Theories for Subexponential-size Bounded-depth Frege Proofs

Kaveh Ghasemloo and Stephen Cook

Department of Computer Science
University of Toronto
Canada
CSL 2013

Propositional vs Uniform Proof Complexity

- Propositional proof complexity studies the lengths of proofs of tautology families in proof systems such as Frege and bdFrege (bounded-depth Frege).

Propositional vs Uniform Proof Complexity

- Propositional proof complexity studies the lengths of proofs of tautology families in proof systems such as Frege and bdFrege (bounded-depth Frege).
- Uniform proof complexity studies the power of weak formal theories such as VNC^{1} and V^{0}.

Propositional vs Uniform Proof Complexity

- Propositional proof complexity studies the lengths of proofs of tautology families in proof systems such as Frege and bdFrege (bounded-depth Frege).
- Uniform proof complexity studies the power of weak formal theories such as VNC^{1} and V^{0}.
- Both proof systems and theories are often associated with complexity classes.
- Frege systems and VNC^{1} are associated with the complexity class NC^{1}
- bdFrege and V^{0} are associated with the complexity class AC^{0}.

Complexity Classes, Theories, and Proof Systems

A three-way connection 〈C, VC, C-Frege 〉

- Complexity class C, theory VC, and proof system C-Frege
- The provably total functions in VC are those in C

Complexity Classes, Theories, and Proof Systems

A three-way connection 〈C, VC, C-Frege 〉

- Complexity class C, theory VC, and proof system C-Frege
- The provably total functions in VC are those in C
- C-Frege is the strongest propositional proof system whose soundness is provable in VC

Complexity Classes, Theories, and Proof Systems

A three-way connection 〈C, VC, C-Frege 〉

- Complexity class C, theory VC, and proof system C-Frege
- The provably total functions in VC are those in C
- C-Frege is the strongest propositional proof system whose soundness is provable in VC
- The Σ_{0}^{B} theorems of VC translate to a family $\left\{\varphi_{n}\right\}_{n}$ of propositional tautologies which have polynomial size C-Frege proofs.
Example: VNC 1 proves the Pigeonhole Principle: "For all $n, n+1$ pigeons cannot be assigned to n holes with at most one pigeon per hole."
The corresponding tautologies $\left\{\varphi_{n}\right\}_{n}$ have polysize Frege proofs.

Complexity Classes，Theories，and Proof Systems

A three－way connection 〈C，VC，C－Frege 〉

－Complexity class C，theory VC，and proof system C－Frege
－The provably total functions in VC are those in C
－C－Frege is the strongest propositional proof system whose soundness is provable in VC
－The Σ_{0}^{B} theorems of VC translate to a family $\left\{\varphi_{n}\right\}_{n}$ of propositional tautologies which have polynomial size C－Frege proofs．
Example： VNC 1 proves the Pigeonhole Principle：＂For all $n, n+1$ pigeons cannot be assigned to n holes with at most one pigeon per hole．＂
The corresponding tautologies $\left\{\varphi_{n}\right\}_{n}$ have polysize Frege proofs．

Examples

－$\left\langle N C^{1}, ~ V N C^{1}\right.$ ，Frege \rangle
－$\left\langle\mathrm{AC}^{0}, \mathrm{~V}^{0}\right.$ ，bdFrege \rangle
－〈 P，VP，eFrege 〉

Motivatation for our paper

(1) Theorem[FPS'12]: Frege proofs can be converted to bdFrege proofs of subexponential size.
(2) That is, given $0<\varepsilon<1$ and a family $\left\{\varphi_{n}\right\}_{n}$ of tautologies and a family $\left\{\pi_{n}\right\}_{n}$ of Frege proofs such that π_{n} proves φ_{n} and has size $n^{O(1)}$, there exists a family $\left\{\pi_{n}^{\prime}\right\}_{n}$ of Frege proofs such that π_{n}^{\prime} proves φ_{n} and has size $2^{O\left(n^{\varepsilon}\right)}$ and all cut formulas have depth $O(1)$.
(3) We want a uniform version of this.

Motivatation for our paper

(1) Theorem[FPS'12]: Frege proofs can be converted to bdFrege proofs of subexponential size.
(2) That is, given $0<\varepsilon<1$ and a family $\left\{\varphi_{n}\right\}_{n}$ of tautologies and a family $\left\{\pi_{n}\right\}_{n}$ of Frege proofs such that π_{n} proves φ_{n} and has size $n^{O(1)}$, there exists a family $\left\{\pi_{n}^{\prime}\right\}_{n}$ of Frege proofs such that π_{n}^{\prime} proves φ_{n} and has size $2^{O\left(n^{\varepsilon}\right)}$ and all cut formulas have depth $O(1)$.
(3) We want a uniform version of this.
(9) i.e. we want a triple $\left\langle C_{\varepsilon}, V C_{\varepsilon}, C_{\varepsilon}\right.$-Frege \rangle where C_{ε}-Frege is as in item 2 above.

