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@ Motivation for testing numerical algorithms:

Figure 1: Ariane 5 Figure 2: Patriot

o Cost of mistakes: $500 million | 28 dead

@ Due to discretization, error can be difficult to detect
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Literature Overview

@ Some of the existing methods for numerical testing as listed in
[Roy05]:

expert judgment

error quantification
consistency/convergence
order of accuracy

@ mutation testing: used in other domains to measure strength of test

sets.

Figure 3: Mutation
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Problem Description

@ The abovementioned methods for numerical testing all depend on

certain thresholds.

e Is this convergence analysis acceptable?
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e Introduced O(h35) error into Simpson’s quadrature rule.
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Contributions

@ Applied mutation testing to generate mutants.

@ Then applied traditional numerical analysis techniques to the mutant
code.

@ Used metrics to evaluate and compare mutant code with target code
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M dology

@ used MATmute to create mutations

@ subject each mutant to test problems at different discretization steps
@ measure various statistics such as

@ maximum error

e regression slope

o R? measure of linearity

e ... and others
@ two criterion proposed to measure code correctness:

e Comparison with target code

o Multiple criterion removal (mutants must satisfy multiple criterion to

pass)
e both lead to the binary classification of mutants in terms of correct and

incorrect mutants; hope to use statistics on these to predict code
correctness

Ray Wu (University of British Columbia) USRA Report

August 22, 2018 7/13



@ Tested numerical differentiation, integration, spline, and runge-kutta
implementations.
o Additionally, ~60 student implementations of rk4 and bdf2 were

tested, each target generated around 400-500 mutants and about
200-300 were viable

e a viable mutant is one that doesn't throw an error when it is executed.
e example of non-viable mutants are those which result in division by 0,
accessing a variable that is not declared, etc.

@ some examples of interesting mutant codes are as follows:
e doubling/halving/squaring h, the discretization parameter
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Results

@ Two examples of interesting mutants:

Discretization Plot Discretization Plot
5 5
©  mutantoutput
10 10 4th order accuracy line
original outp:

15 15

20 20
£ 25 £ 25
T T
o o
2 30 230

s
st 35
40 p 40 /
// ®  mutant output //
% 4th order accuracy line %
AT original output el
50 50
12 10 -8 6 - 2 12 10 -8 6 - 2
h h

Figure 4: Halving h Figure 5: Doubling h

Ray Wu (University of British Columbia)



Analysis

@ wish to use the number of mutants in each category to determine
program correctness

@ wish to be able to explain why certain mutants do not get removed

First proposed criterion
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@ Generalization of our testing process to the following:

o Where test examples are hard to generate
o Where the algorithm doesn't use a discretization step

@ Automatic detection of discretization range using segmented least
squares

@ Running the same analysis on buggy targets

@ Use as an autograder in numerical analysis courses
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Conclusion

@ Examining the mutation in the surviving mutants is instructive about
the code’s implementation.

@ It is not clear if thresholds can be removed.

@ more reasonable p-val vs. as long as error j 0.05
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