
Solving High-Dimensional PDEs
Deep Galerkin Method with Timestepping

Ray Wu and Christina C. Christara

University of Toronto
Department of Computer Science

May 27, 2022

1 / 20

Overview

Overview of the talk:

I Introduction and motivation, problem description.

I One- and multi-dimensional Black-Scholes PDEs.

I Deep Galerkin Method (DGM).

I Deep Galerkin Method with Timestepping (DGMT).

I Numerical results.

I Error analysis.

I Comparison of DGM and DGMT.

I Convergence discussion.

I Conclusions and future work.

2 / 20

Introduction

Why are we interested in solving high-dimensional PDEs?
I Many examples, but we are speci�cally interested in pricing multi-asset

options accurately.
I Some options can have hundreds of underlying assets, each asset giving rise

to a spatial dimension.

Curse of Dimensionality

The curse of dimensionality refers to the problem that the complexity of the
numerical method scales exponentially with the dimension. With N gridpoints per
dimension, there are Nd unknowns in total. Traditional PDE methods such as
Finite Di�erence Methods (FDMs) and Finite Element Methods (FEMs) su�er
from this problem.

Dimensions 1 2 3 4
Unknowns 64 4096 262144 16777216

Execution Time <0.01 sec 0.1 sec 15 sec 28 min

Table 1: Exponential increase in runtime of an ADI method as dimensions increase.

3 / 20

One-dimensional Black-Scholes PDE

Before showing high-dimensional [Black and Scholes, 1973] PDEs, we �rst show
the one-dimensional case, given by

Vτ = LV ≡ σ2S2

2
VSS + (r − q)SVS − rV . (1)

Note that subscripts denote partial derivatives, and

I S denotes the stock price,
I τ denotes the reverse time counted from expiry time T (τ = T − t, t forward

time),
I σ denotes the volatility of the stock,
I r denotes the risk-free interest rate,
I q denotes dividend yield of the stock,
I V denotes the unknown option price we are solving for.

We are interested in the option values at τ = T . Payo�s denoted by V ∗(S)
correspond to initial conditions:

I Call payo�: V (0,S) = V ∗
call(S) ≡ max(S − K , 0),

I Put payo�: V (0, S) = V ∗
put(S) ≡ max(K − S , 0).

4 / 20

Multi-dimensional Black-Scholes

In d -dimensions, the analogous PDE to Equation (1) is

Vτ = LV ≡ 1

2

d∑
i,j=1

ρi,jσiσjSiSjVSi ,Sj
+

d∑
i=1

(r − qi)SiVSi
− rV . (2)

Note that

I Si , σi , qi denote the stock price, volatility, and dividend yield of the i-th stock

I ρi,j denotes the correlation between Si and Sj . Must be 1 if i = j , and less
than 1 in absolute value otherwise.

Many di�erent payo�s, but we use Geometric Average Put, given by

V (0, S1, S2, . . . ,Sd) = max(K − (
d∏

i=1

Si)
1/d , 0) (3)

Useful because a corresponding one-dimensional problem exists.

5 / 20

Geometric Average Put

The Geometric Average Put problem has the identical option price as a
corresponding one-dimensional Put problem [Birge and Linetsky, 2007], with the
interest rate r remaining unchanged and adjusted parameters σ̂ and q̂ given by

σ̂ =
1

d

√√√√ d∑
i,j=1

ρi,jσiσj

q̂ =
1

d

d∑
i=1

(qi +
1

2
σ2i)− 1

2
σ̂2

In our examples we do not have dividend yield in multidimensional problems. In
other words, qi = 0.

6 / 20

Introduction to Deep Learning Methods

Deep Learning addresses the curse of dimensionality in PDEs, for example

I Black-Scholes equations [Grohs et al., 2018], and

I Semilinear heat equations [Hutzenthaler et al., 2020]

have been proven to be able to be approximated by neural networks to arbitrary
accuracy, with the complexity of the neural network being a polynomial function
of both the dimension and the inverse of a prespeci�ed accuracy.

I Current research studies how to pose the problem and how to design the
neural network such that it is easy for the neural network to solve.

I We mainly consider [Sirignano and Spiliopoulos, 2018]'s Deep Galerkin
Method (DGM).

I A related and popular method is [Han et al., 2018]'s Deep BSDE method.
I Compared to DGM, solves a narrower range of problems.
I Some �nance problems that have nonlinearity in the VSS (di�usion) term

cannot be solved by Deep BSDE.

7 / 20

The Deep Galerkin Method (DGM)

The DGM uses a neural network f (τ, x ; θ) to approximate the unknown function
over the entire time and space domain.

The problems DGM solves are of the form

uτ (τ, x) = Lu(τ, x) where (τ, x) ∈ [0,T]× Ω (4)

u(τ = 0, x) = u0(x)

u(τ, x) = g(τ, x) for x ∈ ∂Ω.

