Theories for Subexponential-size Bounded-depth Frege Proofs

Kaveh Ghasemloo and Stephen Cook

Department of Computer Science University of Toronto Canada

CSL 2013

Propositional vs Uniform Proof Complexity

• Propositional proof complexity studies the lengths of proofs of tautology families in proof systems such as Frege and bdFrege (bounded-depth Frege).

Propositional vs Uniform Proof Complexity

- Propositional proof complexity studies the lengths of proofs of tautology families in proof systems such as Frege and bdFrege (bounded-depth Frege).
- Uniform proof complexity studies the power of weak formal theories such as VNC¹ and V⁰.

Propositional vs Uniform Proof Complexity

- Propositional proof complexity studies the lengths of proofs of tautology families in proof systems such as Frege and bdFrege (bounded-depth Frege).
- Uniform proof complexity studies the power of weak formal theories such as VNC¹ and V⁰.
- Both proof systems and theories are often associated with complexity classes.
 - ▶ Frege systems and VNC¹ are associated with the complexity class NC¹
 - ▶ bdFrege and V⁰ are associated with the complexity class AC⁰.

A three-way connection \langle C, VC, C-Frege \rangle

- Complexity class C, theory VC, and proof system C-Frege
- The provably total functions in VC are those in C

A three-way connection \langle C, VC, C-Frege \rangle

- Complexity class C, theory VC, and proof system C-Frege
- The provably total functions in VC are those in C
- C-Frege is the strongest propositional proof system whose soundness is provable in VC

A three-way connection \langle C, VC, C-Frege \rangle

- Complexity class C, theory VC, and proof system C-Frege
- The provably total functions in VC are those in C
- C-Frege is the strongest propositional proof system whose soundness is provable in VC
- The Σ₀^B theorems of VC translate to a family {φ_n}_n of propositional tautologies which have polynomial size C-Frege proofs.
 Example: VNC¹ proves the Pigeonhole Principle: "For all n, n+1 pigeons cannot be assigned to n holes with at most one pigeon per hole."

The corresponding tautologies $\{\varphi_n\}_n$ have polysize Frege proofs.

A three-way connection \langle C, VC, C-Frege \rangle

- Complexity class C, theory VC, and proof system C-Frege
- The provably total functions in VC are those in C
- C-Frege is the strongest propositional proof system whose soundness is provable in VC
- The Σ₀^B theorems of VC translate to a family {φ_n}_n of propositional tautologies which have polynomial size C-Frege proofs.
 Example: VNC¹ proves the Pigeonhole Principle: "For all n, n+1 pigeons cannot be assigned to n holes with at most one pigeon per hole."

The corresponding tautologies $\{\varphi_n\}_n$ have polysize Frege proofs.

Examples

- \langle NC¹, VNC¹, Frege \rangle
- \langle AC⁰, V⁰, bdFrege \rangle
- \langle P, VP, eFrege \rangle

Motivatation for our paper

- Theorem[FPS'12]: Frege proofs can be converted to bdFrege proofs of subexponential size.
- 2 That is, given $0 < \varepsilon < 1$ and a family $\{\varphi_n\}_n$ of tautologies and a family $\{\pi_n\}_n$ of Frege proofs such that π_n proves φ_n and has size $n^{O(1)}$, there exists a family $\{\pi'_n\}_n$ of Frege proofs such that π'_n proves φ_n and has size $2^{O(n^{\varepsilon})}$ and all cut formulas have depth O(1).
- We want a uniform version of this.

Motivatation for our paper

- Theorem[FPS'12]: Frege proofs can be converted to bdFrege proofs of subexponential size.
- 2 That is, given $0 < \varepsilon < 1$ and a family $\{\varphi_n\}_n$ of tautologies and a family $\{\pi_n\}_n$ of Frege proofs such that π_n proves φ_n and has size $n^{O(1)}$, there exists a family $\{\pi'_n\}_n$ of Frege proofs such that π'_n proves φ_n and has size $2^{O(n^{\varepsilon})}$ and all cut formulas have depth O(1).
- We want a uniform version of this.
- i.e. we want a triple $\langle C_{\varepsilon}, VC_{\varepsilon}, C_{\varepsilon}$ -Frege \rangle where C_{ε} -Frege is as in item 2 above.

