Functional dependencies, decompositions, normal forms

Introduction to databases
CSCC43 Winter 2011
Ryan Johnson

Database Design Theory

- Guides systematic improvements to database schemas
- General idea:
 - Express constraints on the data
 - Use these to decompose the relations
- Ultimately, get a schema that is in a “normal form” that guarantees certain desirable properties
- “Normal” in the sense of conforming to a standard
- The process of converting a schema to a normal form is called normalization

Goal #1: redundancy, redundancy

- Consider this schema

<table>
<thead>
<tr>
<th>Student Name</th>
<th>Student Email</th>
<th>Course</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiao</td>
<td>xiao@gmail</td>
<td>CSCC43</td>
<td>Johnson</td>
</tr>
<tr>
<td>Xiao</td>
<td>xiao@gmail</td>
<td>CSCD08</td>
<td>Bretscher</td>
</tr>
<tr>
<td>Jaspreet</td>
<td>jaspreet@utsc</td>
<td>CSCC43</td>
<td>Johnson</td>
</tr>
</tbody>
</table>

- What if...
 - Xiao changes email addresses? (update anomaly)
 - Xiao drops CSCD08? (deletion anomaly)
 - UTSC creates a new course, CSCC44 (insertion anomaly)

Multiple relations => exponentially worse

Goal #2: expressing constraints

- Consider the following sets of schemas:
 - Students(utorid, name, email) vs. Students(utorid, name, email)
 - Students(utorid, name) vs. Emails(utorid, address)

- Consider also:
 - House(street, city, value, owner, propertyTax) vs. House(street, city, value, owner)
 - TaxRates(city, value, propertyTax)

Dependencies, constraints are domain-dependent
Part I: Functional dependencies

Functional dependencies

• Let X, Y be sets of attributes from relation R
 • X -> Y is an assertion about tuples in R
 – Any tuples which agree in all attributes of X must also agree in all attributes of Y
 • “X functionally determines Y”
 – Or, “The values of attributes Y are a function of those in X”
 – Not necessarily an easy function to compute, mind you
 => Consider X -> h, where h is the hash of attributes in X

• Notational conventions
 – “a”, “b”, “c” – specific attributes
 – “A”, “B”, “C” – sets of (unnamed) attributes
 – abc -> def – same as {a,b,c} -> {d,e,f}

Most common to see *singletons* (X -> y or abc -> d)

Splitting FDs

• Attributes on right independent of each other
 – Consider a,b,c -> d,e,f
 – “Attributes a, b, and c functionally determine d, e, and f”
 => No mention of d relating to e or f directly

• Useful to split right side of FD
 – abc -> def becomes abc -> d, abc -> e and abc -> f

• No safe way to split left side
 – abc -> def is NOT the same as ab -> def and c -> def!

Splitting FDs – example

• Consider the relation
 – EmailAddress(user, domain, firstName, lastName)
 – user, domain -> firstName, lastName

• The following hold
 – user, domain -> firstName
 – user, domain -> lastName

• The following do NOT hold!
 – user -> firstName, lastName
 – domain -> firstName, lastName

Gotcha: “doesn’t hold” = “not all tuples” != “all tuples not”
Trivial FDs

- Not all functional dependencies are useful
 - $A \rightarrow A$ always holds
 - $abc \rightarrow a$ always holds

- FD with an attribute on both sides is “trivial”
 - Simplify by removing $L \cap R$ from R
 - $abc \rightarrow ad$ becomes $abc \rightarrow d$
 - Or, in singleton form, delete trivial FDs
 - $abc \rightarrow a$ and $abc \rightarrow d$ becomes just $abc \rightarrow d$

Identifying functional dependencies

- FDs are domain knowledge
 - Intrinsic features of the data you’re dealing with
 - Something you know (or assume) about the data

- Database engine cannot identify FDs for you
 - Designer must specify them as part of schema
 - DBMS can only enforce FDs when told to

- DBMS cannot safely “optimize” FDs either
 - It has only a finite sample of the data
 - An FD constrains the entire domain

Coincidence or FD?

<table>
<thead>
<tr>
<th>ID</th>
<th>Email</th>
<th>City</th>
<th>Country</th>
<th>Surname</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>tom@gmail.com</td>
<td>Toronto</td>
<td>Canada</td>
<td>Fairgrieve</td>
</tr>
<tr>
<td>8624</td>
<td>mar@bell.com</td>
<td>London</td>
<td>Canada</td>
<td>Samways</td>
</tr>
<tr>
<td>9141</td>
<td>scotty@gmail.com</td>
<td>Winnipeg</td>
<td>Canada</td>
<td>Samways</td>
</tr>
<tr>
<td>1204</td>
<td>birds@gmail.com</td>
<td>Aachen</td>
<td>Germany</td>
<td>Lakemeyer</td>
</tr>
</tbody>
</table>

