Database Design Theory

• Guides systematic improvements to database schemas
• General idea:
 – Express constraints on the data
 – Use these to decompose the relations
• Ultimately, get a schema that is in a “normal form” that guarantees certain desirable properties
• “Normal” in the sense of conforming to a standard
• The process of converting a schema to a normal form is called normalization

Goal #1: redundancy, redundancy

• Consider this schema

<table>
<thead>
<tr>
<th>Student Name</th>
<th>Student Email</th>
<th>Course</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiao</td>
<td>xiao@gmail</td>
<td>CSCC43</td>
<td>Johnson</td>
</tr>
<tr>
<td>Xiao</td>
<td>xiao@gmail</td>
<td>CSCD08</td>
<td>Bretscher</td>
</tr>
<tr>
<td>Jaspreet</td>
<td>jaspreet@utsc</td>
<td>CSCC43</td>
<td>Johnson</td>
</tr>
</tbody>
</table>

• What if...
 – Xiao changes email addresses? (update anomaly)
 – Xiao drops CSCD08? (deletion anomaly)
 – UTSC creates a new course, CSCC44 (insertion anomaly)

Multiple relations => exponentially worse

Goal #2: expressing constraints

• Consider the following sets of schemas:

<table>
<thead>
<tr>
<th>Students(utorid, name, email) vs. Students(utorid, name) Emails(utorid, address)</th>
</tr>
</thead>
</table>

• Consider also:

<table>
<thead>
<tr>
<th>House(street, city, value, owner, propertyTax) vs. House(street, city, value, owner) TaxRates(city, value, propertyTax)</th>
</tr>
</thead>
</table>

Dependencies, constraints are domain-dependent
Part I: Theory of functional dependencies

Functional dependencies

• Let X, Y be sets of attributes from relation R

 • $X \rightarrow Y$ is an assertion about tuples in R
 – Any tuples which agree in all attributes of X must also agree in all attributes of Y

 • “X functionally determines Y”
 – Or, “The values of attributes Y are a function of those in X”
 – Not necessarily an easy function to compute, mind you

 => Consider $X \rightarrow h$, where h is the hash of attributes in X

Notational conventions

• “a, “b, “c” – specific attributes
• $abc \rightarrow def$ – same as $(a,b,c) \rightarrow (d,e,f)$

Most common to see singletons ($X \rightarrow y$ or $abc \rightarrow d$)

Splitting FDs

• Attributes on right independent of each other
 – Consider $a,b,c \rightarrow d,e,f$
 – “Attributes a, b, and c functionally determine d, e, and f”
 => No mention of d relating to e or f directly

• Useful to split right side of FD
 – $abc \rightarrow def$ becomes $abc \rightarrow d$, $abc \rightarrow e$ and $abc \rightarrow f$

• No safe way to split left side
 – $abc \rightarrow def$ is NOT the same as $ab \rightarrow def$ and $c \rightarrow def$

Splitting FDs – example

• Consider the relation
 – EmailAddress(user, domain, firstName, lastName)
 – user,domain -> firstName, lastName

• The following hold
 – user,domain -> firstName
 – user,domain -> lastName

• The following do NOT hold!
 – user -> firstName,lastName
 – domain -> firstName,lastName

Gotcha: “doesn’t hold” = “not all tuples” != “all tuples not”
Trivial FDs

- Not all functional dependencies are useful
 - A -> A always holds
 - abc -> a also always holds
- FD with an attribute on both sides is “trivial”
 - Simplify by removing \(L \cap R \) from R
 - abc -> ad becomes abc -> d
 - Or, in singleton form, delete trivial FDs
 - abc -> a and abc -> d becomes just abc -> d

Identifying functional dependencies

- FDs are domain knowledge
 - Intrinsic features of the data you’re dealing with
 - Something you know (or assume) about the data
- Database engine cannot identify FDs for you
 - Designer must specify them as part of schema
 - DBMS can only enforce FDs when told to
- DBMS cannot safely “optimize” FDs either
 - It has only a finite sample of the data
 - An FD constrains the entire domain

Coincidence or FD?

<table>
<thead>
<tr>
<th>ID</th>
<th>Email</th>
<th>City</th>
<th>Country</th>
<th>Surname</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>tom@gmail.com</td>
<td>Toronto</td>
<td>Canada</td>
<td>Fairgrieve</td>
</tr>
<tr>
<td>8624</td>
<td>mar@bell.com</td>
<td>London</td>
<td>Canada</td>
<td>Samways</td>
</tr>
<tr>
<td>9141</td>
<td>scotty@gmail.com</td>
<td>Winnipeg</td>
<td>Canada</td>
<td>Samways</td>
</tr>
<tr>
<td>1204</td>
<td>birds@gmail.com</td>
<td>Aachen</td>
<td>Germany</td>
<td>Lakemeyer</td>
</tr>
</tbody>
</table>

