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Abstract

Neural architecture search (NAS) algorithms are a handy tool in the automated construc-
tion of effective deep learning models in information processing tasks such as classification,
clustering, and generation. This report, in part, summarizes some conventional NAS algo-
rithms, including those based on reinforcement learning and evolutionary algorithms. It also
reviews kernel methods based on Gaussian Processes (GP) and the neural tangent kernel
(NTK) as a mathematical heuristic for the model performance estimation that is usually
derived from an expensive training process. And finally, this report surveys the recent
works on proxies or surrogates with mathematical correspondence in model ranking and
pruning. Comparisons are made for image classification tasks such as CIFAR-10, with newly
constructed networks or those sampled from an architectural dataset like the NAS-Bench
variants. As heuristics are generally associated with trading some accuracy/quality for
substantial cuts in cost, it remains to be seen if kernel and proxy heuristics can soon
approach state-of-the-art performance in practical applications.

1. Introduction

Artificial neural networks (ANNs) are the modern standard in information processing. They
have been used in several useful applications, such as classification, segmentation, semantic
analysis, and generative methods. Neural architecture search (NAS), a subset of automated
machine learning, has been a very useful tool in aiding in the design and optimization of
ANNs. Even early reinforcement learning-based algorithms (Zoph and Le, 2016) (Pham
et al., 2018) demonstrated respectable performance that had taken thousands of researchers
several years to achieve. However, the computational resources required to reach practical
benchmarks has held NAS back and left much potential on the table.

While the emergence of ever-improving models demonstrates optimistic advancement in
deep learning. In general, these methods are far too slow and do not surpass the human-
engineered states of the art (SOTA) when applied to real-world tasks. The challenges with
NAS algorithms lie in the complex nature of performant models: better models for real-world
problems typically have many more parameters arranged in complex structures. ANNs
can be described as computational graphs of vertices (known as cells or layers) and edges
(connections). Barring recurrent architectures such as long short-term memory (LSTM)
units (Hochreiter and Schmidhuber, 1997) and gated recurrent units (GRUs) (Cho et al.,
2014), these graphs are usually acyclic. It is intuitive that the sheer universe of different
architectures and associated hyperparameters possible for any ANN depth L is intractibly
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large. The computational burden of evaluating even a fraction of these models is usually
greater than manually designing a suitable model.

In the past few years, there have been many efforts to make NAS more efficient. Several
contributions have involved augmenting existing algorithms with concepts such as stacking
cells (Zoph et al., 2017) and weight sharing (Pham et al., 2018) (Liu et al., 2018b) (Su
et al., 2021). The re-examination of kernel methods – a rather old concept – such as the
neural tangent kernel (NTK) (Jacot et al., 2018) in evaluating ANNs has also attracted
much attention and hinted at possible applications to NAS. And recently, proxy methods
focusing on efficient model ranking have emerged as cheap heuristics for model pruning and
the classical exploration vs. exploitation trade-off. This report paper surveys several of
these innovations and speculates on further applications.

2. Neural Architecture Search (NAS)

The following description of NAS is intentionally high-level and generic to reflect the
diversity of recent algorithms. When constructing an ANN, the cells/layers and connections
in between are selected to dictate the flow of signals and gradients in training. NAS
algorithms automated this sampling process to produce child networks that are evaluated,
the performance of which informs how the next generation of networks should be constructed.

Neural Operation Search Spaces Let neural operation cells ω (vertices in a graph) be
drawn from an arbitrary universe (or set) S. In the popular problem of image classification, S
might contain cells such as convolutional, normalization, and pooling layers. The operations
sampled by an algorithm might be repeating with independent parameters and training
gradients, so they would conveniently be expressed as a bag rather than a subset. The
number of possible bags of size L is equal to L|S|.