Motivatation for our paper

- Theorem[FPS'12]: Frege proofs can be converted to bdFrege proofs of subexponential size.
- 2 That is, given $0 < \varepsilon < 1$ and a family $\{\varphi_n\}_n$ of tautologies and a family $\{\pi_n\}_n$ of Frege proofs such that π_n proves φ_n and has size $n^{O(1)}$, there exists a family $\{\pi'_n\}_n$ of Frege proofs such that π'_n proves φ_n and has size $2^{O(n^{\varepsilon})}$ and all cut formulas have depth O(1).
- We want a uniform version of this.
- i.e. we want a triple $\langle C_{\varepsilon}, VC_{\varepsilon}, C_{\varepsilon}$ -Frege \rangle where C_{ε} -Frege is as in item 2 above.
- Note that bdFrege and C_ε-Frege are proof classes rather than proof systems.

A Proof class associates families of proofs with families of formulas.

- Here $\varepsilon = 1/d$ where d > 1 is an integer.
- Let C_ε = AltTime(O(1), O(n^ε)) (problems computable by uniform size 2^{O(n^ε)} bounded-depth circuit families).
- $\mathsf{NC}^1 \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq C_{\varepsilon}$

- Here $\varepsilon = 1/d$ where d > 1 is an integer.
- Let C_ε = AltTime(O(1), O(n^ε)) (problems computable by uniform size 2^{O(n^ε)} bounded-depth circuit families).
- $\mathsf{NC}^1 \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathcal{C}_{\varepsilon}$
- What is the theory VC_ε.?
 (We want the provably total functions of VC_ε to be those in C_ε.)

- Here $\varepsilon = 1/d$ where d > 1 is an integer.
- Let C_ε = AltTime(O(1), O(n^ε)) (problems computable by uniform size 2^{O(n^ε)} bounded-depth circuit families).
- $\mathsf{NC}^1 \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathcal{C}_{\varepsilon}$
- What is the theory VC_ε.? (We want the provably total functions of VC_ε to be those in C_ε.)
- Major Obstacle: In general the provably total functions in a theory VC are closed under composition. But the subexponential functions are not closed under composition.
- For example the composition of $n \mapsto 2^{n^{\frac{1}{2}}}$ with $n \mapsto n^2$ is 2^n .

- Here $\varepsilon = 1/d$ where d > 1 is an integer.
- Let C_ε = AltTime(O(1), O(n^ε)) (problems computable by uniform size 2^{O(n^ε)} bounded-depth circuit families).
- $\mathsf{NC}^1 \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathcal{C}_{\varepsilon}$
- What is the theory VC_ε.? (We want the provably total functions of VC_ε to be those in C_ε.)
- Major Obstacle: In general the provably total functions in a theory VC are closed under composition. But the subexponential functions are not closed under composition.
- For example the composition of $n \mapsto 2^{n^{\frac{1}{2}}}$ with $n \mapsto n^2$ is 2^n .
- We'll get to this in a moment.

We follow the framework in [Cook-Nguyen '10]

Program in Chapter 9

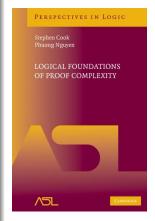
 Presents a general method for associating a theory VC with a complexity classes C, including theories

$$\mathsf{V}^0 \subseteq \mathsf{VNC}^1 \subseteq \mathsf{VL} \subseteq \mathsf{VNL} \subseteq \mathsf{VF}$$

for classes

$$\mathsf{AC}^0 \subseteq \mathsf{NC}^1 \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{P}$$

- Theories have two sorts: Natural numbers x, y, z, ... and bit strings X, Y, Z,
- **3** Function symbols 0, 1, +, \cdot , || (length)
- Q Relation symbols =, ≤, and ∈ (membership/bit).



Two-sorted relations and formulas

- (Uniform) $AC^0 = FO = AltTime(O(1), O(\lg n)) = DepthSize(O(1), n^{O(1)}).$
- A relation $R(\vec{x}, \vec{X})$ is in AC⁰ as above, where number arguments \vec{x} are presented in unary.

