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Overview

Overview of the talk:

I Introduction and motivation, problem description.

I One- and multi-dimensional Black-Scholes PDEs.

I Deep Galerkin Method (DGM).

I Deep Galerkin Method with Timestepping (DGMT).

I Numerical results.

I Error analysis.

I Comparison of DGM and DGMT.

I Convergence discussion.

I Conclusions and future work.

2 / 20



Introduction

Why are we interested in solving high-dimensional PDEs?
I Many examples, but we are speci�cally interested in pricing multi-asset

options accurately.
I Some options can have hundreds of underlying assets, each asset giving rise

to a spatial dimension.

Curse of Dimensionality

The curse of dimensionality refers to the problem that the complexity of the
numerical method scales exponentially with the dimension. With N gridpoints per
dimension, there are Nd unknowns in total. Traditional PDE methods such as
Finite Di�erence Methods (FDMs) and Finite Element Methods (FEMs) su�er
from this problem.

Dimensions 1 2 3 4
Unknowns 64 4096 262144 16777216

Execution Time <0.01 sec 0.1 sec 15 sec 28 min

Table 1: Exponential increase in runtime of an ADI method as dimensions increase.
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One-dimensional Black-Scholes PDE

Before showing high-dimensional [Black and Scholes, 1973] PDEs, we �rst show
the one-dimensional case, given by

Vτ = LV ≡ σ2S2

2
VSS + (r − q)SVS − rV . (1)

Note that subscripts denote partial derivatives, and

I S denotes the stock price,
I τ denotes the reverse time counted from expiry time T (τ = T − t, t forward

time),
I σ denotes the volatility of the stock,
I r denotes the risk-free interest rate,
I q denotes dividend yield of the stock,
I V denotes the unknown option price we are solving for.

We are interested in the option values at τ = T . Payo�s denoted by V ∗(S)
correspond to initial conditions:

I Call payo�: V (0,S) = V ∗
call(S) ≡ max(S − K , 0),

I Put payo�: V (0, S) = V ∗
put(S) ≡ max(K − S , 0).
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Multi-dimensional Black-Scholes

In d -dimensions, the analogous PDE to Equation (1) is

Vτ = LV ≡ 1

2

d∑
i,j=1

ρi,jσiσjSiSjVSi ,Sj
+

d∑
i=1

(r − qi )SiVSi
− rV . (2)

Note that

I Si , σi , qi denote the stock price, volatility, and dividend yield of the i-th stock

I ρi,j denotes the correlation between Si and Sj . Must be 1 if i = j , and less
than 1 in absolute value otherwise.

Many di�erent payo�s, but we use Geometric Average Put, given by

V (0, S1, S2, . . . ,Sd) = max(K − (
d∏

i=1

Si )
1/d , 0) (3)

Useful because a corresponding one-dimensional problem exists.
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Geometric Average Put

The Geometric Average Put problem has the identical option price as a
corresponding one-dimensional Put problem [Birge and Linetsky, 2007], with the
interest rate r remaining unchanged and adjusted parameters σ̂ and q̂ given by

σ̂ =
1

d

√√√√ d∑
i,j=1

ρi,jσiσj

q̂ =
1

d

d∑
i=1

(qi +
1

2
σ2i )− 1

2
σ̂2

In our examples we do not have dividend yield in multidimensional problems. In
other words, qi = 0.
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Introduction to Deep Learning Methods

Deep Learning addresses the curse of dimensionality in PDEs, for example

I Black-Scholes equations [Grohs et al., 2018], and

I Semilinear heat equations [Hutzenthaler et al., 2020]

have been proven to be able to be approximated by neural networks to arbitrary
accuracy, with the complexity of the neural network being a polynomial function
of both the dimension and the inverse of a prespeci�ed accuracy.

I Current research studies how to pose the problem and how to design the
neural network such that it is easy for the neural network to solve.

I We mainly consider [Sirignano and Spiliopoulos, 2018]'s Deep Galerkin
Method (DGM).