Making Connections In addition to sampling cells for a child network, a NAS algorithm
is also responsible for making connections (edges in a graph) between said cells. These can
be represented simply using conventional directed binary edge maps of size O(L2) where
the child network has L cells. Since each cell can have a (skip) connection to any later cell,
there are O(2L

2
) possible edge maps.

Hyperparameter Optimization (HPO) When designing a child network and run-
ning experiments, the hyperparameter optimization (HPO) process typically applies to a
conventional set of values, which might include learning rate, batch size, and number of
iterations/epochs. HPO can be regarded as orthogonal to the NAS process (as siblings
under the umbrella of automated learning), but some neural cells will have associated
hyperparameters; convolutions, for example, have properties such as filter size, dilation,
padding, and stride. Either way, HPO will need to be considered when performing NAS.

Network Evaluation In order for NAS to be useful, there must be some measure of
(predicted) quality, also known as performance estimation. Traditionally, child networks
would be trained directly on the training set, and the validation error would serve as the
performance estimation; this was intuitive since the training/validation sets would contain
the same kind of data as the test set. However, this is a very näıve approach to the problem.
Kernel methods are old but have, as an alternative, shown impressive results given the
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computational resources used. Several proxies have also been proposed, not to directly
estimate performance, but to efficiently rank child networks with a fraction of the resources;
methods discussed in this survey include training regime reduction (Zhou et al., 2020) or
analysis of non-linear activation patterns.

3. Datasets

In modern NAS literature, there exist datasets for tasks (historical data, language corpora,
image databases, etc.) as well as datasets of model architectures for those task datasets
(which will be discussed later).

3.1 Task Datasets

Unsurprisingly, most NAS methods are designed for and implemented on conventional
datasets. Image classification remains one of the most popular tasks; commonly featured
datasets include CIFAR-10/100 (Krizhevsky, 2009), MNIST (LeCun et al., 2010), and
ImageNet (Deng et al., 2009) (and its variants such as ImageNet-2012 (Russakovsky et al.,
2015) and ImageNet-16-120 (Chrabaszcz et al., 2017)). But NAS can also be applied to
recurrent architectures for sequential data tasks such as language modelling; Liu et al.
(2018b) demonstrate NAS on Penn TreeBank (PTB) (Taylor et al., 2003) and WikiText-2
(Merity et al., 2016).

3.1.1 Synthetic Datasets

In cases where common tasks would be too complex for a proof-of-concept, a synthetic
dataset may be used as a toy problem. In addition to CIFAR-10, Simon et al. (2021) also
performed experiments using simple geometric structures such as unit circles, (hyper)cubes
and (hyper)spheres as target functions. These examples can be briefly and respectively
defined (Simon et al., 2021):

• Let X :=
{

cos
(
2πj
M

)
, sin

(
2πj
M

)}M

j=1
be discrete points on a unit circle where M = |X |.

• Let X := {−1, 1}d be M discrete points of a d-dimensional hypercube where M = 2d.

• Let Sd := {x ∈ Rd+1|x2 = 1} be the domain of a d-dimensional hypersphere.

While these synthetic datasets are seldom used and usually uninteresting (due to their
unrealistic and theoretical character), they might serve as a better standard baseline or toy
problem for future NAS research. Perhaps specific datasets like CIFAR-10 or PTB mask the
lack of generalization of some NAS algorithms.

3.2 Architectural Datasets

Because NAS involves sampling many child network architectures, it can be useful to keep
reference datasets of models and their performance estimations/results. In fact, some recent
works such as Mellor et al. (2021) rely heavily on such datasets in scoring and evaluating
their heuristic methods. To paraphrase Mellor et al. (2021),
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• NAS-Bench 101: 423,624 child networks trained on CIFAR-10 (Ying et al., 2019).

• NAS-Bench 201: 15,625 child networks trained on CIFAR-10/100 and ImageNet-16-120
(Dong and Yang, 2020).

• NATS-Bench: An extension of NAS-Bench 201 where the original 15,625 child networks
are in a topology search space, and which includes 32,768 other child networks whose
cells vary in channels (width).