Motivatation for our paper

(1) Theorem[FPS'12]: Frege proofs can be converted to bdFrege proofs of subexponential size.
(2) That is, given $0<\varepsilon<1$ and a family $\left\{\varphi_{n}\right\}_{n}$ of tautologies and a family $\left\{\pi_{n}\right\}_{n}$ of Frege proofs such that π_{n} proves φ_{n} and has size $n^{O(1)}$, there exists a family $\left\{\pi_{n}^{\prime}\right\}_{n}$ of Frege proofs such that π_{n}^{\prime} proves φ_{n} and has size $2^{O\left(n^{\varepsilon}\right)}$ and all cut formulas have depth $O(1)$.
(3) We want a uniform version of this.
(9) i.e. we want a triple $\left\langle C_{\varepsilon}, V C_{\varepsilon}, C_{\varepsilon}\right.$-Frege \rangle where C_{ε}-Frege is as in item 2 above.
(6) Note that bdFrege and C_{ε}-Frege are proof classes rather than proof systems.
A Proof class associates families of proofs with families of formulas.

What is the triple $\left\langle C_{\varepsilon}, V C_{\varepsilon}, C_{\varepsilon}\right.$-Frege \rangle for subexponential bdFrege?

- Here $\varepsilon=1 / d$ where $d>1$ is an integer.
- Let $C_{\varepsilon}=\operatorname{AltTime}\left(O(1), O\left(n^{\varepsilon}\right)\right)$
(problems computable by uniform size $2^{O\left(n^{\varepsilon}\right)}$ bounded-depth circuit families).
- $\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq C_{\varepsilon}$

What is the triple $\left\langle C_{\varepsilon}, V C_{\varepsilon}, C_{\varepsilon}\right.$-Frege \rangle for subexponential bdFrege?

- Here $\varepsilon=1 / d$ where $d>1$ is an integer.
- Let $C_{\varepsilon}=\operatorname{AltTime}\left(O(1), O\left(n^{\varepsilon}\right)\right)$
(problems computable by uniform size $2^{O\left(n^{\varepsilon}\right)}$ bounded-depth circuit families).
- $\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq C_{\varepsilon}$
- What is the theory $\mathrm{VC}_{\varepsilon}$.?
(We want the provably total functions of $\mathrm{VC}_{\varepsilon}$ to be those in C_{ε}.)

What is the triple $\left\langle C_{\varepsilon}, V C_{\varepsilon}, C_{\varepsilon}\right.$-Frege \rangle for subexponential bdFrege?

- Here $\varepsilon=1 / d$ where $d>1$ is an integer.
- Let $C_{\varepsilon}=\operatorname{AltTime}\left(O(1), O\left(n^{\varepsilon}\right)\right)$
(problems computable by uniform size $2^{O\left(n^{\varepsilon}\right)}$ bounded-depth circuit families).
- $\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq C_{\varepsilon}$
- What is the theory $\mathrm{VC}_{\varepsilon}$.?
(We want the provably total functions of $\mathrm{VC}_{\varepsilon}$ to be those in C_{ε}.)
- Major Obstacle: In general the provably total functions in a theory VC are closed under compostion. But the subexponential functions are not closed under composition.
- For example the composition of $n \mapsto 2^{n^{\frac{1}{2}}}$ with $n \mapsto n^{2}$ is 2^{n}.

What is the triple $\left\langle C_{\varepsilon}, V C_{\varepsilon}, C_{\varepsilon}\right.$-Frege \rangle for subexponential bdFrege?

- Here $\varepsilon=1 / d$ where $d>1$ is an integer.
- Let $C_{\varepsilon}=\operatorname{AltTime}\left(O(1), O\left(n^{\varepsilon}\right)\right)$
(problems computable by uniform size $2^{O\left(n^{\varepsilon}\right)}$ bounded-depth circuit families).
- $\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq C_{\varepsilon}$
- What is the theory $\mathrm{VC}_{\varepsilon}$.?
(We want the provably total functions of $\mathrm{VC}_{\varepsilon}$ to be those in C_{ε}.)
- Major Obstacle: In general the provably total functions in a theory VC are closed under compostion. But the subexponential functions are not closed under composition.
- For example the composition of $n \mapsto 2^{n^{\frac{1}{2}}}$ with $n \mapsto n^{2}$ is 2^{n}.
- We'll get to this in a moment.

