\{R \in\{0,1\}^{n} \mid A(X, R)\right\}\right|}{2^{n}}
$$

- The function $F(X):=\left|\left\{R \in\{0,1\}^{n} \mid A(X, R)\right\}\right|$ is in \#P.
- \#P problems are generally harder than NP problems


## Solution [Jeřábek '04]

- We want to show $\operatorname{Pr}_{R \in\{0,1\}^{n}}[A(X, R)] \leq r / s$, it suffices to show

$$
\left|\left\{R \in\{0,1\}^{n} \mid A(X, R)\right\}\right| \cdot s \leq 2^{n} \cdot r
$$

- Key idea: construct in VPV a polytime surjection

$$
G:\{0,1\}^{n} \times[r] \rightarrow\left\{R \in\{0,1\}^{n} \mid A(X, R)\right\} \times[s]
$$

where $[m]:=\{1, \ldots, m\}$.

## The Schwartz-Zippel Lemma

Let $P\left(X_{1}, \ldots, X_{n}\right)$ be a non-zero polynomial of degree $D$ over a field $\mathbb{F}$.
Let $S$ be a finite subset of $\mathbb{F}$. Then

$$
\operatorname{Pr}_{\vec{R} \in S^{n}}[P(\vec{R})=0] \leq \frac{D}{|S|}
$$

Obstacle \#2

- The usual proof assumes we can rewrite

$$
P\left(X_{1}, \ldots, X_{n}\right)=\sum_{J=0}^{D} X_{1}^{J} \cdot P_{J}\left(X_{2}, \ldots, X_{n}\right)
$$

- This step is not feasible when $P$ is given as arithmetic circuit or symbolic determinant


## The Schwartz-Zippel Lemma

Let $P\left(X_{1}, \ldots, X_{n}\right)$ be a non-zero polynomial of degree $D$ over a field $\mathbb{F}$.
Let $S$ be a finite subset of $\mathbb{F}$. Then

$$
\operatorname{Pr}_{\vec{R} \in S^{n}}[P(\vec{R})=0] \leq \frac{D}{|S|}
$$

## Obstacle \#2

- The usual proof assumes we can rewrite

$$
P\left(X_{1}, \ldots, X_{n}\right)=\sum_{J=0}^{D} X_{1}^{J} \cdot P_{J}\left(X_{2}, \ldots, X_{n}\right)
$$

- This step is not feasible when $P$ is given as arithmetic circuit or symbolic determinant


## Solution

- Being less ambitious: restrict to the case of Edmonds' polynomials
- Take advantage of the special structure of Edmonds' polynomials


## Edmonds' polynomials

|  |
| :--- |
| $a$ |
| $b$ |
| $c$ |\(\left[\begin{array}{ccc}d \& e \& f <br>

1 \& 0 \& 1 <br>
1 \& 1 \& 0 <br>

0 \& 1 \& 1\end{array}\right] \quad\)\begin{tabular}{l}
replace ones with <br>
distinct variables

$\quad$

Edmonds' matrix: <br>
$\sim$
\end{tabular}\(\quad M_{G}=\left[\begin{array}{ccc}x_{11} \& 0 \& x_{13} <br>

x_{21} \& x_{22} \& 0 <br>
0 \& x_{32} \& x_{33}\end{array}\right]\)

## Useful observation:

- Each variable $x_{i j}$ appears at most once in $M_{G}$.
- From the above example, by the cofactor expansion,

$$
\operatorname{Det}\left(M_{G}\right)=-x_{33} \cdot \operatorname{Det}\left(\begin{array}{cc}
x_{11} & 0 \\
x_{21} & x_{22}
\end{array}\right)+\operatorname{Det}\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
x_{21} & x_{22} & 0 \\
0 & x_{32} & 0
\end{array}\right)
$$

- Thus, we can apply the idea in the original proof.


## Schwartz-Zippel Lemma for Edmonds' polynomials

## Theorem (provable in VPV)

Assume the bipartite graph $G$ has a perfect matching.

- Let $S=\{0, \ldots, s-1\}$ be the sample set.
- Let $M_{G}^{n \times n}$ be the Edmonds' matrix of $G$.

Then we can construct polytime surjection

$$
F:[n] \times S^{n^{2}-1} \rightarrow\left\{\vec{r} \in S^{n^{2}} \mid \operatorname{Det}\left(M_{G}\right)(\vec{r})=0\right\} .
$$

- The degree of the Edmonds' polynomial $\operatorname{Det}\left(M_{G}\right)$ is at most $n$.
- The surjection $F$ witnesses that

$$
\operatorname{Pr}_{\vec{r} \in S^{n^{2}}}\left[\operatorname{Det}\left(M_{G}\right)(\vec{r})=0\right]=\frac{\left|\left\{\vec{r} \in S^{n^{2}} \mid \operatorname{Det}\left(M_{G}\right)(\vec{r})=0\right\}\right|}{s^{n^{2}}} \leq \frac{n}{s}
$$

## The Mulmuley-Vazirani-Vazirani Algorithm

- $\mathrm{RNC}^{2}$ algorithm for finding a perfect matching of a bipartite graph
- Key idea: reduce to the problem of finding a unique min-weight perfect matching using the isolating lemma.


## Obstacle

The isolating lemma seems too general to give a feasible proof.

## Solution

Consider a specialized version of the isolating lemma.

## Lemma

Given a bipartite graph $\mathcal{G}$. Assume the family $\mathcal{F}$ of all perfect matchings of $G$ is nonempty. If we assign random weights to the edges, then

$$
\operatorname{Pr}[\text { the min-weight perfect matching is unique }] \text { is high. }
$$

## Summary

## Main motivation

Feasible proofs for randomized algorithms and probabilistic reasoning: "Formalizing Randomized Matching Algorithms"

We demonstrate the techniques through two randomized algorithms:
(1) $\mathrm{RNC}^{2}$ algorithm for testing if a bipartite graph has a perfect matching (Lovász '79)

- Schwartz-Zippel Lemma for Edmonds' polynomials
(2) $\mathrm{RNC}^{2}$ algorithm for finding a perfect matching of a bipartite graph (Mulmuley-Vazirani-Vazirani '87)
- a specialized version of the isolating lemma for bipartite matchings.

Take advantage of special linear-algebraic properties of Edmonds' matrices and Edmonds' polynomials

## Open problems and future work

## Open questions

(1) Can we prove in VPV more general version of the Schwartz-Zippel lemma?
(2) Can we do better than $V P V$, for example, $V N C^{2}$ ?

## Open problems and future work

## Open questions

(1) Can we prove in VPV more general version of the Schwartz-Zippel lemma?
(2) Can we do better than $V P V$, for example, $V N C^{2}$ ?

## Future work

(1) How about RNC $^{2}$ matching algorithms for undirected graphs?

Use properties of the pfaffian
Need to generalize results from [Soltys '01] [Soltys-Cook '02]
(with Lê)
(2) Using Jeřábek's techniques to formalize constructive aspects of fundamental theorems that require probabilistic reasoning.

Theorems in cryptography, e.g., the Goldreich-Levin Theorem, construction of pseudorandom generator from one-way functions, etc. (with George and Lê)

