

Macro Support for Modeling
in

Software Engineering

Technical Report V.2.5

by
Rick Salay

1. Introduction..3

1.1. Motivating Scenarios ...4
2. Foundations..7

2.1. Assumptions about Models and Model Relations ...7
2.2. Metamodels and Model Types...8
2.3. Relation Models and Relation Model Types ...15
2.4. Multimodels and Macromodels ...25

3. Example Scenarios Revisited...29
3.1. Scenario 1: Exposing Multimodel Structure..29
3.2. Scenario 2: Structuring the Development Process...35
3.3. Scenario 3: Model Manipulation Operators...36

4. Related Work ...41
5. Future Work ...43
6. Conclusions..44
7. References..45
8. Appendix A – Examples of PUMR Diagrams...47

8.1. detailOf(ClassDiagram, ClassDiagram) ..47
8.2. overlap(ClassDiagram, ClassDiagram)..48
8.3. detailOf(StateDiagram, ClassDiagram) ...49
8.4. detailOf(StateDiagram, StateDiagram)..50
8.5. instanceOf(ObjectDiagram, ClassDiagram) ..51
8.6. objectsOf(SequenceDiagram, ObjectDiagram) ...52
8.7. caseOf(SequenceDiagram, SequenceDiagram) ...53

9. Appendix B – Submodel and Homomorphism..54

3

1. Introduction

In Software Engineering, we typically model software using multiple “partial” models; thus, we
are actually doing multimodeling. There are several reasons for this. Firstly, different views of
the software are best captured using a modeling language most appropriate for that view.
Secondly, the complexity of a model of a piece of software requires that it be decomposed into
smaller parts and descriptions at different levels of abstraction. Thirdly, the widely accepted
principle of “separation of concerns” requires that different models be created to address
different purposes. Finally, different models can express the viewpoints of different
stakeholders. Furthermore, the use of multiple models is typically supported by the
development process - most contemporary development processes, such as RUP [13], mandate
the use of multiple views and require some form of iteration in which a series of progressively
more detailed models are created.

Much of the focus of modeling research is on what goes in within an individual model – i.e.
what it takes to create or validate the content of a model so that it correctly reflects the modeled
domain. We refer to this as the “micro” level of modeling. When we consider multimodeling, a
“macro” level emerges as well where models and the relations between models become the
objects of study. The central premise of this paper is that this macro level can provide
opportunities for providing useful support to the software development process.

The emerging area of Model Management [2, 5, 3] also takes this macro view by defining a set
of generic operators such as Merge and Diff to manipulate models and their “mappings.” Here,
the models of concern are schemas for data or process, such as database schemas or workflow
definitions and the focus is on reducing the effort in the corresponding schema integration
problem – i.e. how to create mapped and merged schemas to support interoperability. Our focus
is slightly different. We are primarily interested in providing support at design time to the
process of creating, understanding and manipulating the set of models of a software
development process.

To some extent, the operators suggested within Model Management are applicable in this
context as well. For example, model merging has been well studied in the context of
Requirements Engineering [14]. However, while Model Management recognizes only one type
of generic relationship between models called a “mapping,” we find it necessary to define many
types, just as there are many types of models. The need for this follows from the observation
that different types of model relations arise in software engineering and that they correspond to
different tasks: refinement relation types for elaborating models, refactoring relation types for
model evolution, overlap relations for merging or decomposing models, functional types for
transforming models and relations into other types of models and relations, etc. Furthermore,
the introduction of relation types leads to a more unified approach to model management itself
since model management operators are just particular kinds of relation types (functional ones)
and hence they themselves can be expressed within the same scheme. Finally, as with model
types, relation types can be defined using metamodels and hence support for this can be
borrowed from existing work on metamodeling.

4

1.1. Motivating Scenarios

In order to motivate the above discussion, we present three example scenarios of providing
useful support to modeling at the macro level. These will be further elaborated in Section 3 after
introducing the required formalism in Section 2.