We follow the framework in [Cook-Nguyen '10]

Program in Chapter 9

(1) Presents a general method for associating a theory VC with a complexity classes C, including theories

$$
\mathrm{V}^{0} \subseteq \mathrm{VNC}^{1} \subseteq \mathrm{VL} \subseteq \mathrm{VNL} \subseteq \mathrm{VP}
$$

PERSPECTIVES IN LOGIC

Stephen Cook
Phuong Nguyen

LOGICAL FOUNDATIONS
OF PROOF COMPLEXITY
for classes

$$
A C^{0} \subseteq \mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{P}
$$

(2) Theories have two sorts: Natural numbers x, y, z, \ldots and bit strings X, Y, Z, \ldots.
(3) Function symbols $0,1,+, \cdot,| |$ (length)
(4) Relation symbols $=, \leq$, and \in (membership/bit).

Two-sorted relations and formulas

- (Uniform) $\mathrm{AC}^{0}=\mathrm{FO}=\operatorname{AltTime}(O(1), O(\lg n))=\operatorname{DepthSize}\left(O(1), n^{O(1)}\right)$.
- A relation $R(\vec{x}, \vec{X})$ is in AC^{0} as above, where number arguments \vec{x} are presented in unary.

Two-sorted relations and formulas

- (Uniform) $\mathrm{AC}^{0}=\mathrm{FO}=\operatorname{AltTime}(O(1), O(\lg n))=\operatorname{DepthSize}\left(O(1), n^{O(1)}\right)$.
- A relation $R(\vec{x}, \vec{X})$ is in AC^{0} as above, where number arguments \vec{x} are presented in unary.
- \sum_{0}^{B} is the class of formulas with no string quantifiers, and with all number quantifers bounded.
- \sum_{0}^{B} Representation Theorem: A relation $R(\vec{x}, \vec{x})$ is in AC^{0} iff it is represented by a Σ_{0}^{B} formula $\varphi(\vec{x}, \vec{X})$.

Two-sorted relations and formulas

- (Uniform) $\mathrm{AC}^{0}=\mathrm{FO}=\operatorname{AltTime}(O(1), O(\lg n))=\operatorname{DepthSize}\left(O(1), n^{O(1)}\right)$.
- A relation $R(\vec{x}, \vec{X})$ is in AC^{0} as above, where number arguments \vec{x} are presented in unary.
- \sum_{0}^{B} is the class of formulas with no string quantifiers, and with all number quantifers bounded.
- \sum_{0}^{B} Representation Theorem: A relation $R(\vec{x}, \vec{x})$ is in AC^{0} iff it is represented by a Σ_{0}^{B} formula $\varphi(\vec{x}, \vec{X})$.
- Σ_{i}^{B} and Π_{i}^{B} are classes of bounded formulas with limits on alternations of the string quantifiers.
- $\exists^{B} \Phi$ consists of formulas starting with bounded existential string quantifiers followed by a formula in Φ.

Introducing io-typed theories ioVC to limit composition

- Introduce two types of variables: input type and output type
- input type: a, b, c denote numbers, A, B, C denote strings. output type: x, y, z denote numbers, X, Y, Z denote strings.

Introducing io-typed theories ioVC to limit composition

- Introduce two types of variables: input type and output type
- input type: a, b, c denote numbers, A, B, C denote strings. output type: x, y, z denote numbers, X, Y, Z denote strings.
- For fast growing f, the arugments of f have input type and are small, while the value of f has output type and might be large.

Introducing io-typed theories ioVC to limit composition

- Introduce two types of variables: input type and output type
- input type: a, b, c denote numbers, A, B, C denote strings. output type: x, y, z denote numbers, X, Y, Z denote strings.
- For fast growing f, the arugments of f have input type and are small, while the value of f has output type and might be large.
- For each $0<\varepsilon<1$, the functions with growth rate $2^{O\left(n^{\varepsilon}\right)}$ are closed under composition with linear functions, so we allow linear terms to be input type.

Introducing io-typed theories ioVC to limit composition

- Introduce two types of variables: input type and output type
- input type: a, b, c denote numbers, A, B, C denote strings. output type: x, y, z denote numbers, X, Y, Z denote strings.
- For fast growing f, the arugments of f have input type and are small, while the value of f has output type and might be large.
- For each $0<\varepsilon<1$, the functions with growth rate $2^{O\left(n^{\varepsilon}\right)}$ are closed under composition with linear functions, so we allow linear terms to be input type.
- All terms (including input type terms) have output type.