Two-sorted relations and formulas

- (Uniform) $AC^0 = FO = AltTime(O(1), O(\lg n)) = DepthSize(O(1), n^{O(1)}).$
- A relation $R(\vec{x}, \vec{X})$ is in AC⁰ as above, where number arguments \vec{x} are presented in unary.
- Σ_0^B is the class of formulas with no string quantifiers, and with all number quantifiers bounded.
- Σ_0^B Representation Theorem: A relation $R(\vec{x}, \vec{X})$ is in AC⁰ iff it is represented by a Σ_0^B formula $\varphi(\vec{x}, \vec{X})$.

Two-sorted relations and formulas

- (Uniform) $AC^0 = FO = AltTime(O(1), O(\lg n)) = DepthSize(O(1), n^{O(1)}).$
- A relation $R(\vec{x}, \vec{X})$ is in AC⁰ as above, where number arguments \vec{x} are presented in unary.
- Σ_0^B is the class of formulas with no string quantifiers, and with all number quantifiers bounded.
- Σ_0^B Representation Theorem: A relation $R(\vec{x}, \vec{X})$ is in AC⁰ iff it is represented by a Σ_0^B formula $\varphi(\vec{x}, \vec{X})$.
- Σ_i^B and Π_i^B are classes of bounded formulas with limits on alternations of the string quantifiers.
- $\exists^B \Phi$ consists of formulas starting with bounded existential string quantifiers followed by a formula in Φ .

- Introduce two types of variables: input type and output type
- input type: a, b, c denote numbers, A, B, C denote strings.
 output type: x, y, z denote numbers, X, Y, Z denote strings.

- Introduce two types of variables: input type and output type
- input type: a, b, c denote numbers, A, B, C denote strings.
 output type: x, y, z denote numbers, X, Y, Z denote strings.
- For fast growing *f*, the arugments of *f* have input type and are small, while the value of *f* has output type and might be large.

- Introduce two types of variables: input type and output type
- input type: a, b, c denote numbers, A, B, C denote strings.
 output type: x, y, z denote numbers, X, Y, Z denote strings.
- For fast growing *f*, the arugments of *f* have input type and are small, while the value of *f* has output type and might be large.
- For each 0 < ε < 1, the functions with growth rate 2^{O(nε)} are closed under composition with linear functions, so we allow linear terms to be input type.

- Introduce two types of variables: input type and output type
- input type: a, b, c denote numbers, A, B, C denote strings.
 output type: x, y, z denote numbers, X, Y, Z denote strings.
- For fast growing *f*, the arugments of *f* have input type and are small, while the value of *f* has output type and might be large.
- For each 0 < ε < 1, the functions with growth rate 2^{O(n^ε)} are closed under composition with linear functions, so we allow linear terms to be input type.
- All terms (including input type terms) have output type.

- Introduce two types of variables: input type and output type
- input type: a, b, c denote numbers, A, B, C denote strings.
 output type: x, y, z denote numbers, X, Y, Z denote strings.
- For fast growing *f*, the arugments of *f* have input type and are small, while the value of *f* has output type and might be large.
- For each 0 < ε < 1, the functions with growth rate 2^{O(n^ε)} are closed under composition with linear functions, so we allow linear terms to be input type.
- All terms (including input type terms) have output type.
- Example input type term:

$$a + b + 1 + pd(c) + |A| + |B|$$

(No output type variables allowed.)

Theory io2Basic: Axioms have output type variables

Table: io2Basic

B1	$x + 1 \neq 0$	B7	$x \le y \land y \le x \to x = y$
B2	$x + 1 = y + 1 \rightarrow x = y$	B8	$x \le x + y$
B3	x + 0 = x	B9	$0 \le x$
B4	x + (y + 1) = (x + y) + 1	B10	$x \le y \lor y \le x$
B5	$x \cdot 0 = 0$	B11	$x \le y \leftrightarrow x < y + 1$
B6	$x \cdot (y+1) = x \cdot y + x$	B12	$pd(0) = 0 \land (x eq 0 ightarrow$
			pd(x) + 1 = x)
$L y \in X \to y < X $			

X = Y abbreviates $(|X| = |Y| \land \forall x \le |X| \ x \in X \leftrightarrow x \in Y).$