1.1.1. Scenario 1: Exposing Multimodel Structure

Consider a software project with a UML model consisting of large number of diagrams of
various kinds. One could document the intent of each diagram but it is difficult to apprehend a
large set of diagrams and how they are related to one another, especially since UML provides
no way of indicating the relationships between these diagrams. If these relations were made
explicit and were classified, this would help. If the relations could be automatically inferred
from the underlying UML model, this would be even better. Figure 1.1 illustrates a fragment of
a “macromodel” showing the diagrams and their relations for an example domain taken from a
telecommunications standards document. Even without understanding the domain here it should
be clear how the expression of the relations between models helps to explicate the underlying
structure in this multimodel. We will return to this example in Section 3.1.

1.1.2. Scenario 2: Structuring the Development Process

Assume that the UML model for a project was only partially complete; however, as chief
architect, we know what diagrams need to be created and how they should be related to each
other and to existing diagrams. For example, we may assign the task of creating the state
machine diagram for a given class in a known class diagram to developer Jack. It would be
useful if we could assert the type of relationship that the state machine diagram has with the
class diagram. This could be used to partially automate the check for consistency of the diagram
that Jack produces and hence improve the efficiency of the development process and quality of
the design. Establishing such relations can be used to structure the development process.

1.1.3. Scenario 3: Model Manipulation Operators

Consider the refinement of communication diagrams for a hypothetical library management
system shown in Figure 1.2. Here Ref1 denotes the refinement relation and although it is not
shown here, it actually has internal structure that contains the internal details of how the
elements of M1 are mapped to the elements of M2. Furthermore, this refinement relation has a
very specific structure - it is an instance of a type of relation in which the communication
diagram on the left has single message and the one on the right shows a refinement for this
message. Call this type of relation SimpleRefCommD.

Now consider the communication diagram refinement shown in Figure 1.3. Ref2 is also a
refinement relation, although not an instance SimpleRefCommD. Call Ref2’s type of
refinement relation, RefCommD. Note that given M3 and Ref1 we have enough information to
infer Ref2 and hence, M4. In particular, we get Ref2 by applying Ref1 to each message in M3

5

that it matches and then M4 is just the right hand communication diagram of the result. It might
be a useful capability if we were able to define this procedure in general as an operator so that
we could always “automatically refine” a communication diagram using a known simple
refinement since this would provide a way to modularize and reuse refinements.

55 - De - Registration
:SequenceDiagram

58 - Registration Processing
:StatemachineDiagram

51 - Basic Domain Model
:ClassDiagram

 PUMR Detailed
 Domain Model

57 -

:ClassDiagram

61 - Identification of PUMR
signaling at QSIG
interfaces:ClassDiagram

52 - PUMR Object Model
:ObjectDiagram

*:instanceOf

53 - Registration using the
PUM Number

:SequenceDiagram

54 - Registration using
Alternative Identifier
:SequenceDiagram

 59 - Registration Request
:StatemachineDiagram

Specification Model Diagrams1: UMLDiagrams

Figure 1.1: Telecommunications macromodel example

40 - Context Model Packages
:PackageDiagram

41 - Simple PUMR Domain Model
:ClassDiagram

42 - Flow between User and PISN
:SequenceDiagram

43 - PUMR System Architecture
:ObjectDiagram

 *42a:ObjectDiagram

*:instanceOf

*:refines

*:instanceOf

 Context Model Diagrams: UMLDiagrams

:refines

 *:overlap

:caseOf :caseOf

*:objectsOf

:eq :eq

*:objectsOf

*54a: ObjectDiagram

*53a: ObjectDiagram

*55a: ObjectDiagram

*:merge[ObjectDiagram]

*:objectsOf

*:objectsOf

*(PINX:Class):detailOf

Request:State):detailOf
*(Processing PUM Registration

*(Home PINX:Class):detailOf

6

Ref1

Figure 1.2: A sequence diagram refinement

M1

:LibraryUser :Catalog

1: Search f or book

M2

:LibraryUser :Catalog

:Database

4: Construct DB query
6: Format results

1: Initiate search query

2: Request query ty pe
3: Request query string

7: Prov ide results 5: Initiate DB query

Figure 1.3: A derived refinement

Ref2

M3 M4

:LibraryUser

:Desk

:Catalog

:Stacks

1: Search for book

2: Find the book

3: Borrow the book

:LibraryUser

:Catalog

:Database

:Stacks:Desk

4: Construct DB
6: Format

1: Initiate search query

2: Request query type
3: Request query string

7: Provide resul ts

8: Find the book

9: Borrow the book

5: Initiate DB query

7

2. Foundations

This section describes the foundational concepts, theory and formalism of our approach to
multimodeling.