• NDS: Instead of comparing search algorithms, NDS compares networks trained on
search spaces from AmoebaNet (Shah et al., 2018), DARTS (Liu et al., 2018b), ENAS
(Pham et al., 2018), NASNet (Zoph and Le, 2016), and PNAS (Liu et al., 2018a).

• NAS-Bench-301: A surrogate on NAS-Bench 101 and DARTS search spaces (Siems
et al., 2020).

4. Conventional NAS Algorithms

NAS algorithms are diverse, but a common trait of early algorithms is their performance
estimation: most methods relied on explicit training on a similar task to estimate performance
on the evalution task.

Evolutionary Algorithms (EA) These algorithms are meant to emulate biological
evolution. Given any arbitrary set of child networks at time step t (a generation), evolutionary
algorithms (EA) such as Real et al. (2019) perform mutations of some degree on each child
network (for example, change a single cell or connection) to create multiple mutants. After
evaluating the mutants against the originals, the variants with the best performance are
(deterministically or stochastically) retained for the next generation at time t+1. Interestingly,
Grey (2017) follows an EA approach in their high-level YouTube explainer.

Reinforcement Learning (RL) If sampling neural cells and making connections are
regarded as actions, reinforcement learning (RL) becomes a very useful paradigm. Zoph
and Le (2016) first introduced NAS using reinforcement learning: an LSTM-based controller
performs sampling and is trained using the classical REINFORCE algorithm (Williams,
1992) with a accuracy-based (performance estimation) reward (Figure 1). Weight sharing
was introduced in Pham et al. (2018) wherein instances of the same neural cell would share
the same preserved parameters. Wu and Jain (2021) extended this further by replacing the
LSTM-based controller with a Q-Learning or multi-armed bandit controller.

Other Methods There exist many other algorithms such as progressive (Liu et al., 2018a)
and differentiable (Liu et al., 2018b) NAS, but this survey will not discuss them in detail.

4.1 Weight Sharing

Retaining common parameters has proven to be an effective way reduce training costs.
However, Saxena et al. (2022) has shown that weight sharing has shown to have severe
vulnerabilities related to search spaces and gradients.
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Figure 1: Controller training process in RL-based algorithms.

4.2 Computational Burden

It should be noted that most conventional algorithms are still very slow. This is not neces-
sarily a criticism of entire existing algorithms, but a highlight of the common performance
estimation bottleneck. They all rely on some form of expensive training process to estimate
practical or test model performance. Search times can take as long as 3150 GPU days (Real
et al., 2019); even an algorithm like ENAS labeled “efficient” might still take 16 hours (Pham
et al., 2018). Comprehensive comparisons of search cost can be found in Zhou et al. (2020)
and Mellor et al. (2021). Instead of or in addition to weight sharing, other methods such as
kernel methods and proxies have been examined to further speed up NAS algorithms.

5. Kernel Methods

To avoid the explicit training that conventional NAS methods require, kernel methods
can be used to analyze the theoretical behaviour. Given a training dataset X with pairs
(xi, yi) ∈ X , i ∈ [1, n], and a query point x′ (perhaps in the test dataset), a kernel machine
that predicts ŷ in binary classifcation might look like the following.

ŷ := I

(
n∑

i=1

aiyiK(xi, x
′) + bi

)
(1)

Where ai, bi are trainable parameters for data point xi and K : X × X → R is a similarity
function between data points. Note that this solution can be computed analytically without
depth or time. Kernel methods are well-founded mathematical tools, but have been largely
overlooked in machine learning in favour of deep neural architectures (Schölkopf and Smola,
2001). Thanks to Jacot et al. (2018) and many works spawned therefrom, kernel methods
have resurfaced as impressive heuristic alternatives to deep learning training techniques.