Theory ioV^0 for AC^0

- $x \in X[y, z] \leftrightarrow x < z \land y + x \in X$
- |X[y,z]| = z

- $x \in X[y, z] \leftrightarrow x < z \land y + x \in X$
- |X[y, z]| = z
- Ind: $0 \in X, \forall y < z \ (y \in X \rightarrow y + 1 \in X) \Rightarrow z \in X$
- φ -CA (Comprehension): $\exists Y = z \ \forall x < z \ (x \in Y \leftrightarrow \varphi(x, \vec{a}, \vec{A}))$ where $\varphi(x, \vec{a}, \vec{A})$ is in Σ_0^B

- $x \in X[y, z] \leftrightarrow x < z \land y + x \in X$
- |X[y,z]| = z
- Ind: $0 \in X, \forall y < z \ (y \in X \rightarrow y + 1 \in X) \Rightarrow z \in X$
- φ -CA (Comprehension): $\exists Y = z \ \forall x < z \ (x \in Y \leftrightarrow \varphi(x, \vec{a}, \vec{A}))$ where $\varphi(x, \vec{a}, \vec{A})$ is in Σ_0^B
- oiConv_{num}: $\exists b \leq a \ b = \min(a, x)$
- oiConv_{str}: $\exists B = a \ B = X[y, a]$

ioV⁰ extends io2Basic by adding the substring function X[y, z] and the following axioms:

- $x \in X[y, z] \leftrightarrow x < z \land y + x \in X$
- |X[y, z]| = z
- Ind: $0 \in X, \forall y < z \ (y \in X \rightarrow y + 1 \in X) \Rightarrow z \in X$
- φ -CA (Comprehension): $\exists Y = z \ \forall x < z \ (x \in Y \leftrightarrow \varphi(x, \vec{a}, \vec{A}))$ where $\varphi(x, \vec{a}, \vec{A})$ is in Σ_0^B
- oiConv_{num}: $\exists b \leq a \ b = \min(a, x)$
- oiConv_{str}: $\exists B = a \ B = X[y, a]$

Theorem: The $\exists^B \Sigma_0^B$ definable functions in ioV⁰ coincide with the AC⁰ functions.

Theory ioVNC¹ = ioV⁰ + Σ_0^B (MBBFE)-CA

Theory ioVNC¹ = ioV⁰ + Σ_0^B (MBBFE)-CA

 Σ_0^B (MBBFE)-CA is the following axiom schema:

$$\exists Y = 2s \ \exists Z = 2s \ [\forall x < 2s \ (x \in Z \leftrightarrow \varphi(x, \vec{a}, \vec{A})) \land$$

"Y is the computation of Z"]

where s has output type and $\varphi \in \Sigma_0^B$ and "Y is the computation of Z" stands for

$$\forall z < s \ [z+s \in Y \leftrightarrow z \in Z] \land [(z \in Z \rightarrow (z \in Y \leftrightarrow 2z \in Y \land 2z + 1 \in Y)) \land (z \notin Z \rightarrow (z \in Y \leftrightarrow 2z \in Y \lor 2z + 1 \in Y))]$$

We think of φ as specifying the bit graph of an AC⁰ function whose output Z is as an instance of MBBFE: its first half specifies the gates of the formula and its second half specifies the inputs to the formula.

Theory ioVNC¹ = ioV⁰ + Σ_0^B (MBBFE)-CA

 Σ_0^B (MBBFE)-CA is the following axiom schema:

$$\exists Y = 2s \ \exists Z = 2s \ [\forall x < 2s \ (x \in Z \leftrightarrow \varphi(x, \vec{a}, \vec{A})) \land$$

"Y is the computation of Z"]

where s has output type and $\varphi \in \Sigma_0^B$ and "Y is the computation of Z" stands for

$$\forall z < s \ [z+s \in Y \leftrightarrow z \in Z] \land [(z \in Z \rightarrow (z \in Y \leftrightarrow 2z \in Y \land 2z + 1 \in Y)) \land (z \notin Z \rightarrow (z \in Y \leftrightarrow 2z \in Y \lor 2z + 1 \in Y))]$$

We think of φ as specifying the bit graph of an AC⁰ function whose output Z is as an instance of MBBFE: its first half specifies the gates of the formula and its second half specifies the inputs to the formula.