2.1. Assumptions about Models and Model Relations

Within software engineering, models are used to specify or describe something – usually a
software system. If we call the thing that the model is about, the subject, then we can take a
model to be equivalent to some set of statements about the subject [15]. Thus, a model is a
structure (syntax) that has an interpretation (semantics).

A distinction is often made between the abstract and the concrete syntax of a model, where the
latter consists of the actual shapes, lines, characters, etc. from which a model is constructed
while the former abstracts away from these and instead just expresses a model in terms of the
different types of symbols needed. For example, the concrete syntax of a UML class diagram
includes boxes and lines while the abstract syntax talks about class symbols and association
symbols. Although the concrete syntax is an important aspect of a model and its effectiveness as
a language [8], in this paper, we will assume that models are characterized in terms of their
abstract syntax only. Thus, the structure of a model will consist of a set of abstract symbols and
abstract relations between them.

Following the assumption that model are like (sets of) statements and are hence, “linguistic”
entities, we can identify three aspects of a relationship that may hold between models:

o Syntactic relation: two models are related syntactically iff the structure of one is
constrained by the structure of the other. For example, models that share some symbols
are syntactically related.

o Semantic relation: two models are related semantically if interpretations of one model
constrain the possible interpretations of the other.

o Pragmatic relation: a pragmatic relation between models is one that occurs in the context
of their use. For example, the creation of one model must precede another in a
methodology, one model is a newer version of another model, one model has the same
creator as another model, etc.

These aspects of relations can co-occur. For example, if model A is newer version of model B,
then it is pragmatically related. In addition, since they are about the same domain, they are
semantically related and finally, B may share much structure with A and hence they may be
syntactically related. In this paper, we focus on syntactic and semantic relations – i.e. relations
that have to do with the content of the model rather than the context of use.

8

2.2. Metamodels and Model Types

A metamodel is used to specify a class of models with similar characteristics – i.e. a model type.
If MM is a metamodel, then we will denote the model type it specifies as [[MM]]. For example,
we may have the metamodel StateDiagram where [[StateDiagram]] is the set of all state
diagrams. Note that the same model type could be specified by many metamodels. For example,
if we have the OMG metamodeling language MOF [9] and the Eclipse metamodeling language
Ecore [6], we may have StateDiagram:MOF � StateDiagram:Ecore but [[StateDiagram:MOF]]
= [[StateDiagram:Ecore]] = [[StateDiagram]]. Furthermore, not every model type may be
expressible in a given metamodeling language. For example, if Model is the model type
consisting of all models, it is not hard to show that there is no MOF metamodel MM:MOF such
that [[MM:MOF]] = Model1.

If M is a particular state diagram, then it is an instance of the model type [[StateDiagram]] but
we will extend this idea to its metamodel(s) and also say that M is an instance of StateDiagram.
That is, a model will be considered both to be an instance of its model type and any metamodel
that specifies the model type. Following usual conventions for typing we will write this as
M:StateDiagram.

2.2.1. Metamodeling Language

Although models have both syntax and semantics, it is common for the metamodel to only
characterize the syntactic aspect of the models in a given model type. This is the case with both
MOF and Ecore. One reason for this may be that while the syntax of a modeling language is
often easily formalizable, the semantics is typically not. For example, the UML specification
expresses the abstract syntax as a metamodel but the semantics is expressed using english [17] -
the formalization of UML semantics continues to be an area of intense research.