5.1 Gaussian Processes (GP)

The correspondence between Gaussian Processes (GP) and a single-layer neural network is
well-known (Williams, 1996). Given the data x ∈ Rd0 , let the activations z1 := [z1i ]i∈[1,N ] in
a hidden layer of width N be defined as,

z1i (x) :=
N∑
j=1

W 1
i,jx

1
j (x) + b1i , x1j (x) := ϕ

(
d0∑
k=1

W 0
j,kxk + b0j

)
(2)
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Where xli and zli, respectively, are the post-nonlinearity and post-affine transformation for
the i’th component of activations in layer l (Lee et al., 2017). And the kernel function K
was then derived as,

K1(x, x′) ≡ E[z1i (x)z1i (x′)]

= σ2
wE[x1i (x)x1i (x)] + σ2

b

≡ σ2
wC(x, x′) + σ2

b

where bi ∼ N (0, σ2
b ), wi ∼ N (0, σ2

w). Lee et al. (2017) extended these definitions to deeper
networks using induction. The forward-pass recurrence relation for layer l can be defined,

zli(x) :=
N∑
j=1

W l
i,jx

l
j(x) + bli, xlj(x) := ϕ(zl−1

j (x′)) (3)

Given the GP GP, the kernel function was generalized and compacted with a deterministic
function Fϕ parameterized by the nonlinearity ϕ (Lee et al., 2017).

Kl(x, x′) ≡ E[zli(x)zli(x
′)]

= σ2
wEzl−1

i ∼GP(o,Kl−1)[z
l−1
i (x)zl−1

i (x′)] + σ2
b

= σ2
wFϕ(K l−1(x, x′),K l−1(x, x),K l−1(x′, x′)) + σ2

b

5.2 Neural Tangent Kernel (NTK)

For a network of depth L, let F (L) : RP → F be a realization function that maps parameters
θ ∈ RP to functions fθ ∈ F . Given a cost function C : F → R, let the composite function
C ◦ F (L) : RP → R be represented as C|fθ for a function fθ. With respect to the NTK
Θ(L)(θ) (instead of K), the network function fθ will evolve along the (negative) kernel
gradient ∂tfθ(t) with the definition,

Θ(L)(θ) =
P∑

p=1

∂θpF
(L) ⊗ ∂θpF

(L)

∂tfθ(t) = −∇Θ(L)C|fθ(t)

The initialization scheme and training regime are further detailed in Jacot et al. (2018).
The theoretical result is that in the infinite-width limit, an ANN can be described as the

constant positive-definite NTK Θ
(L)
∞ and that traditional ANN gradient descent corresponds

to kernel gradient descent (Jacot et al., 2018).

5.3 Convolutional Neural Tangent Kernel (CNTK)

Jacot et al. (2018) presented interesting theoretical results, but the NTK will need to be
applied to real datasets to be practical. Arora et al. (2019) define a variant of the NTK to
correspond to convolutional neural networks (CNNs) in classification on CIFAR-10. Let P ,
Q be the length and width of each image x from CIFAR-10 X , and C(l) be the number of
channels at layer l (so that C(0) is the number of channels in the image data). Then the

6



Analysis of Heuristics for Neural Architecture Search (MAT496)

images fall in the domain x ∈ X ⊂ RP×Q×C(0)
. Let q be the convolution filter size. For

two images x, x′ and channels α = 1, . . . , C(0), let K
(0)
(α)(x, x

′) := x(α) ⊗ x′(α). Then for pixel

indices (i, j, i′, j′) ∈ [P ] × [Q] × [P ] × [Q], define the following covariance,

[
Σ(0)(x, x′)

]
i,j,i′,j′

:=
C(0)∑
α=1

tr
([

K
(0)
(α)(x, x

′)
])

(4)

In subsequent layers l ∈ [L], for indices (i, j, i′, j′) ∈ [P ]× [Q]× [P ]× [Q], define the following

covariance matrix Λ
(l)
(i,j,i′,j′), kernel matrix K(l)(x, x′) ∈ RP×Q×P×Q and its derivative

K̇(l)(x, x′) ∈ RP×Q×P×Q, and covariance entry
[
Σ(l)(x, x′)

]
i,j,i′,j′

∈ RP×Q×P×Q.