Introducing io-typed theories ioVC to limit composition

- Introduce two types of variables: input type and output type
- input type: a, b, c denote numbers, A, B, C denote strings. output type: x, y, z denote numbers, X, Y, Z denote strings.
- For fast growing f, the arugments of f have input type and are small, while the value of f has output type and might be large.
- For each $0<\varepsilon<1$, the functions with growth rate $2^{O\left(n^{\varepsilon}\right)}$ are closed under composition with linear functions, so we allow linear terms to be input type.
- All terms (including input type terms) have output type.
- Example input type term:

$$
a+b+1+\operatorname{pd}(c)+|A|+|B|
$$

(No output type variables allowed.)

Theory io2Basic: Axioms have output type variables

Table: io2Basic

	$x+1 \neq 0$	B7	$x \leq y \wedge y \leq x \rightarrow x=y$
B2	$x+1=y+1 \rightarrow x=y$	B8	$x \leq x+y$
B3	$x+0=x$	B9	$0 \leq x$
	$x+(y+1)=(x+y)+1$	B10	$x \leq y \vee y \leq x$
B5	$x \cdot 0=0$	B11	$x \leq y \leftrightarrow x<y+1$
B6	$x \cdot(y+1)=x \cdot y+x$	B12	$\begin{aligned} & \operatorname{pd}(0)=0 \wedge(x \neq 0 \rightarrow \\ & \operatorname{pd}(x)+1=x) \end{aligned}$
	$\underline{\in} X \rightarrow y<\|X\|$		

$X=Y$ abbreviates $(|X|=|Y| \wedge \forall x \leq|X| x \in X \leftrightarrow x \in Y)$.

Theory io V^{0} for $A C^{0}$

io ${ }^{0}$ extends io2Basic by adding the substring function $X[y, z]$ and the following axioms:

Theory io V^{0} for $A C^{0}$

$i o V^{0}$ extends io2Basic by adding the substring function $X[y, z]$ and the following axioms:

- $x \in X[y, z] \leftrightarrow x<z \wedge y+x \in X$
- $|X[y, z]|=z$

Theory io V^{0} for AC^{0}

$i o V^{0}$ extends io2Basic by adding the substring function $X[y, z]$ and the following axioms:

- $x \in X[y, z] \leftrightarrow x<z \wedge y+x \in X$
- $|X[y, z]|=z$
- Ind: $0 \in X, \forall y<z(y \in X \rightarrow y+1 \in X) \Rightarrow z \in X$
- φ-CA (Comprehension): $\exists Y=z \quad \forall x<z \quad(x \in Y \leftrightarrow \varphi(x, \vec{a}, \vec{A}))$ where $\varphi(x, \vec{a}, \vec{A})$ is in Σ_{0}^{B}

Theory io V^{0} for $A C^{0}$

io ${ }^{0}$ extends io2Basic by adding the substring function $X[y, z]$ and the following axioms:

- $x \in X[y, z] \leftrightarrow x<z \wedge y+x \in X$
- $|X[y, z]|=z$
- Ind: $0 \in X, \forall y<z \quad(y \in X \rightarrow y+1 \in X) \Rightarrow z \in X$
- φ-CA (Comprehension): $\exists Y=z \quad \forall x<z \quad(x \in Y \leftrightarrow \varphi(x, \vec{a}, \vec{A}))$ where $\varphi(x, \vec{a}, \vec{A})$ is in \sum_{0}^{B}
- oiConv num : $\exists b \leq a \quad b=\min (a, x)$
- oiConvstr: $\exists B=a \quad B=X[y, a]$

Theory io V^{0} for $A C^{0}$

io ${ }^{0}$ extends io2Basic by adding the substring function $X[y, z]$ and the following axioms:

- $x \in X[y, z] \leftrightarrow x<z \wedge y+x \in X$
- $|X[y, z]|=z$
- Ind: $0 \in X, \forall y<z \quad(y \in X \rightarrow y+1 \in X) \Rightarrow z \in X$
- φ-CA (Comprehension): $\exists Y=z \quad \forall x<z \quad(x \in Y \leftrightarrow \varphi(x, \vec{a}, \vec{A}))$ where $\varphi(x, \vec{a}, \vec{A})$ is in \sum_{0}^{B}
- oiConv num : $\exists b \leq a \quad b=\min (a, x)$
- oiConvstr: $\exists B=a \quad B=X[y, a]$

Theorem: The $\exists^{B} \Sigma_{0}^{B}$ definable functions in io V^{0} coincide with the $A C^{0}$ functions.