- What if we try to infer FDs from the data?
 - ID \rightarrow email, city, country, surname
 - email \rightarrow city, country, surname
 - city \rightarrow country
 - surname \rightarrow country

 Domain knowledge required to validate FDs

Keys and FDs

- Consider relation R with attributes A
- Superkey
 - Any $S \subseteq A$ s.t. $S \rightarrow A$
 =>$ \rightarrow$ Any subset of A which determines all remaining attributes in A

- Candidate key
 - $C \subseteq A$ s.t. $C \rightarrow A$ and $X \rightarrow A$ does not hold for any $X \subset C$
 =>$ \rightarrow$ A superkey which contains no other superkeys
 =>$ \rightarrow$ Remove any attribute and you no longer have a key

- Primary key
 - The candidate key we use to identify the relation
 =>$ \rightarrow$ Always exists, only one allowed, doesn’t matter which C we use

- Prime attribute
 - \exists candidate key C s.t. $x \in C$
Candidate keys vs. superkeys

- Consider these relations
 - Students(ID, surname, name, email, address, major)
 - Houses(street, city, value, owner, tax)
- What are the candidate keys?
 - Students: ID, what else?
 - Houses: ?
- What other superkeys exist?
 - Students: ID, surname ID, name ID, name, surname ...
 - Houses: ?
- Prime attributes?
 - Students: ?
 - Houses: ?

FD: relases the concept of a “key”

- Functional dependency: X \rightarrow Y
- Superkey: X \rightarrow R
- A superkey must include all remaining attributes of the relation on the RHS
- An FD can involve just a subset of them
- Example:
 - Houses(street, city, value, owner, tax)
 - street, city \rightarrow value, owner, tax (both FD and key)
 - city, value \rightarrow tax (FD only)

Cyclic functional dependencies?

- Attributes on right side of one FD may appear on left side of another!
 - Simplest example: A \rightarrow B B \rightarrow A
 - What does this say about A and B?
- Example
 - street, city \rightarrow value city, value \rightarrow tax
 - studentID \rightarrow email email \rightarrow studentID

Geometric view of FDs

- Let D be the domain of tuples in R
 - Every possible tuple is a point in D
- FD X on R restricts tuples in R to a subset of D
 - Points in D which violate X cannot be in R
- Example: D(x, y, z)
 - xy \rightarrow z
 - z \rightarrow x, y
 - x = y = \text{abs}(z)/2
Inferring functional dependencies

- **Problem**
 - Given FDs \(X_1 \rightarrow a_1, X_2 \rightarrow a_2, \) etc.
 - Does some FD \(Y \rightarrow B \) (not given) also hold?

- **Consider the dependencies**
 \(A \rightarrow B \quad B \rightarrow C \)
 Intuitively, \(A \rightarrow C \) also holds
 The given FDs entail (imply) it

_How to prove it in the general case?

Closure test for FDs

- **Given attribute set A and FD set F**
 - Denote \(A^+_F \) as the closure of A relative to F
 \(\Rightarrow A^+_F = \) set of all FDs given or implied by A

- **Computing the [transitive] closure of A**
 - Start: \(A^+_F = A, F' = F \)
 - While \(\exists X \in F \) s.t. LHS(X) \(\subseteq \) \(A^+_F \):
 \(A^+_F = A^+_F \cup \) RHS(X)
 \(F' = F' - X \)
 - At end: \(A \rightarrow B \forall B \in A^+_F \)

Discarding redundant FDs

- **Minimal basis:** opposite extreme from closure

- **Given a set of FDs F, want to minimize F' s.t.**
 - \(F' \subseteq F \)
 - \(F' \) entails \(X \forall X \in F \)

- **Properties of a minimal basis**
 - RHS is always singleton
 - Removing any FD from \(F' \) loses information
 - Removing any attribute from any \(X \in F \) loses information

Closure test – example

- **Consider R(a,b,c,d,e,f)**
 - with FDs \(ab \rightarrow c, ac \rightarrow d, c \rightarrow e, ade \rightarrow f \)

- **Find A^+ if A = ab**

 \[
 \begin{array}{cccccc}
 a & b & c & d & e & f \\
 a & b & c & d & e & f \\
 a & b & c & d & e & f \\
 \end{array}
 \]

 \(ab \rightarrow cdef -- ab \) is a candidate key!
Constructing a minimal basis

- Straightforward but time-consuming
 1. Split all RHS into singletons
 2. \(\forall X \in F', \text{ test whether } (F' - X)^* \text{ is still equivalent to } F^* \)
 \(\Rightarrow \) Might make \(F' \) too small
 3. \(\forall i \in \text{LHS}(X) \ \forall X \in F', \text{ let } \text{LHS}(X') = \text{LHS}(X) - i \)
 Test whether \((F' - X + X')^* \text{ is still equivalent to } F^* \)
 \(\Rightarrow \) Might make \(F' \) too big
 4. Repeat (2) and (3) until neither makes progress