Λ
(l)
(i,j,i′,j′) :=

( [
Σ(l−1)(x, x′)

]
i,j,i,j

[
Σ(l−1)(x, x′)

]
i,j,i′,j′[

Σ(l−1)(x, x′)
]
i′,j′,i,j

[
Σ(l−1)(x, x′)

]
i′,j′,i′,j′

)
K(l)(x, x′) :=

cσ
q2

· E
(u,v)∼N

(
0,Λ

(l)

(i,j,i′,j′)

)[σ(u)σ(v)]

K̇(l)(x, x′) :=
cσ
q2

· E
(u,v)∼N

(
0,Λ

(l)

(i,j,i′,j′)

)[σ̇(u)σ̇(v)][
Σ(l)(x, x′)

]
i,j,i′,j′

:= tr

([
K(l)(x, x′)

]
Di,j,i′,j′

)
where Di,j,i′,j′ is defined as the pixels surrounding (i, j) and (i′, j′) as per the convolutional
filter, and cσ is defined in Arora et al. (2019). Then the following recursive definition
computes the CNTK where l = 1, . . . , L− 1 and (i, j, i′, j′) ∈ [P ] × [Q] × [P ] × [Q].

Θ(0)(x, x′) := Σ(0)(x, x′)[
Θ(l)(x, x′)

]
i,j,i′,j′

:= tr

([
K̇(l)(x, x′) ⊙Θ(l−1)(x, x′) + K(l)(x, x′)

]
Di,j,i′,j′

)
Θ(L)(x, x′) := K̇(L)(x, x′) ⊙Θ(L−1)(x, x′) + K(L)(x, x′)

And finally the CNTK value is tr(Θ((L)))(x, x′). Importantly, the preliminary results show
that each CNTK usually achieves lower performance than its conventional CNN counterpart.
The best result (77.43% accuracy) is found in the global average pooling (GAP) variant of the
CNTK, and is below a CNN with GAP, which achieved an accuracy of 83.30% under their
training regime Arora et al. (2019). However, these results are still impressive considering
that no training actually takes place.

5.3.1 Potential Application to NAS

Arora et al. (2019) make an explicit suggestion of applying the CNTK to NAS algorithms.
In summary, one can derive performance estimation of the CNTK on a validation (sub)set
after computing it on a small training subset. This could be used to directly choose the
final child networks in a new cheap NAS algorithm (Arora et al., 2019). Alternatively,
this estimation can be integrated into existing algorithms, either as a reward surrogate for
RL-based algorithms, or as the mutation selection process in EA.
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5.4 Enhancing Convolutional Neural Tangent Kernels (CNTK II)

To improve upon Arora et al. (2019), the same authors went on to propose data and kernel
augmentations in Li et al. (2019); they also distinguish regression with respect to the CNN
Gaussian Process kernel (CNN-GP) Σ from that with respect to the CNTK Θ under their
different training conditions (Li et al., 2019). In particular, they define regression of the two
kernels without GAP, designated with “FC” (for fully-connected layers),

ΣFC(x, x′) := tr
(
Σ(L)(x, x′)

)
ΘFC(x, x′) := tr

(
Θ(L)(x, x′)

)
As well as with GAP,

ΣGAP(x, x′) :=
1

P 2Q2

∑
i,j,i′,j′∈[P ]×[Q]×[P ]×Q

[
Σ(L)(x, x′)

]
i,j,i′,j′

ΘGAP(x, x′) :=
1

P 2Q2

∑
i,j,i′,j′∈[P ]×[Q]×[P ]×Q

[
Θ(L)(x, x′)

]
i,j,i′,j′

5.4.1 Data Augmentation

Li et al. (2019) propose two data augmentation schemes on dataset D := {(xi, yi)}Nh=1:

Translation For (i, j) ∈ [P ] × [Q], the translation operator Ti,j : RP×Q×C → RP×Q×C

transforms each image x and the full dataset D → DT , respectively.