Theory io $\mathrm{VNC}^{1}=\mathrm{io} \mathrm{V}^{0}+\sum_{0}^{B}(\mathrm{MBBFE})-\mathrm{CA}$

Theory ioVNC ${ }^{1}=\mathrm{io}^{0}+\Sigma_{0}^{B}(\mathrm{MBBFE})-\mathrm{CA}$

\sum_{0}^{B} (MBBFE)-CA is the following axiom schema:

$$
\begin{aligned}
& \exists Y=2 s \exists Z=2 s[\forall x<2 s(x \in Z \leftrightarrow \varphi(x, \vec{a}, \vec{A})) \wedge \\
& \text { " } Y \text { is the computation of } Z \text { "] }
\end{aligned}
$$

where s has output type and $\varphi \in \Sigma_{0}^{B}$ and " Y is the computation of Z " stands for
$\forall z<s[z+s \in Y \leftrightarrow z \in Z] \wedge[(z \in Z \rightarrow(z \in Y \leftrightarrow 2 z \in Y \wedge 2 z+1 \in Y))$

$$
(z \notin Z \rightarrow(z \in Y \leftrightarrow 2 z \in Y \vee 2 z+1 \in Y))]
$$

We think of φ as specifying the bit graph of an AC^{0} function whose output Z is as an instance of MBBFE: its first half specifies the gates of the formula and its second half specifies the inputs to the formula.

Theory ioVNC ${ }^{1}=\mathrm{io}^{0}+\Sigma_{0}^{B}(\mathrm{MBBFE})-\mathrm{CA}$

\sum_{0}^{B} (MBBFE)-CA is the following axiom schema:

$$
\begin{aligned}
& \exists Y=2 s \exists Z=2 s[\forall x<2 s(x \in Z \leftrightarrow \varphi(x, \vec{a}, \vec{A})) \wedge \\
& \text { " } Y \text { is the computation of } Z \text { "] }
\end{aligned}
$$

where s has output type and $\varphi \in \Sigma_{0}^{B}$ and " Y is the computation of Z " stands for
$\forall z<s[z+s \in Y \leftrightarrow z \in Z] \wedge[(z \in Z \rightarrow(z \in Y \leftrightarrow 2 z \in Y \wedge 2 z+1 \in Y)) \wedge$

$$
(z \notin Z \rightarrow(z \in Y \leftrightarrow 2 z \in Y \vee 2 z+1 \in Y))]
$$

We think of φ as specifying the bit graph of an AC^{0} function whose output Z is as an instance of MBBFE: its first half specifies the gates of the formula and its second half specifies the inputs to the formula.

Theorem: The $\exists^{B} \Sigma_{0}^{B}$ definable functions of ioVNC ${ }^{1}$ are precisely the $N C^{1}$ functions.

Theory $n^{\varepsilon}-\mathrm{io} \mathrm{V}^{\infty}$ (This is $\mathrm{VC}_{\varepsilon}$)

Theory n^{ε}-io V^{∞} (This is $\mathrm{VC}_{\varepsilon}$)

Here $\varepsilon=1 / d$, where $d>1$ is a constant. The theory includes the function x^{ε} (actually $\left.\left\lfloor x^{\frac{1}{d}}\right\rfloor\right)$ with defining axiom $x^{\varepsilon}=y \leftrightarrow y^{d} \leq x<(y+1)^{d}$.

Theory n^{ε}-io V^{∞} (This is $\mathrm{VC}_{\varepsilon}$)

Here $\varepsilon=1 / d$, where $d>1$ is a constant. The theory includes the function x^{ε} (actually $\left\lfloor x^{\frac{1}{d}}\right\rfloor$) with defining axiom $x^{\varepsilon}=y \leftrightarrow y^{d} \leq x<(y+1)^{d}$. We call a formula $\sum_{\infty}^{B}\left(n^{\varepsilon}\right)$ iff it is bounded and all of its string quantifiers are bounded by linear terms in n^{ε} (n is the max size of its free variables).

Theory n^{ε}-io V^{∞} (This is $\mathrm{VC}_{\varepsilon}$)

Here $\varepsilon=1 / d$, where $d>1$ is a constant. The theory includes the function x^{ε} (actually $\left\lfloor x^{\frac{1}{d}}\right\rfloor$) with defining axiom $x^{\varepsilon}=y \leftrightarrow y^{d} \leq x<(y+1)^{d}$. We call a formula $\Sigma_{\infty}^{B}\left(n^{\varepsilon}\right)$ iff it is bounded and all of its string quantifiers are bounded by linear terms in n^{ε} (n is the max size of its free variables). Definition: $n^{\varepsilon}-\mathrm{io} \mathrm{V}^{\infty}=\mathrm{io} \mathrm{V}^{0}+\sum_{\infty}^{B}\left(n^{\varepsilon}\right)$-Comprehension