I A related and popular method is [Han et al., 2018]'s Deep BSDE method.
I Compared to DGM, solves a narrower range of problems.
I Some �nance problems that have nonlinearity in the VSS (di�usion) term

cannot be solved by Deep BSDE.
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The Deep Galerkin Method (DGM)

The DGM uses a neural network f (τ, x ; θ) to approximate the unknown function
over the entire time and space domain.

The problems DGM solves are of the form

uτ (τ, x) = Lu(τ, x) where (τ, x) ∈ [0,T ]× Ω (4)

u(τ = 0, x) = u0(x)

u(τ, x) = g(τ, x) for x ∈ ∂Ω.

This is a generalization of the Black-Scholes equation, since L here is possibly a
nonlinear operator.

[Sirignano and Spiliopoulos, 2018] solve the optimization problem

θ∗ = arg min
θ
{G (τ, x ; θ) ≡ ‖fτ (τ, x ; θ)− Lf (τ, x ; θ)‖2[0,T ]×Ω,ν1

(5)

+ ‖f (τ, x ; θ)− g(τ, x)‖2[0,T ]×∂Ω,ν2

+ ‖f (0, x ; θ)− u0(x)‖2Ω,ν3}

using Adaptive Moment Estimation (Adam) [Kingma and Ba, 2014].
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Deep Galerkin Method with Timestepping (DGMT)

I In all parabolic problems, by nature, the values at one timestep depend on
values on previous timesteps.

I We present an extension of the Deep Galerkin Method that incorporates
timestepping (DGMT) and therefore abides by this property.

I Consider a time-discretization of the PDE (1) or (2):

(I − ϑ∆τL)vj = (I + (1− ϑ)∆τL)vj−1 (6)

I Key idea: Instead of using a neural network to approximate the PDE along
the entire domain, approximate it at only one point in time, that is,

fj(x ; θ) ≡ f (x ; θj) ≈ V (τj , S = x). (7)

I Then, partition the time domain into subintervals. Using Equation (6) as an
objective function, solve optimization problems until last timestep is reached.

I Another key idea: The parameters of the neural network at the previous
timestep are a good initial guess for the parameters at the current timestep.
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DGMT Algorithm

Algorithm 1 DGMT with ϑ-timestepping

1: Pick time points τj , j = 0, ...,M, with τ0 = 0 and τM = T . Let ∆τj = τj − τj−1.
2: Initialize a neural network f (x ; θ)
3: Solve the optimization problem

θ1 = arg min
θ

(
f (x ; θ)−∆τ1Lf (x ; θ)− u0(x)

)
2

(8)

where u0 is the initial condition of the PDE problem.
4: for j = 2, . . . , M do

5: Solve the optimization problem

θj = arg min
θ

([
f (x ; θ)−ϑ∆τjLf (x ; θ)

]
−
[
f (x ; θj−1) + (1−ϑ)∆τjLf (x ; θj−1)

])
2

(9)
with θj−1 as the initial guess for θ.

6: end for

7: f (x ; θM) now approximates V (τ = T , S)
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Details about DGMT Algorithm

Choices of ϑ correspond to timestepping schemes:

I Crank-Nicolson (CN) timestepping: ϑ = 1/2. Second-order convergent.
I Backwards Euler timestepping: ϑ = 1. First-order convergent.
I We mostly use CN timestepping, but for the initial timestep we use

Backwards Euler to avoid taking derivatives of a nonsmooth payo� function.

Number of Epochs:

I For the �rst optimization problem (8), we have a cold start, and a large
number of epochs (4000) are used for convergence to a reasonable error.

θ1 = arg min
θ

(
f (x ; θ)−∆τ1Lf (x ; θ)− u0(x)

)2

I For subsequent problems (9), θj−1 at the previous timestep is already a good
approximation (warm start), and much fewer iterations (500) are required.