[Ti,j(x)]i′,j′,c = [x]i′+i,j′+j,c, DT := {(Ti,j(xi), yi)}(i,j,c)∈[P ]×[Q]×[N ] (5)

Horizontal Flip For (i, j) ∈ [P ] × [Q], the flip operator F : RP×Q×C → RP×Q×C

transforms each image x and the full dataset D → DF , respectively.

[F(x)]i,j,c = [x]P+1−i,j,c, DF := {(F (xi), yi)} (6)

It was shown that computing the original kernels on the augmented datasets DT , DF is
equivalent to computing the augmented kernels on the original dataset D (Li et al., 2019).

5.4.2 Local Average Pooling (LAP)

Full translation of the dataset images results in unrealistic images. Moderating this global
effect is termed local average pooling (LAP). Importantly, hyperparameter c is introduced to
control the size of translation windows; a smaller c value results in more local translations,
whereas maximizing c is equivalent to GAP. Details are relegated to Li et al. (2019).

5.4.3 Ablations & Results

Experiments were carried out on CIFAR-10 and Fashion-MNIST (Xiao et al., 2017). Ablations
were performed with L = 5, 8, 11, 14, c = 4γ where γ ∈ [0, 8] and with/out horizontal flipping.
The authors additionally performed preprocessing involving normalization and transformation
of image patches. The best results are summarized in Table 1. (Li et al., 2019)
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Dataset Kernel PreProc Flip (L, c) TestAcc

CIFAR-10 CNTK No No (5, 12) 80.11%
CIFAR-10 CNTK No Yes (8, 16) 81.40%
CIFAR-10 CNN-GP No No (8, 16) 80.78%
CIFAR-10 CNN-GP No Yes (8, 16) 82.20%
CIFAR-10 CNTK Yes No (5, 16) 86.77%
CIFAR-10 CNTK Yes Yes (5, 16) 88.36%
CIFAR-10 CNN-GP Yes No (5, 16) 87.28%
CIFAR-10 CNN-GP Yes Yes (8, 12) 88.92%

Fashion-MNIST CNTK No No (5, 4) 93.76%
Fashion-MNIST CNTK No Yes (5, 4) 94.07%
Fashion-MNIST CNN-GP No No (11, 4) 93.63%
Fashion-MNIST CNN-GP No Yes (8, 4) 93.79%

Table 1: Results consolidated across ablations of datasets, kernel, preprocessing, flipping,
and the best test accuracy and associated hyperparameters (L, c) (Li et al., 2019).

5.5 Approximation to Kernel Machines in the Wild

There have also been attempts to approximate general deep learning models with kernel
machines. Domingos (2020) proposes what they call the path kernel. Given data points x,
x′, a prediction function y and parameters w, a path kernel can be expressed as an integral
of the dot product of the model’s gradients over path c(t) at times t,

K(x, x′) :=

∫
c(t)

∇wy(x) · ∇wy(x′)dt (7)

Thereafter, the tangent kernel and path kernel associated with function fw(x) can be defined,

Kg
f,v(x, x′) := ∇wfw(x) · ∇wfw(x′)

Kp
f,c(x, x

′) :=

∫
c(t)

Kg
f,w(t)(x, x

′)dt

where c(t) is the curve in parameter space v = w(t) is the vector of parameters at time t.
The resulting limit is shown in Domingos (2020).

lim
ϵ→0

y = y0 −
m∑
i=1

L̄′(y∗i , yi)K
p
f,c(x, xi)

=
m∑
i=1

aiK
p
f,c(x, xi) + b

where K(x, xi) = Kp
f,c(x, xi), ai = −L̄′(y∗i , yi), and b = y0. This was highly controversial

because it uses the query point x in the determination of the weights themselves. Con-
sequently, the results in Domingos (2020) do not appear to include true kernel machines.
In any event, this work only claimed to approximate the general deep ANN, and did not
provide experimental results.