Theory n^{ε}-io V^{∞} (This is $\mathrm{VC}_{\varepsilon}$)

Here $\varepsilon=1 / d$, where $d>1$ is a constant. The theory includes the function x^{ε} (actually $\left\lfloor x^{\frac{1}{d}}\right\rfloor$) with defining axiom $x^{\varepsilon}=y \leftrightarrow y^{d} \leq x<(y+1)^{d}$.
We call a formula $\Sigma_{\infty}^{B}\left(n^{\varepsilon}\right)$ iff it is bounded and all of its string quantifiers are bounded by linear terms in n^{ε} (n is the max size of its free variables). Definition: $n^{\varepsilon}-\mathrm{io} \mathrm{V}^{\infty}=\mathrm{io} \mathrm{V}^{0}+\Sigma_{\infty}^{B}\left(n^{\varepsilon}\right)$-Comprehension We take the provably total functions in $n^{\varepsilon}-\mathrm{io} V^{\infty}$ to be the Φ-definable functions, where $\Phi=\exists^{B} \Sigma_{\infty}^{B}\left(n^{\varepsilon}\right)$.

Theory n^{ε}-io V^{∞} (This is $\mathrm{VC}_{\varepsilon}$)

Here $\varepsilon=1 / d$, where $d>1$ is a constant. The theory includes the function x^{ε} (actually $\left\lfloor x^{\frac{1}{d}}\right\rfloor$) with defining axiom $x^{\varepsilon}=y \leftrightarrow y^{d} \leq x<(y+1)^{d}$.

We call a formula $\Sigma_{\infty}^{B}\left(n^{\varepsilon}\right)$ iff it is bounded and all of its string quantifiers are bounded by linear terms in n^{ε} (n is the max size of its free variables). Definition: $n^{\varepsilon}-\mathrm{io} \mathrm{V}^{\infty}=\mathrm{io} \mathrm{V}^{0}+\Sigma_{\infty}^{B}\left(n^{\varepsilon}\right)$-Comprehension
We take the provably total functions in n^{ε}-io V^{∞} to be the Φ-definable functions, where $\Phi=\exists^{B} \Sigma_{\infty}^{B}\left(n^{\varepsilon}\right)$.

Theorem

The provably total functions of the theory $n^{\varepsilon}-\mathrm{io} \mathrm{V}^{\infty}$ are exactly those of polynomial growth rate whose graphs are in AltTime $\left(O(1), O\left(n^{\varepsilon}\right)\right)$, where n is the size of the arguments.

Theory n^{ε}-io V^{∞} (This is $\mathrm{VC}_{\varepsilon}$)

Here $\varepsilon=1 / d$, where $d>1$ is a constant. The theory includes the function x^{ε} (actually $\left\lfloor x^{\frac{1}{d}}\right\rfloor$) with defining axiom $x^{\varepsilon}=y \leftrightarrow y^{d} \leq x<(y+1)^{d}$.
We call a formula $\sum_{\infty}^{B}\left(n^{\varepsilon}\right)$ iff it is bounded and all of its string quantifiers are bounded by linear terms in n^{ε} (n is the max size of its free variables). Definition: n^{ε} - $\mathrm{o} \mathrm{V}^{\infty}=\mathrm{io} \mathrm{V}^{0}+\sum_{\infty}^{B}\left(n^{\varepsilon}\right)$-Comprehension We take the provably total functions in $n^{\varepsilon}-\mathrm{io} V^{\infty}$ to be the Φ-definable functions, where $\Phi=\exists^{B} \Sigma_{\infty}^{B}\left(n^{\varepsilon}\right)$.

Theorem

The provably total functions of the theory $n^{\varepsilon}-\mathrm{io} \mathrm{V}^{\infty}$ are exactly those of polynomial growth rate whose graphs are in AltTime $\left(O(1), O\left(n^{\varepsilon}\right)\right)$, where n is the size of the arguments.

Theorem: The theories n^{ε}-io V^{∞} contain the theory ioVNC ${ }^{1}$.

Theory n^{ε}-io V^{∞} (This is $\mathrm{VC}_{\varepsilon}$)

Here $\varepsilon=1 / d$, where $d>1$ is a constant. The theory includes the function x^{ε} (actually $\left\lfloor x^{\frac{1}{d}}\right\rfloor$) with defining axiom $x^{\varepsilon}=y \leftrightarrow y^{d} \leq x<(y+1)^{d}$.
We call a formula $\sum_{\infty}^{B}\left(n^{\varepsilon}\right)$ iff it is bounded and all of its string quantifiers are bounded by linear terms in n^{ε} (n is the max size of its free variables).
Definition: n^{ε} - $\mathrm{io} \mathrm{V}^{\infty}=\mathrm{io} \mathrm{V}^{0}+\sum_{\infty}^{B}\left(n^{\varepsilon}\right)$-Comprehension
We take the provably total functions in n^{ε}-ioV ${ }^{\infty}$ to be the Φ-definable functions, where $\Phi=\exists^{B} \Sigma_{\infty}^{B}\left(n^{\varepsilon}\right)$.