Part II: Schema decomposition

FDs and redundancy

- Given relation \(R \) and FDs \(F \)
 - \(R \) often exhibits anomalies due to redundancy
 - \(F \) identifies many (not all) of the underlying problems

- Idea
 - Use \(F \) to identify “good” ways to split relations
 - Split \(R \) into 2+ smaller relations having less redundancy
 - Split \(F \) into subsets which apply to the new relations

Schema decomposition

- Given relation \(R \) and FDs \(F \)
 - Split \(R \) into \(R_i \) s.t. \(\forall i \ R_i \subset R \) (no new attributes)
 - Split \(F \) into \(F_i \) s.t. \(\forall i \ F \text{ entails } F_i \) (no new FDs)
 - \(F_i \) involves only attributes in \(R_i \)

- Caveat: entirely possible to lose information
 - \(F^* \) may entail FD \(X \) which is not in \((U, F_j)^* \)
 \(\Rightarrow \) Decomposition lost some FDs
 - Possible to have \(R \subset \gg_i R_i \)
 \(\Rightarrow \) Decomposition lost some relationships

- Goal: minimize anomalies without losing info

We’ll revisit information loss in a moment
Splitting relations – example

- Consider the following relation:

<table>
<thead>
<tr>
<th>Student Name</th>
<th>Student Email</th>
<th>Course</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiao</td>
<td>xiao@gmail</td>
<td>CSJC43</td>
<td>Johnson</td>
</tr>
<tr>
<td>Xiao</td>
<td>xiao@gmail</td>
<td>CSJC08</td>
<td>Bretscher</td>
</tr>
<tr>
<td>Jaspreet</td>
<td>jaspreet@utsc</td>
<td>CSJC43</td>
<td>Johnson</td>
</tr>
</tbody>
</table>

- One possible decomposition
 - Students(email, name)
 - Courses(name, instructor)
 - Taking(studentEmail, courseName)

Gotcha: lossy join decomposition

- Consider a relation with one more tuple

<table>
<thead>
<tr>
<th>Student Name</th>
<th>Student Email</th>
<th>Course</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiao</td>
<td>xiao@gmail</td>
<td>CSJC43</td>
<td>Johnson</td>
</tr>
<tr>
<td>Xiao</td>
<td>xiao@gmail</td>
<td>CSJC08</td>
<td>Bretscher</td>
</tr>
<tr>
<td>Jaspreet</td>
<td>jaspreet@utsc</td>
<td>CSJC43</td>
<td>Johnson</td>
</tr>
<tr>
<td>Mary</td>
<td>mary@utsc</td>
<td>CSJC08</td>
<td>Rosenberg</td>
</tr>
</tbody>
</table>

- Students ≿ Taking ≿ Courses has bogus tuples!
 - Mary is not taking Bretscher’s section of D08
 - Xiao is not in Rosenberg’s section of D08

Why did this happen? How to prevent it?

Ensuring lossless joins

- If we decompose R into S and T
- Either (S ∩ T) → S or (S ∩ T) → T must be in F⁺
- In our example:
 - ({email, course} ∩ {course, instructor}) = {course}
 - course →/→ instructor (one-many relationship)

Projecting FDs

- Once we’ve split a relation we have to refactor our FDs to match
 - Each FDs must only mention attributes from one relation
- Similar to geometric projection
 - Many possible projections (depends on how we slice it)
 - Keep only the ones we need (minimal basis)
FD projection algorithm

- Start with $F_i = \emptyset$
- For each subset X of R_i
 - Compute X^+
 - For each attribute a in X^+
 - If a is in R_i
 - add $X \rightarrow a$ to F_i
- Compute the minimal basis of F_i
- Projection is expensive
 - Suppose R_i has n attributes
 - How many subsets of R_i are there?
 - How many times do we consider each attribute?

Making projection more efficient

- Ignore trivial dependencies
 - No need to add $X \rightarrow A$ if A is in X itself
- Ignore trivial subsets
 - The empty set or of the set of all attributes (both are subsets of X)
- Ignore supersets of X if $X^+ = R$
 - They can only give use “weaker” FDs (with more on the LHS)

Example: Projecting FD’s

- ABC with FD’s $A \rightarrow B$ and $B \rightarrow C$. Project onto AC.
 - $A^+ = ABC$; yields $A \rightarrow B, A \rightarrow C$.
 - We do not need to compute AB^+ or AC^+.
 - $B^+ = BC$; yields $B \rightarrow C$.
 - $C^+ = C$; yields nothing.
 - $BC^+ = BC$; yields nothing.