- What if we try to infer FDs from the data?
 - ID -> email, city, country, surname
 - email -> city, country, surname
 - city -> country
 - surname -> country

Domain knowledge required to validate FDs

Keys and FDs

- Consider relation R with attributes A
 - Superkey
 - Any \(S \subseteq A \) s.t. \(S \rightarrow A \)
 - \(S \) is any subset of \(A \) which determines all remaining attributes in \(A \)
 - Candidate key
 - \(C \subseteq A \) s.t. \(C \rightarrow A \) and \(X \rightarrow A \) does not hold for any \(X \subseteq C \)
 - A superkey which contains no other superkeys
 - Primary key
 - The candidate key we use to identify the relation
 - Always exists, only one allowed, doesn’t matter which \(C \) we use
 - Prime attribute
 - \(\exists \) candidate key \(C \subseteq A \) s.t. \(x \in C \)
Candidate keys vs. superkeys

- Consider these relations
 - Students(ID, surname, name, email, address, major)
 - Houses(street, city, value, owner, tax)
- What are the candidate keys?
 - Students: ID, what else?
 - Houses: ?
- What other superkeys exist?
 - Students: ID, surname ID, name ID, name, surname ...
 - Houses: ?
- Prime attributes?
 - Students: ?
 - Houses: ?

FD: relaxes the concept of a “key”

- Functional dependency: \(X \rightarrow Y \)
- Superkey: \(X \rightarrow R \)
- A superkey must include all remaining attributes of the relation on the RHS
- An FD can involve just a subset of them
- Example:
 - Houses(street, city, value, owner, tax)
 - street, city \(\rightarrow \) value, owner, tax (both FD and key)
 - city, value \(\rightarrow \) tax (FD only)

Cyclic functional dependencies?

- Attributes on right side of one FD may appear on left side of another!
 - Simplest example: \(A \rightarrow B \quad B \rightarrow A \)
 - What does this say about A and B?
- Example
 - street, city \(\rightarrow \) value
 - studentID \(\rightarrow \) email

Geometric view of FDs

- Let \(D \) be the domain of tuples in \(R \)
 - Every possible tuple is a point in \(D \)
- FD \(X \) on \(R \) restricts tuples in \(R \) to a subset of \(D \)
 - Points in \(D \) which violate \(X \) cannot be in \(R \)
- Example: \(D(x,y,z) \)
 - \(xy \rightarrow z \)
 - \(z \rightarrow x, y \)
 - \(x = y = \text{abs}(z)/2 \)
Inferring functional dependencies

- **Problem**
 - Given FDs $X_i \rightarrow a_i$, $X_j \rightarrow a_j$, etc.
 - Does some FD $Y \rightarrow B$ (not given) also hold?

- **Consider the dependencies**

 $A \rightarrow B \quad B \rightarrow C$

 Intuitively, $A \rightarrow C$ also holds

 The given FDs entail (imply) it

How to prove it in the general case?

Closure test for FDs

- **Given attribute set A and FD set F**

 - Denote A^+_F as the closure of A relative to F

 $\Rightarrow A^+_F = \text{set of all FDs given or implied by } A$

- **Computing the [transitive] closure of A**

 - Start: $A^+_F = A$, $F' = F$

 - While $\exists X \in F$ s.t. $LHS(X) \subseteq A^+_F$:

 $A^+_F = A^+_F \cup RHS(X)$

 $F' = F' - X$

 - At end: $A \rightarrow B \; \forall B \in A^+_F$

Closure test – example

- **Consider $R(a,b,c,d,e,f)$**

 with FDs $ab \rightarrow c$, $ac \rightarrow d$, $c \rightarrow e$, $ade \rightarrow f$

- **Find A^+ if $A = ab$**

 $ab -> cdef -- ab$ is a candidate key!

Discarding redundant FDs

- **Minimal basis:** opposite extreme from closure

- **Given a set of FDs F, want to minimize F' s.t.**

 - $F' \subseteq F$

 - F' entails $X \forall X \in F$

- **Properties of a minimal basis**

 - RHS is always singleton

 - Removing any FD from F' loses information

 - Removing any attribute from any $X \in F$ loses information
Constructing a minimal basis

- **Straightforward but time-consuming**
 1. Split all RHS into singletons
 2. \(\forall X \in F', \) test whether \((F'-X)^+\) is still equivalent to \(F^+\)
 => Might make \(F'\) too small
 3. \(\forall i \in \text{LHS}(X), \forall X \in F', \) let \(\text{LHS}(X')=\text{LHS}(X)-i\)
 Test whether \((F'-X+X')^+\) is still equivalent to \(F^+\)
 => Might make \(F'\) too big
 4. Repeat (2) and (3) until neither succeeds