Theorem

The provably total functions of the theory $n^{\varepsilon}-\mathrm{io} \mathrm{V}^{\infty}$ are exactly those of polynomial growth rate whose graphs are in AltTime $\left(O(1), O\left(n^{\varepsilon}\right)\right)$, where n is the size of the arguments.

Theorem: The theories n^{ε}-io V^{∞} contain the theory ioVNC ${ }^{1}$. Proof Idea: The $\sum_{\infty}^{B}\left(n^{\varepsilon}\right)$-Comprehension axiom can formalize Buss's Prover-Challenger game to solve the MBBFE problem.

Proof Systems for Quantified Propositional Calculus

Proof Systems for Quantified Propositional Calculus

(1) System G for quantified propositional calculus is based on Gentzen's sequent calculus.

Proof Systems for Quantified Propositional Calculus

(1) System G for quantified propositional calculus is based on Gentzen's sequent calculus.
(2) System PK (equivalent to Frege systems) is G restricted to quantifier-free formulas.

Proof Systems for Quantified Propositional Calculus

(1) System G for quantified propositional calculus is based on Gentzen's sequent calculus.
(2) System PK (equivalent to Frege systems) is G restricted to quantifier-free formulas.
(3) For $d>1$, system d-PK (equivalent to d-Frege) is PK with cuts restricted to depth d formulas.

Proof Systems for Quantified Propositional Calculus

(1) System G for quantified propositional calculus is based on Gentzen's sequent calculus.
(2) System PK (equivalent to Frege systems) is G restricted to quantifier-free formulas.
(3) For $d>1$, system d-PK (equivalent to d-Frege) is PK with cuts restricted to depth d formulas.
(4) We say a formula family $\left\{\varphi_{n}\right\}_{n}$ has polysize bdFrege proofs if there are constants d and m such that each φ_{n} has a d-Frege proof of size $O\left(\left|\varphi_{n}\right|^{m}\right)$.

Proof Class $\mathrm{n}^{\varepsilon}-\mathrm{bd} G_{\infty}$ (Quantified version of C_{ε}-Frege)

Definition

$\mathrm{n}^{\varepsilon}-\mathrm{bd} \mathrm{G}_{\infty}$ is the class of $\mathrm{bdG} \mathrm{m}_{\infty}$ proof families with cuts restricted to $\mathrm{bd} \Sigma_{\infty}^{q}$ formulas with an absolute upper bound on the number of quantifier alternations, and the total number of eigenvariables in each sequent does not exceed n^{ε}, where n is the size of the proven formula.

Proof Class $\mathrm{n}^{\varepsilon}-\mathrm{bdG} \mathrm{D}_{\infty}$ (Quantified version of C_{ε}-Frege)

Definition

$\mathrm{n}^{\varepsilon}-\mathrm{bdG} \mathrm{m}_{\infty}$ is the class of $\mathrm{bdG}{ }_{\infty}$ proof families with cuts restricted to $\mathrm{bd} \sum_{\infty}^{q}$ formulas with an absolute upper bound on the number of quantifier alternations, and the total number of eigenvariables in each sequent does not exceed n^{ε}, where n is the size of the proven formula.

Remark: It follows that the total number of quantified variables in any formula in any proof does not exceed n^{ε}, assuming that this is true of formulas that are proved.

Translating two-sorted terms to sequences of propositional formulas

The translation context $\sigma: \operatorname{Var} \rightarrow \mathbb{N}$ assigns number (size) to each variable. $\sigma(x)$ is the value of x and $\sigma(X)$ is the length of $X . \sigma$ naturally extends to assign a size to every term.