Theorem: The $\exists^B \Sigma_0^B$ definable functions of ioVNC¹ are precisely the NC¹ functions.

Theory n^{ε} -ioV^{∞} (This is VC_{ε})

Theory n^{ε} -ioV^{∞} (This is VC_{ε})

Here $\varepsilon = 1/d$, where d > 1 is a constant. The theory includes the function x^{ε} (actually $\lfloor x^{\frac{1}{d}} \rfloor$) with defining axiom $x^{\varepsilon} = y \leftrightarrow y^{d} \leq x < (y+1)^{d}$.

Theory n^{ε} -ioV^{∞} (This is VC_{ε})

Here $\varepsilon = 1/d$, where d > 1 is a constant. The theory includes the function x^{ε} (actually $\lfloor x^{\frac{1}{d}} \rfloor$) with defining axiom $x^{\varepsilon} = y \leftrightarrow y^{d} \leq x < (y+1)^{d}$.

We call a formula $\sum_{\infty}^{B} (n^{\varepsilon})$ iff it is bounded and all of its string quantifiers are bounded by linear terms in n^{ε} (*n* is the max size of its free variables).

Theory n^{ε} -ioV^{∞} (This is VC_{ε})

Here $\varepsilon = 1/d$, where d > 1 is a constant. The theory includes the function x^{ε} (actually $\lfloor x^{\frac{1}{d}} \rfloor$) with defining axiom $x^{\varepsilon} = y \leftrightarrow y^{d} \leq x < (y+1)^{d}$.

We call a formula $\sum_{\infty}^{B} (n^{\varepsilon})$ iff it is bounded and all of its string quantifiers are bounded by linear terms in n^{ε} (*n* is the max size of its free variables). Definition: n^{ε} -ioV^{∞} = ioV⁰ + $\sum_{\infty}^{B} (n^{\varepsilon})$ -Comprehension

Theory n^{ε} -ioV^{∞} (This is VC_{ε})

Here $\varepsilon = 1/d$, where d > 1 is a constant. The theory includes the function x^{ε} (actually $\lfloor x^{\frac{1}{d}} \rfloor$) with defining axiom $x^{\varepsilon} = y \leftrightarrow y^{d} \leq x < (y+1)^{d}$.

We call a formula $\sum_{\infty}^{B} (n^{\varepsilon})$ iff it is bounded and all of its string quantifiers are bounded by linear terms in n^{ε} (*n* is the max size of its free variables). Definition: n^{ε} -ioV^{∞} = ioV⁰ + $\sum_{\infty}^{B} (n^{\varepsilon})$ -Comprehension

We take the provably total functions in n^{ε} -ioV^{∞} to be the Φ -definable functions, where $\Phi = \exists^{B} \Sigma^{B}_{\infty}(n^{\varepsilon})$.

Theory n^{ε} -ioV $^{\infty}$ (This is VC $_{\varepsilon}$)

Here $\varepsilon = 1/d$, where d > 1 is a constant. The theory includes the function x^{ε} (actually $\lfloor x^{\frac{1}{d}} \rfloor$) with defining axiom $x^{\varepsilon} = y \leftrightarrow y^{d} \leq x < (y+1)^{d}$.

We call a formula $\sum_{\infty}^{B} (n^{\varepsilon})$ iff it is bounded and all of its string quantifiers are bounded by linear terms in n^{ε} (*n* is the max size of its free variables). Definition: n^{ε} -ioV^{∞} = ioV⁰ + $\sum_{\infty}^{B} (n^{\varepsilon})$ -Comprehension We take the provably total functions in n^{ε} -ioV^{∞} to be the Φ -definable

functions, where $\Phi = \exists^B \Sigma^B_{\infty}(n^{\varepsilon})$.

Theorem

The provably total functions of the theory n^{ε} -ioV^{∞} are exactly those of polynomial growth rate whose graphs are in AltTime($O(1), O(n^{\varepsilon})$), where n is the size of the arguments.

Theory n^{ε} -ioV $^{\infty}$ (This is VC $_{\varepsilon}$)

Here $\varepsilon = 1/d$, where d > 1 is a constant. The theory includes the function x^{ε} (actually $\lfloor x^{\frac{1}{d}} \rfloor$) with defining axiom $x^{\varepsilon} = y \leftrightarrow y^{d} \leq x < (y+1)^{d}$.