Example -- Continued

- Resulting FD’s: $A \rightarrow B$, $A \rightarrow C$, and $B \rightarrow C$.
- Projection onto AC: $A \rightarrow C$.
 - Only FD that involves a subset of $\{A, C\}$.
- Projection on BC: $B \rightarrow C$.
 - Only FD that involves subset of $\{B, C\}$.
Part III: Normal forms

Motivation for normal forms

• Identify a “good” schema
 – For some definition of “good”
 – Avoid anomalies, redundancy, etc.

• Several known normal forms
 – 1st
 – 2nd
 – 3rd
 – Boyce-Codd
 – … and several more we won’t discuss...

BCNF \subseteq 3NF \subseteq 2NF \subseteq 1NF (focus on 3NF/BCNF)

1st normal form (1NF)

• No multi-valued attributes allowed
 – Imagine storing a list/set of things in an attribute
 => Not really even expressible in RA

• Counterexample
 – Course(name, instructor, [student,email]*)
 – Redundancy in non-list attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Instructor</th>
<th>Student Name</th>
<th>Student Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCC43</td>
<td>Johnson</td>
<td>Xiao</td>
<td>xiao@gmail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jaspreet</td>
<td>jaspreet@utsc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mary</td>
<td>mary@utsc</td>
</tr>
<tr>
<td>CSCD08</td>
<td>Rosenberg</td>
<td>Jaspreet</td>
<td>jaspreet@utsc</td>
</tr>
</tbody>
</table>

2nd normal form (2NF)

• Non-prime attributes depend on candidate keys
 – Consider non-prime attribute ‘a’
 – Then \exists FD X s.t. X \rightarrow a and X is a candidate key

• Counterexample
 – Movies(title, year, star, studioName, studioAddress, salary)
 – FD: title, year \rightarrow studioName, studioAddress

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Star</th>
<th>StudioName</th>
<th>StudioAddr</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>Hamill</td>
<td>Lucasfilm</td>
<td>1 Lucas Way</td>
<td>$100,000</td>
</tr>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>Ford</td>
<td>Lucasfilm</td>
<td>1 Lucas Way</td>
<td>$100,000</td>
</tr>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>Fisher</td>
<td>Lucasfilm</td>
<td>1 Lucas Way</td>
<td>$100,000</td>
</tr>
<tr>
<td>Patriot Games</td>
<td>1992</td>
<td>Ford</td>
<td>Paramount</td>
<td>Cloud 9</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>Last Crusade</td>
<td>1989</td>
<td>Ford</td>
<td>Lucasfilm</td>
<td>1 Lucas Way</td>
<td>$1,000,000</td>
</tr>
</tbody>
</table>
3rd normal form (3NF)

- Non-prime attr. depend only on candidate keys
 - Consider FD \(X \rightarrow a\)
 - Either \(a \in X\) OR \(X\) is a superkey OR \(a\) is prime
 => No transitive dependencies allowed

Counterexample:
- \(\text{studioName} \rightarrow \text{studioAddr}\)

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>StudioName</th>
<th>StudioAddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>Lucasfilm</td>
<td>1 Lucas Way</td>
</tr>
<tr>
<td>Patriot Games</td>
<td>1992</td>
<td>Paramount</td>
<td>Cloud 9</td>
</tr>
<tr>
<td>Last Crusade</td>
<td>1989</td>
<td>Lucasfilm</td>
<td>1 Lucas Way</td>
</tr>
</tbody>
</table>

3NF, dependencies, and join loss

- Theorem: always possible to convert a schema to join-lossless, dependency-preserving 3NF
- Caveat: still possible to create schemas in 3NF for which these properties do not hold
- Lost dependencies
 - MovieInfo(title, year, studioName)
 - StudioAddress(title, year, studioAddress)
 => Unable to enforce studioName \(\rightarrow\) studioAddress
- Lossy joins
 - Movies(title, year, star)
 - StarSalary(star, salary)
 => Movies< StarSalary yields bogus tuples

Boyce-Codd normal form (BCNF)

- One additional restriction over 3NF
 - All non-trivial FD have superkey LHS
- Counterexample
 - CanadianAddress(street, city, province, postalCode)
 - Candidate keys: \{street, postalCode\}, \{street, city, province\}
 - FD: postalCode \(\rightarrow\) city, province
 - Satisfies 3NF: city, province both non-prime
 - Violates BCNF: postalCode is not a superkey
 => Possible anomalies involving postalCode

Do we care? How often do postal codes change?

Limits of decomposition

- Pick two...
 - Lossless
 - Dependency join
 - Anomaly-free
- 3NF
 - Always allows join lossless and dependency preserving
 - May allow some anomalies
- BCNF
 - Always excludes anomalies
 - May give up one of join lossless or dependency preserving

Use domain knowledge to choose 3NF vs. BCNF