This is a generalization of the Black-Scholes equation, since L here is possibly a
nonlinear operator.

[Sirignano and Spiliopoulos, 2018] solve the optimization problem

θ∗ = arg min
θ
{G (τ, x ; θ) ≡ ‖fτ (τ, x ; θ)− Lf (τ, x ; θ)‖2[0,T]×Ω,ν1

(5)

+ ‖f (τ, x ; θ)− g(τ, x)‖2[0,T]×∂Ω,ν2

+ ‖f (0, x ; θ)− u0(x)‖2Ω,ν3}

using Adaptive Moment Estimation (Adam) [Kingma and Ba, 2014].
8 / 20

Deep Galerkin Method with Timestepping (DGMT)

I In all parabolic problems, by nature, the values at one timestep depend on
values on previous timesteps.

I We present an extension of the Deep Galerkin Method that incorporates
timestepping (DGMT) and therefore abides by this property.

I Consider a time-discretization of the PDE (1) or (2):

(I − ϑ∆τL)vj = (I + (1− ϑ)∆τL)vj−1 (6)

I Key idea: Instead of using a neural network to approximate the PDE along
the entire domain, approximate it at only one point in time, that is,

fj(x ; θ) ≡ f (x ; θj) ≈ V (τj , S = x). (7)

I Then, partition the time domain into subintervals. Using Equation (6) as an
objective function, solve optimization problems until last timestep is reached.

I Another key idea: The parameters of the neural network at the previous
timestep are a good initial guess for the parameters at the current timestep.

9 / 20

DGMT Algorithm

Algorithm 1 DGMT with ϑ-timestepping

1: Pick time points τj , j = 0, ...,M, with τ0 = 0 and τM = T . Let ∆τj = τj − τj−1.
2: Initialize a neural network f (x ; θ)
3: Solve the optimization problem

θ1 = arg min
θ

(
f (x ; θ)−∆τ1Lf (x ; θ)− u0(x)

)
2

(8)

where u0 is the initial condition of the PDE problem.
4: for j = 2, . . . , M do

5: Solve the optimization problem

θj = arg min
θ

([
f (x ; θ)−ϑ∆τjLf (x ; θ)

]
−
[
f (x ; θj−1) + (1−ϑ)∆τjLf (x ; θj−1)

])
2

(9)
with θj−1 as the initial guess for θ.

6: end for

7: f (x ; θM) now approximates V (τ = T , S)

10 / 20

Details about DGMT Algorithm

Choices of ϑ correspond to timestepping schemes:

I Crank-Nicolson (CN) timestepping: ϑ = 1/2. Second-order convergent.
I Backwards Euler timestepping: ϑ = 1. First-order convergent.
I We mostly use CN timestepping, but for the initial timestep we use

Backwards Euler to avoid taking derivatives of a nonsmooth payo� function.

Number of Epochs:

I For the �rst optimization problem (8), we have a cold start, and a large
number of epochs (4000) are used for convergence to a reasonable error.

θ1 = arg min
θ

(
f (x ; θ)−∆τ1Lf (x ; θ)− u0(x)

)2

I For subsequent problems (9), θj−1 at the previous timestep is already a good
approximation (warm start), and much fewer iterations (500) are required.

θj = arg min
θ

([
f (x ; θ)−ϑ∆τjLf (x ; θ)

]
−
[
f (x ; θj−1)+(1−ϑ)∆τjLf (x ; θj−1)

])2

Timesteps: Uniform timesteps taken, but easily generalizable to variable timesteps.
11 / 20

Computational Results (One-dimensional problem)

M Computed Value Relative Error time(s)
Exact solution 10.802266 � �
4 timesteps 10.636006 1.54× 10−2 7.34× 102

8 timesteps 10.742462 5.53× 10−3 1.07× 103

16 timesteps 10.794114 7.50× 10−4 1.74× 103

32 timesteps 10.803133 8.53× 10−5 3.02× 103

64 timesteps 10.811709 8.79× 10−4 5.60× 103

128 timesteps 10.800688 1.41× 10−4 1.09× 104

original DGM 10.792760 8.75× 10−4 1.09× 104

Table 2: Comparison of DGMT method with 4, 8, 16, 32, 64, and 128 timesteps. S = K ,
with T = 1, σ = 0.4, K = 100, r = 0.1. Neural network size held constant. DGMT
computes a more accurate result than DGM for the same computational work.

Some similar properties with Finite Di�erence Methods:
I Error decreases with number of timesteps.
I Limitations to the accuracy as number of timesteps increase:

I Approximation error of the neural network to the true function dominates the
truncation error from timestepping.

I Similar to only increasing the number of timesteps but not changing the size
of the grid in a FDM.