θj = arg min
θ

([
f (x ; θ)−ϑ∆τjLf (x ; θ)

]
−
[
f (x ; θj−1)+(1−ϑ)∆τjLf (x ; θj−1)

])2

Timesteps: Uniform timesteps taken, but easily generalizable to variable timesteps.
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Computational Results (One-dimensional problem)

M Computed Value Relative Error time(s)
Exact solution 10.802266 � �
4 timesteps 10.636006 1.54× 10−2 7.34× 102

8 timesteps 10.742462 5.53× 10−3 1.07× 103

16 timesteps 10.794114 7.50× 10−4 1.74× 103

32 timesteps 10.803133 8.53× 10−5 3.02× 103

64 timesteps 10.811709 8.79× 10−4 5.60× 103

128 timesteps 10.800688 1.41× 10−4 1.09× 104

original DGM 10.792760 8.75× 10−4 1.09× 104

Table 2: Comparison of DGMT method with 4, 8, 16, 32, 64, and 128 timesteps. S = K ,
with T = 1, σ = 0.4, K = 100, r = 0.1. Neural network size held constant. DGMT
computes a more accurate result than DGM for the same computational work.

Some similar properties with Finite Di�erence Methods:
I Error decreases with number of timesteps.
I Limitations to the accuracy as number of timesteps increase:

I Approximation error of the neural network to the true function dominates the
truncation error from timestepping.

I Similar to only increasing the number of timesteps but not changing the size
of the grid in a FDM.
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Neural Network approximation limitations

The DGMT algorithm is limited by the ability of the neural network to
approximate the solution function.

total error = time-discretization error + neural network approximation error. (10)

Time-discretization error is the familiar second-order O(∆τ2) error of
[Crank and Nicolson, 1947, Rannacher, 1984] timestepping.

Neural network approximation error, given by (11), is the ability of the neural
network to approximate the solution function V (τ = T , ·):

|f (x = K ; θ)− V (τ = T , S = K )| (11)

For one-dimensional European options, we can measure the magnitude by directly
solving the minimization problem

θ∗ = arg min
θ

(f (x ; θ)− V (τ = T , S))2. (12)

Our experiments indicate that the quantity in (11) can be reduced to ≈ 10−4.

13 / 20



Time-convergence of DGMT

DGMT has O(∆τ2) time-discretization error, limited by the ability of the neural
network to approximate the payo� function.
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Figure 1: Convergence of DGMT method as ∆τ is reduced.
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Convergence of Neural Network

The DGMT exhibits a more consistent error per epoch compared to the DGM.
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(a) DGM, last 500 epochs
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Figure 2: Comparison of relative errors of DGM and DGMT. As can be seen, DGMT has
reduced �uctuations in the error with a much improved "worst case". Total iterations
counted for DGMT.
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Conclusions

Main points of the talk (main contributions):

I Time-discretization: Solving the time-discretized equations introduces direct
dependence of solution values on previous timestep values.

I Order of convergence: Time-discretization leads to a second-order convergent
scheme in time.

I Approximation limit of Neural Networks: When the error reaches the
approximation limit, we observe stagnation.

The above are features commonly seen in standard FDM/FEM numerical
methods. Additionally, we observe improved performance of DGMT:

I A more accurate solution is computed, even when original DGM is given more
computational time.

I Stability of solution is greatly increased, and the computed results are
generally more predictable (see Figure 2 on previous slide)
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Future work

Future work:

I Numerical results for multi-dimensional problems: studying if the
conclusions we drew from the one-dimensional case hold for the
multi-dimensional problems.

I Development of a stopping criterion instead of a �xed number of training
epochs.

I Extension of DGMT to nonlinear problems (e.g. American exercise rights,
transaction cost models, passport trading options, etc).

I Study of neural network size vs. neural network approximation error. Is it
possible to reduce the neural network approximation error? By how much,
and at what rate?

I Exploring new designs for the neural network, because the DGM was designed
to capture nonsmoothness around the initial conditions of the PDE. With
timestepping, we avoid this problem of nonsmoothness.
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