9



Robert Wu

5.6 Generalization: A Theory About Kernels

Simon et al. (2021) sought to provide a mathematical framework for the concept of learnability:
how well can a kernel like the NTK or wide ANN learn tasks and adapt to new ones? To
paraphrase, they showed that they could describe the inductive bias of a kernel as a fixed
budget of learnability; approximate the mean/covariance of the predicted function; obtain a
new result regarding the hardness of the parity problem; and study network overfitting and
robustness. Given the known “zero-sum game” nature of all target functions, the resulting
implication is that there is a well-defined limit to learnability for any network, which can
only be increased by introducing more data. The mathematical reasoning behind learnability
is beyond the scope of the survey, but is detailed in Simon et al. (2021). This would appear
to hamper kernel methods in general.

6. Proxy & Pruning

But perhaps quickly estimating the true performance is not the only way to substantially
speed up NAS. Indeed, most conventional algorithms were selecting from a set of child
networks to move forward; child networks were selected not for their relative performance,
not necessarily their raw performance. More loosely, ranking the child networks is the critical
process for which performance estimation was conducted.

6.1 Reducing the Training Regime

Hyperparameters such as width (number of channels), data resolution, training epochs,
and sample ratio (from the dataset) are generally scaled to improve the training regime.
However, one might foresee that scaling any of these values too high may result in overfitting
and/or may not be necessary to achieve the same performance. A more likely scenario is that
reduced training regimes might suffer in raw performance but maintain rank consistency.

Zhou et al. (2020) explores this idea for CNNs in their reductions experiments and
subsequent evaluation of rank consistency. Let c, r, e, s represent the aforementioned
number of channels, resolution of input images, training epochs, and dataset sample ratio,
respectively; and let (ca, rb, ed, sg) define a proxy training regime with reduction factors
a, b, d, g. Note that the reduced setting requires 1

2a+b+d as many FLOPs.

A commonly used metric for rank consistency is the Spearman Coefficient ρsp. For a
collection of K entries where di is the absolute difference between the original and new ranks
of entry i, ρsp can be expressed as,

ρsp := 1 −
6
∑K

i=1 d
2
i

K(K2 − 1)
(8)

where higher values are better. This metric is directly applied to ANNs in Zhou et al. (2020)
when comparing child network rankings between the baseline and proxy training regimes.
Results are promising: the best experiments on SOTA models achieved impressive 2.62% and
25.2% test error rates on CIFAR-10 and ImageNet with the cost of 8 GPU days. Integrating
training reduction into existing NAS algorithms also displayed competitive results (Zhou
et al., 2020).
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6.2 Activation Map Kernel

An innovative idea is to revisit the concept of activations. Nonlinearities like ReLU, tanh,
and sigmoid exist primarily to create binary signals in the hidden layers of ANNs, and
secondarily to scale the information thereafter. Mellor et al. (2021) investigates this line of
reasoning using a scoring mechanism to describe how distinctively untrained child networks
(they provide a baseline performance that trained networks typically only improve on) would
behave in the forward-passes of different data points. This begins with constructing binary
codes ci of the activation maps of a child network for a training example xi. Hamming
distance dH(ci, cj) is used to describe how dissimilar the codes are for data points xi, xj .
Then these distance metrics are arranged in a kernel matrix KH .

dH(ci, cj) := ⟨ci, ci⟩

KH :=

N − dH(c1, c1) . . . N − dH(c1, cN )
...

. . .
...

N − dH(cN , c1) . . . N − dH(cN , cN )


= N(IN ) −

dH(c1, c1) . . . dH(c1, cN )
...