We call a formula $\Sigma_{\infty}^{B}(n^{\varepsilon})$ iff it is bounded and all of its string quantifiers are bounded by linear terms in n^{ε} (*n* is the max size of its free variables). Definition: n^{ε} -ioV^{∞} = ioV⁰ + $\Sigma_{\infty}^{B}(n^{\varepsilon})$ -Comprehension We take the provably total functions in n^{ε} -ioV^{∞} to be the Φ -definable

functions, where $\Phi = \exists^B \Sigma^B_{\infty}(n^{\varepsilon})$.

Theorem

The provably total functions of the theory n^{ε} -ioV^{∞} are exactly those of polynomial growth rate whose graphs are in AltTime($O(1), O(n^{\varepsilon})$), where n is the size of the arguments.

Theorem: The theories n^{ε} -ioV^{∞} contain the theory ioVNC¹.

Theory n^{ε} -ioV $^{\infty}$ (This is VC $_{\varepsilon}$)

Here $\varepsilon = 1/d$, where d > 1 is a constant. The theory includes the function x^{ε} (actually $\lfloor x^{\frac{1}{d}} \rfloor$) with defining axiom $x^{\varepsilon} = y \leftrightarrow y^{d} \leq x < (y+1)^{d}$.

We call a formula $\sum_{\infty}^{B} (n^{\varepsilon})$ iff it is bounded and all of its string quantifiers are bounded by linear terms in n^{ε} (*n* is the max size of its free variables). Definition: n^{ε} -ioV^{∞} = ioV⁰ + $\sum_{\infty}^{B} (n^{\varepsilon})$ -Comprehension We take the provably total functions in n^{ε} -ioV^{∞} to be the Φ -definable

functions, where $\Phi = \exists^B \Sigma^B_{\infty}(n^{\varepsilon})$.

Theorem

The provably total functions of the theory n^{ε} -ioV^{∞} are exactly those of polynomial growth rate whose graphs are in AltTime($O(1), O(n^{\varepsilon})$), where n is the size of the arguments.

Theorem: The theories n^{ε} -ioV^{∞} contain the theory ioVNC¹. Proof Idea: The $\Sigma^{B}_{\infty}(n^{\varepsilon})$ -Comprehension axiom can formalize Buss's Prover-Challenger game to solve the MBBFE problem.

System G for quantified propositional calculus is based on Gentzen's sequent calculus.

- System G for quantified propositional calculus is based on Gentzen's sequent calculus.
- System PK (equivalent to Frege systems) is G restricted to quantifier-free formulas.

- System G for quantified propositional calculus is based on Gentzen's sequent calculus.
- System PK (equivalent to Frege systems) is G restricted to quantifier-free formulas.
- For d > 1, system d-PK (equivalent to d-Frege) is PK with cuts restricted to depth d formulas.

- System G for quantified propositional calculus is based on Gentzen's sequent calculus.
- System PK (equivalent to Frege systems) is G restricted to quantifier-free formulas.
- For d > 1, system d-PK (equivalent to d-Frege) is PK with cuts restricted to depth d formulas.
- We say a formula family {φ_n}_n has polysize bdFrege proofs if there are constants d and m such that each φ_n has a d-Frege proof of size O(|φ_n|^m).

Proof Class n^{ε} -bdG_{∞} (Quantified version of C_{ε}-Frege)

Definition

 n^{ε} -bdG_{∞} is the class of bdG_{∞} proof families with cuts restricted to bd Σ^{q}_{∞} formulas with an absolute upper bound on the number of quantifier alternations, and the total number of eigenvariables in each sequent does not exceed n^{ε} , where *n* is the size of the proven formula.

Proof Class n^{ε} -bdG_{∞} (Quantified version of C_{ε}-Frege)

Definition

 n^{ε} -bdG_{∞} is the class of bdG_{∞} proof families with cuts restricted to bd Σ^{q}_{∞} formulas with an absolute upper bound on the number of quantifier alternations, and the total number of eigenvariables in each sequent does not exceed n^{ε} , where *n* is the size of the proven formula.

Remark: It follows that the total number of quantified variables in any formula in any proof does not exceed n^{ε} , assuming that this is true of formulas that are proved.