In this paper, we follow a similar tack; however, rather than using either MOF or Ecore, we
have chosen to use a version of order-sorted first order logic with transitive closure (henceforth
referred to as FO+) as the metamodeling formalism. There are a number of reasons for this.
Firstly, it is widely known and has comparable expressive power to the other metamodeling
approaches. Secondly, it has a textual representation and this is more convenient when
discussing formal issues. Finally, general theoretical concepts, such as logical consequence, are
well understood in this context.

Using FO+ we can define the abstract syntax of a model type as a pair ��, Φ� where � is called
the signature and defines the types of model elements and how they can be related while Φ is a
set of axioms that defines the well-formedness constraints for models. Thus, a metamodel ��,
Φ� is a presentation of an FO+ theory and each finite model (in the model theoretic sense) of
this theory will be considered to be a model that is an instance of the metamodel.

1 Say MM:MOF defines n model element types. Since Model contains all models, we can always find one that has
n+1 element types and hence MM:MOF can’t be the metamodel.

9

For example, we define the abstract syntax of a simplified UML class diagram as follows.

CD =

sorts class, association, attribute, operation
 func startClass: association � class

 endClass: association � class

 attrClass: attribute � class

 opClass: operation � class
 pred subClassOf: classSymb × classSymb
 axioms
 ‘a class cannot be a subclass of itself’
 ∀c: �TC(subClassOf(c, c))

Here, the combination of the sorts, func and pred sections describe the signature � and the
axioms section describes Φ. The sorts define the element types that can occur in a diagram
while the functions and relations show how they are connected in a diagram. To express the
constraint that no class can be a subclass of itself, we use the transitive closure operator TC on
the subClassOf relation. We need the ability to compute the transitive closure of a relation in
order to define acyclicity constraints such as this within a model since these cannot be
expressed in first order logic.

For simple cases we can also show a metamodel signature diagrammatically as in Figure 2.1.
The nodes represent sorts, edges like “ ” denote directed binary relations and edges like
“ ” denote functions with one argument. However, note that the complete metamodel
includes the axioms.

Attribute

Operation

Class
attrClass

OpClass

Association
startClass

endClass

subClassOf

Figure 2.1: Metamodel of CD

10

Figure 2.2 shows a class diagram based on the library management system example both using
its concrete syntax and its abstract syntax as an instance of CD (shown as a UML object
diagram).

2.2.2. Formalization

We briefly review the formalization of FO+2. A signature Σ is a tuple �S, F, P, �, �F, �P� which
is defined as:

o A set of sort symbols S = {S1, S2, … Sk} and � ⊆ S × S gives the order relation over
sorts.

2 For a more detailed description of order sorted first order logic please see [ref].

Figure 2.2: A class diagram and its abstract syntax as an instance of CD

Staff:class

Faculty:class

uses:association

LibraryUser:class

:subClass

:subClass

:startClass

Student:class

:subClass

StudentId:attribute :attrClass

Library:class :endClass

Staff FacultyStudent
studentId

LibraryUser Library uses

11

o A set of function symbols F = {f1, f2, … fm} and an arity function �F:F � S* giving, for
each function, the result sort followed by the list of argument sorts.

o A set of predicate symbols P = {p1, p2, … pn} and an arity function �P:P � S* giving,
for each predicate, the list of argument sorts.

Here, S* denotes a (possibly empty) list of sorts. A function with no arguments is a constant of
the type given by the result sort. We define the following “helper” definitions. Let #f = |�F(f)| -
1 - i.e. it is the number of arguments of function f. Also, �F(f)[i+1] is the ith argument sort of f
and �F(f)[1] is the result sort. Similarly, we define #p = |�P(p)| and �P(p)[i] for predicates.

Finally, we define Sen(Σ) to be the usual set of first order sentences (plus TC) over the
signature �. Thus, for a metamodel �Σ, Φ�, we have that Φ ⊆ Sen(Σ).

