Final USRA Report

Ray Wu
University of British Columbia

August 22, 2018

Ray Wu (University of British Columbia) USRA Report August 22, 2018

utline

0 Motivation

9 Literature Overview
© Problem Description
@ Contributions

e Methodology

@ Results

e Analysis

e Future Work

9 Conclusion

Ray Wu (University of British Columbia) USRA Report August 22, 2018 2/13

@ Motivation for testing numerical algorithms:

Figure 1: Ariane 5 Figure 2: Patriot

o Cost of mistakes: $500 million | 28 dead

@ Due to discretization, error can be difficult to detect

Ray Wu (University of British Columbia) USRA Report August 22, 2018 3/13

Literature Overview

@ Some of the existing methods for numerical testing as listed in
[Roy05]:

expert judgment

error quantification
consistency/convergence
order of accuracy

@ mutation testing: used in other domains to measure strength of test

sets.

Figure 3: Mutation

Ray Wu (University of British Columbia) USRA Report August 22, 2018 4 /13

Problem Description

@ The abovementioned methods for numerical testing all depend on

certain thresholds.

e Is this convergence analysis acceptable?

log. err

-10

-15

-20

-25

-30

-35

-40

-45

Discretization Plot

-12

-10 -8 6 -4 2
h

e Introduced O(h35) error into Simpson’s quadrature rule.

Ray Wu (University of British Columbia)

USRA Report August 22, 2018

Contributions

@ Applied mutation testing to generate mutants.

@ Then applied traditional numerical analysis techniques to the mutant
code.

@ Used metrics to evaluate and compare mutant code with target code

5 Correct Implementation of rkd:x'=x+t ,Correct ion of ite si in1
® Mutants ® Mutants
a5 @ Original Implementation 45 ® Original Implementation
cutoff cutoff
4o hd 4 =
T35 T35
° e
g 3 . g3
® & °
S5 525 ld
£ E
5 2 - 5 2 b
P P
|15 |15 .’
1 1 /
05 05 d
0 Lest® O S—_
130 140 150 160 170 180 190 80 100 120 140 160 180
mutant mutant

Ray Wu (University of British Columbia) USRA Report August 22, 2018 6 /13

M dology

@ used MATmute to create mutations

@ subject each mutant to test problems at different discretization steps
@ measure various statistics such as

@ maximum error

e regression slope

o R? measure of linearity

e ... and others
@ two criterion proposed to measure code correctness:

e Comparison with target code

o Multiple criterion removal (mutants must satisfy multiple criterion to

pass)
e both lead to the binary classification of mutants in terms of correct and

incorrect mutants; hope to use statistics on these to predict code
correctness

Ray Wu (University of British Columbia) USRA Report

August 22, 2018 7/13

@ Tested numerical differentiation, integration, spline, and runge-kutta
implementations.
o Additionally, ~60 student implementations of rk4 and bdf2 were

tested, each target generated around 400-500 mutants and about
200-300 were viable

e a viable mutant is one that doesn't throw an error when it is executed.
e example of non-viable mutants are those which result in division by 0,
accessing a variable that is not declared, etc.

@ some examples of interesting mutant codes are as follows:
e doubling/halving/squaring h, the discretization parameter

Ray Wu (University of British Columbia) USRA Report August 22, 2018 8 /13

Results

@ Two examples of interesting mutants:

Discretization Plot Discretization Plot
5 5
© mutantoutput
10 10 4th order accuracy line
original outp:

15 15

20 20
£ 25 £ 25
T T
o o
2 30 230

s
st 35
40 p 40 /
// ® mutant output //
% 4th order accuracy line %
AT original output el
50 50
12 10 -8 6 - 2 12 10 -8 6 - 2
h h

Figure 4: Halving h Figure 5: Doubling h

Ray Wu (University of British Columbia)

Analysis

@ wish to use the number of mutants in each category to determine
program correctness

@ wish to be able to explain why certain mutants do not get removed

First proposed criterion

0.6
0.5F
n
€ o
Il
S04t
Zo
=
I
3
L8 03¢
-
o
c
£
0.2¢
o
g8 ° 0
«
o
0.1 [
8 8
o
0 0.2 0.4 0.6 0.8 1
Code Label

Ray Wu (University of British Columbia) USRA Report August 22, 2018 10 / 13

@ Generalization of our testing process to the following:

o Where test examples are hard to generate
o Where the algorithm doesn't use a discretization step

@ Automatic detection of discretization range using segmented least
squares

@ Running the same analysis on buggy targets

@ Use as an autograder in numerical analysis courses

Ray Wu (University of British Columbia) USRA Report

August 22, 2018 11 /13

Conclusion

@ Examining the mutation in the surviving mutants is instructive about
the code’s implementation.

@ It is not clear if thresholds can be removed.

@ more reasonable p-val vs. as long as error j 0.05

Ray Wu (University of British Columbia) USRA Report August 22, 2018 12 /13

References

[@ Christopher J Roy, Review of code and solution verification procedures
for computational simulation, Journal of Computational Physics 205
(2005), no. 1, 131-156.

Ray Wu (University of British Columbia) USRA Report August 22, 2018 13 /13

	Motivation
	Literature Overview
	Problem Description
	Contributions
	Methodology
	Results
	Analysis
	Future Work
	Conclusion