Translating two-sorted terms to sequences of propositional formulas

The translation context $\sigma : Var \to \mathbb{N}$ assigns number (size) to each variable. $\sigma(x)$ is the value of x and $\sigma(X)$ is the length of X. σ naturally extends to assign a size to every term.

Table: Extended Translation Context σ and Translation of Terms

$$\sigma(0) = 0$$

$$\sigma(1) = 1$$

$$\sigma(t + s) = \sigma(t) + \sigma(s)$$

$$\sigma(t \cdot s) = \sigma(t) \cdot \sigma(s)$$

$$\sigma(pd(t)) = pd(\sigma(t))$$

$$\sigma(|T|) = \sigma(T)$$

$$\sigma(f(\vec{t}, \vec{T})) = f^{\sigma}(\sigma(\vec{t}), \sigma(\vec{T}))$$

$$\sigma(F(\vec{t}, \vec{T})) = F^{\sigma}(\sigma(\vec{t}), \sigma(\vec{T}))$$

Translating two-sorted formulas to quantified propositional formulas

Table: Translation of Formulas

$$\begin{bmatrix} \mathbf{x} = t \end{bmatrix}_{\sigma} = \begin{cases} \top \quad \llbracket \mathbf{x} \rrbracket_{\sigma} = \llbracket t \rrbracket_{\sigma} \\ \perp \quad o.w. \\ \llbracket \mathbf{x} \le t \rrbracket_{\sigma} = \begin{cases} \top \quad \llbracket \mathbf{x} \rrbracket_{\sigma} = \llbracket t \rrbracket_{\sigma} \\ \perp \quad o.w. \\ \llbracket \mathbf{x} \le t \rrbracket_{\sigma} = \begin{bmatrix} \mathbf{x} \rrbracket_{\sigma} \le \llbracket t \rrbracket_{\sigma} \\ \perp \quad o.w. \\ \llbracket t \in T \rrbracket_{\sigma} = (\llbracket T \rrbracket_{\sigma})_{\llbracket t \rrbracket_{\sigma}} \end{bmatrix}$$

Translating Proofs to Propositional Proofs

Old results (e.g. [Cook/Nguyen])

Theorem

If $\varphi \in \Sigma_0^B$ is provable in V⁰ (resp. VNC¹) then $\{\llbracket \varphi \rrbracket_{\vec{n}}\}_{\vec{n}}$ has polynomial-size bdFrege (resp. Frege) proofs.

New results:

Theorem

If $\varphi \in \Sigma_0^B$ is provable in n^{ε} -ioV^{∞} (i.e. VC_{ε}) then { $[\![\varphi]\!]_{\vec{n}}$ }_{\vec{n}} has polynomial-size n^{ε} -bdG_{∞} proofs.

Corollary

If $\varphi \in \Sigma_0^B$ is provable in n^{ε} -ioV^{∞} (i.e. VC_{ε}) then { $[\![\varphi]\!]_{\vec{n}}$ } has size 2^{O(n^{ε})} bdFrege proofs.

Main Results

Theorem

ioVNC¹ proves the soundness of Frege.

Corollary

 $n^{\varepsilon}\text{-io}V^{\infty}$ proves the soundness of Frege

Corollary

Frege proofs can be effectively translated to polynomial size n^{ε} -bdG_{∞} proofs, and to size $2^{O(n^{\varepsilon})}$ size bdFrege proofs.

Main Results

Theorem

ioVNC¹ proves the soundness of Frege.

Corollary

 $n^{\varepsilon}\text{-io}V^{\infty}$ proves the soundness of Frege

Corollary

Frege proofs can be effectively translated to polynomial size n^{ε} -bdG_{∞} proofs, and to size $2^{O(n^{\varepsilon})}$ size bdFrege proofs.

See our websites for updated versions of these results.

Main Results

Theorem

ioVNC¹ proves the soundness of Frege.

Corollary

 $n^{\varepsilon}\text{-io}V^{\infty}$ proves the soundness of Frege

Corollary

Frege proofs can be effectively translated to polynomial size n^{ε} -bdG_{∞} proofs, and to size $2^{O(n^{\varepsilon})}$ size bdFrege proofs.

See our websites for updated versions of these results. THANK YOU