. . .
...

dH(cN , c1) . . . dH(cN , cN )


where N is the number of activations and IN is the identity matrix of size N . The score
s = log |KH | is then computed as the logarithm of the determinant of this kernel. Out of
curiosity, I propose swapping Hamming distance dH for Euclidean distance dE , which in the
binary case, is equivalent to the square-root of Hamming distance. Without normalization,
this would more variable scores and might lead to better differentiability.

dE(ci, cj) :=
√
⟨ci, ci⟩

KE = N(IN ) −

dE(c1, c1) . . . dE(c1, cN )
...

. . .
...

dE(cN , c1) . . . dE(cN , cN )


Mellor et al. (2021) scored untrained child networks from the NAS-Bench variants (mostly
NAS-Bench 201), as well as NDS and NATS-Bench. Under the training regime of 500 runs,
search time was a mere 3 seconds per ten samples, making this a very scalable solution.
The largest experiment presented in Mellor et al. (2021) shows a 92.96% test accuracy on
CIFAR-10 in just 306.19 seconds, which magnitudes faster than past methods.

6.3 Zero-Cost Proxies

Another approach is to score based on saliency – in other words, importance or notability.
Abdelfattah et al. (2021) discusses both per-parameter and network-level saliency. Three
metrics proposed are based on per-parameter saliency Sp(θ).

snip : Sp(θ) =

∣∣∣∣∂L∂θ ⊙ θ

∣∣∣∣ , grasp : Sp(θ) = −
(
H

∂L
∂θ

)
⊙ θ, synflow : Sp(θ) =

∂L
∂θ

⊙ θ

(9)
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where L is the loss function of the ANN with parameters θ, H is the Hessian, Sp is the
per-parameter saliency and ⊙ is the Hadamard product (Abdelfattah et al., 2021). The
authors also included the fisher saliency metric which is based on per-activation saliency.

fisher : Sz(z) =

(
∂L
∂z

z

)2

, Sn =

M∑
i=1

Sz(zi) (10)

Additionally, Abdelfattah et al. (2021) included the Jacobian covariance derived from Mellor
et al. (2021) as jacob cov and a majority vote thereof with snip and synflow. The best
results reported indicate a 94.22% test accuracy on CIFAR-10 classifcation. The authors
indicate that synflow outperforms Zhou et al. (2020) in rank consistency and is the most
robust and consistent across all datasets and measures.

6.4 Hierarchical Strategy & Explore-then-Exploit

All of the proxies discussed share a common but powerful potential application: they can
be used in a hierarchical search strategy. Recall that in HPO or any search problem, an
effective strategy is to explore the space widely early on, and exploit later when the optima
have been localized. This is known as the classical exploration vs. exploitation trade-off,
except here, we can dynamically adjust. This is especially useful in EA, as Zhou et al.
(2020) demonstrates with their performance binning process and stochastic sampling and
mutations. Analysing the results of our heuristics also provides guidance in how to make the
trade-off, which also becomes appealing in RL-based algorithms in determining how much
performance estimation should be muted or amplified in reward expressions.

7. Comparison & Conclusion: Back to Kernels?

Unfortunately, most of these algorithms were trained under vastly different conditions, and
some – like Li et al. (2019) – have ambiguous runtime claims. Thus, these methods are
difficult to compare. The proxy/pruning methods show a lot of promise in how they can
be improved or combined with other algorithms. synflow in Abdelfattah et al. (2021) has
eclipsed Zhou et al. (2020), while Mellor et al. (2021) has more potential.

Kernel machines have higher upfront computational cost than iterative training, and
they fall short of SOTA performance. But they can still be of use if they needn’t exactly
model the potential performance of networks. It’s likely that NTK-like methods can still
model relative performance fairly well. If future experiments show that these kernel machines
mostly preserve rank consistency, they can be used to accelerate the performance estimation
stage of NAS. This survey thus motivates further study into the reliability and robustness of
the NTK (and its derivatives) as a cheap model evaluator and ranker that is more faithful
than proxy/pruning methods.
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