Table: Extended Translation Context σ and Translation of Terms

$$
\begin{aligned}
& \sigma(0)=0 \\
& \sigma(1)=1 \\
& \sigma(t+s)=\sigma(t)+\sigma(s) \\
& \sigma(t \cdot s)=\sigma(t) \cdot \sigma(s) \\
& \sigma(\operatorname{pd}(t))=\operatorname{pd}(\sigma(t)) \\
& \sigma(|T|)=\sigma(T) \\
& \sigma(f(\vec{t}, \vec{T}))=f^{\sigma}(\sigma(\vec{t}), \sigma(\vec{T})) \\
& \sigma(F(\vec{t}, \vec{T}))=F^{\sigma}(\sigma(\vec{t}), \sigma(\vec{T}))
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket n \rrbracket_{\sigma}=(\top, \overbrace{\perp, \ldots, \perp}^{n \text { times }}), \quad n \in \mathbb{N} \\
& \llbracket t \rrbracket_{\sigma}=\llbracket \sigma(t) \rrbracket_{\sigma} \\
& \llbracket X \rrbracket_{\sigma}=\left(p_{\sigma(X)-1}^{X}, \ldots, p_{0}^{X}\right) \\
& \llbracket F(\vec{t}, \vec{T}) \rrbracket_{\sigma}=\left(F_{\sigma(F(\vec{t}, \vec{T}))-1}\left(\llbracket \vec{t} \rrbracket_{\sigma}, \llbracket \vec{T} \rrbracket_{\sigma}\right)\right.
\end{aligned}
$$

Translating two-sorted formulas to quantified propositional formulas

Table: Translation of Formulas

$\begin{aligned} & \llbracket s=t \rrbracket_{\sigma}= \begin{cases}T & \llbracket s \rrbracket_{\sigma}=\llbracket t \rrbracket_{\sigma} \\ \perp & \text { o.w. }\end{cases} \\ & \llbracket s \leq t \rrbracket_{\sigma}= \begin{cases}\Pi s \rrbracket_{\sigma} \leq \llbracket t \rrbracket_{\sigma} \\ \perp & \text { o.w. }\end{cases} \\ & \llbracket t \in T \rrbracket_{\sigma}=\left(\llbracket T \rrbracket_{\sigma} \llbracket_{\llbracket \rrbracket_{\sigma}}\right. \end{aligned}$	

Translating Proofs to Propositional Proofs

Old results (e.g. [Cook/Nguyen])

Theorem

If $\varphi \in \Sigma_{0}^{B}$ is provable in V^{0} (resp. VNC^{1}) then $\left\{\llbracket \varphi \rrbracket_{\vec{n}}\right\}_{\vec{n}}$ has polynomial-size bdFrege (resp. Frege) proofs.

New results:

Theorem

If $\varphi \in \sum_{0}^{B}$ is provable in n^{ε}-ioV${ }^{\infty}$ (i.e. $\mathrm{VC}_{\varepsilon}$) then $\left\{\llbracket \varphi \rrbracket_{\vec{n}}\right\}_{\vec{n}}$ has polynomial-size n^{ε}-bdG ${ }_{\infty}$ proofs.

Corollary

If $\varphi \in \Sigma_{0}^{B}$ is provable in $\mathrm{n}^{\varepsilon}-\mathrm{io} \mathrm{V}^{\infty}$ (i.e. $\mathrm{VC}_{\varepsilon}$) then $\left\{\llbracket \varphi \rrbracket_{\vec{n}}\right\}_{\vec{n}}$ has size $2^{O\left(n^{\varepsilon}\right)}$ bdFrege proofs.

Main Results

Theorem

ioVNC ${ }^{1}$ proves the soundness of Frege.

Corollary

$\mathrm{n}^{\varepsilon}-\mathrm{io} \mathrm{V}^{\infty}$ proves the soundness of Frege

Corollary

Frege proofs can be effectively translated to polynomial size $\mathrm{n}^{\varepsilon}-\mathrm{bd} \mathrm{G}_{\infty}$ proofs, and to size $2^{O\left(n^{\varepsilon}\right)}$ size bdFrege proofs.

Main Results

Theorem

ioVNC ${ }^{1}$ proves the soundness of Frege.

Corollary

$\mathrm{n}^{\varepsilon}-\mathrm{io} \mathrm{V}^{\infty}$ proves the soundness of Frege

Corollary

Frege proofs can be effectively translated to polynomial size n^{ε}-bdG ${ }_{\infty}$ proofs, and to size $2^{O\left(n^{\varepsilon}\right)}$ size bdFrege proofs.

See our websites for updated versions of these results.

Main Results

Theorem

ioVNC ${ }^{1}$ proves the soundness of Frege.

Corollary

$\mathrm{n}^{\varepsilon}-\mathrm{io} \mathrm{V}^{\infty}$ proves the soundness of Frege

Corollary

Frege proofs can be effectively translated to polynomial size n^{ε}-bdG ${ }_{\infty}$ proofs, and to size $2^{O\left(n^{\varepsilon}\right)}$ size bdFrege proofs.

See our websites for updated versions of these results.
THANK YOU