12 / 20

Neural Network approximation limitations

The DGMT algorithm is limited by the ability of the neural network to
approximate the solution function.

total error = time-discretization error + neural network approximation error. (10)

Time-discretization error is the familiar second-order O(∆τ2) error of
[Crank and Nicolson, 1947, Rannacher, 1984] timestepping.

Neural network approximation error, given by (11), is the ability of the neural
network to approximate the solution function V (τ = T , ·):

|f (x = K ; θ)− V (τ = T , S = K)| (11)

For one-dimensional European options, we can measure the magnitude by directly
solving the minimization problem

θ∗ = arg min
θ

(f (x ; θ)− V (τ = T , S))2. (12)

Our experiments indicate that the quantity in (11) can be reduced to ≈ 10−4.

13 / 20

Time-convergence of DGMT

DGMT has O(∆τ2) time-discretization error, limited by the ability of the neural
network to approximate the payo� function.

4 8 16 32 64 128

Number of timesteps

10 -4

10 -3

10 -2

10 -1

R
e
la

ti
v
e
 e

rr
o
r

a
t
s
tr

ik
e

Error of DGMT

O(
2

) convergence

Figure 1: Convergence of DGMT method as ∆τ is reduced.

14 / 20

Convergence of Neural Network

The DGMT exhibits a more consistent error per epoch compared to the DGM.

9.95 9.96 9.97 9.98 9.99 10

epoch 10 4

10 -5

10 -4

10 -3

10 -2

re
la

tiv
e

er
ro

r

(a) DGM, last 500 epochs

1.95 1.96 1.97 1.98 1.99 2

epoch 10 4

10 -5

10 -4

10 -3

10 -2

(b) DGMT, last timestep

Figure 2: Comparison of relative errors of DGM and DGMT. As can be seen, DGMT has
reduced �uctuations in the error with a much improved "worst case". Total iterations
counted for DGMT.

15 / 20

Conclusions

Main points of the talk (main contributions):

I Time-discretization: Solving the time-discretized equations introduces direct
dependence of solution values on previous timestep values.

I Order of convergence: Time-discretization leads to a second-order convergent
scheme in time.

I Approximation limit of Neural Networks: When the error reaches the
approximation limit, we observe stagnation.

The above are features commonly seen in standard FDM/FEM numerical
methods. Additionally, we observe improved performance of DGMT:

I A more accurate solution is computed, even when original DGM is given more
computational time.

I Stability of solution is greatly increased, and the computed results are
generally more predictable (see Figure 2 on previous slide)

16 / 20

Future work

Future work:

I Numerical results for multi-dimensional problems: studying if the
conclusions we drew from the one-dimensional case hold for the
multi-dimensional problems.

I Development of a stopping criterion instead of a �xed number of training
epochs.

I Extension of DGMT to nonlinear problems (e.g. American exercise rights,
transaction cost models, passport trading options, etc).

I Study of neural network size vs. neural network approximation error. Is it
possible to reduce the neural network approximation error? By how much,
and at what rate?

I Exploring new designs for the neural network, because the DGM was designed
to capture nonsmoothness around the initial conditions of the PDE. With
timestepping, we avoid this problem of nonsmoothness.

17 / 20

References I

Birge, J. R. and Linetsky, V. (2007).
Handbooks in operations research and management science: Financial

engineering.
Elsevier.

Black, F. and Scholes, M. (1973).
The pricing of options and corporate liabilities.
Journal of political economy, 81(3):637�654.

Crank, J. and Nicolson, P. (1947).
A practical method for numerical evaluation of solutions of partial di�erential
equations of the heat-conduction type.
In Mathematical Proceedings of the Cambridge Philosophical Society,
volume 43, pages 50�67. Cambridge University Press.

Grohs, P., Hornung, F., Jentzen, A., and Von Wurstemberger, P. (2018).
A proof that arti�cial neural networks overcome the curse of dimensionality in
the numerical approximation of Black-Scholes partial di�erential equations.
arXiv preprint arXiv:1809.02362.

18 / 20

References II

Han, J., Jentzen, A., and E, W. (2018).
Solving high-dimensional partial di�erential equations using deep learning.
Proceedings of the National Academy of Sciences, 115(34):8505�8510.

Hutzenthaler, M., Jentzen, A., Kruse, T., and Nguyen, T. A. (2020).
A proof that recti�ed deep neural networks overcome the curse of
dimensionality in the numerical approximation of semilinear heat equations.
SN Partial Di�erential Equations and Applications, 1(2):1�34.

Kingma, D. P. and Ba, J. (2014).
Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Rannacher, R. (1984).
Finite element solution of di�usion problems with irregular data.
Numerische Mathematik, 43(2):309�327.

19 / 20

References III

Sirignano, J. and Spiliopoulos, K. (2018).
DGM: A deep learning algorithm for solving partial di�erential equations.
Journal of computational physics, 375:1339�1364.

20 / 20