In order to define the semantics of a metamodel3 we first recall the standard notion of a first
order interpretation. An interpretation τ of Σ is an assignment that maps

o Each sort symbol S to a set [[S]]τ, such that if Si � Sj then [[Si]]τ ⊆ [[Sj]]τ
o Each predicate symbol p with �P(p) = �S1, S2, … Sn� to a relation [[p]]τ ⊆ [[S1]]τ × [[S2]]τ

× … × [[Sn]]τ
o Each function symbol f with �f(f) = �S, S1, S2, … Sn� to a function [[f]]τ:[[S1]]τ × [[S2]]τ ×

… × [[Sn]]τ � [[S]]τ

Let Mod(Σ) denote the set of all interpretations of Σ and define the relation � ⊆ Sen(Σ) ×
Mod(Σ) to be the standard satisfaction relation for order sorted first order logic with transitive
closure. Thus, for sentence ϕ ∈ Sen(Σ), τ � ϕ means that τ satisfies ϕ (i.e. ϕ holds true in τ).
For a metamodel �Σ, Φ�, define Mod(Σ, Φ) be the set of interpretations that satisfy all the
sentences in Φ. Since we are only interested in models that have a finite number of symbols, we
can define the specified model type [[�Σ, Φ�]] ⊆ Mod(Σ, Φ) to be the subset of these
interpretations that have finite sorts.

We will use an algebraic specification style of expressing metamodels as shown in above in
Section 2.2.1; however, rather than formalize this notation at the outset, we will just use it and
discuss any new constructs as they arise. We do this because some of the constructs are closely
tied to the theoretical framework we are building and only become understandable in the
context of the associated exposition.

2.2.3. Metamodel Morphisms and Reducts

In the next section, our goal will be to define model relation types in terms of metamodels. In
order to do this we require a way to show how metamodels can be related and how this
corresponds to how the model types they specify are related. To do this, we draw on a basic

3 Not to be confused with the semantics of the models described by the metamodel.

12

concept from theory of institutions within algebraic specification [7]. The idea here is that since
both the sentences Sen(Σ) and interpretations Mod(Σ) are completely determined by the
signature Σ, if we map one signature into another, this should induce corresponding mappings
between their sentences and interpretations as well. Furthermore, when these mappings preserve
the satisfaction relation then it effectively shows how to map one logical theory into another in
a sound way. Since we are using logical theories to express metamodels and their
interpretations to express models, this means that it shows how to map metamodels and the
model types they specify.

We first define the signature mapping as a signature morphism. Given signatures Σ1 and Σ2, a
signature morphism f:Σ1�Σ2 is a mapping from the sorts, functions and predicates of one
signature to those of the other such that the subsort relation and arity is preserved. Formally, f
consists of injective4 functions �fS:S1�S2, fF:F1�F2, fP:P1�P2� such that the following
conditions hold:

1. ∀Si, Sj ∈ S1. Si �1 Sj � fS(Si) �2 fS(Sj)

2. ∀f ∈ F1. #f = #fF(f) � ∀i ∈ {1, …, #f +1}. �F2(fF(f))[i] = fS(�F1(f)[i])

3. ∀p∈ P1. #p = #fP(p) � ∀i ∈ {1, …, #p}. �P2(fP(p))[i] = fS(�P1(p)[i])

Intuitively, a signature morphism f:Σ1�Σ2 is a mapping that shows how to “rename” elements
of Σ1 into (a subset of) elements of Σ2. We can use this to define a natural translation function
�f:Sen(Σ1)�Sen(Σ2) for sentences that replace the sort, function and predicate symbols in each
sentence by their image under f.

Now, given metamodels �Σ1, Φ1� and �Σ2, Φ2�, a metamodel morphism f: �Σ1, Φ1���Σ2, Φ2�

consists of a signature morphism fΣ:Σ1�Σ2 such that Φ2 � �fΣ(Φ1). Intuitively, this means that
the axioms of �Σ1, Φ1� follow logically from the axioms of �Σ2, Φ2� after the signature renaming
by fΣ.

In the same way that fΣ induces the sentence translation function �fΣ:Sen(Σ1)�Sen(Σ2) it also

induces the reduct function �fΣ:Mod(Σ2, Φ2)�Mod(Σ1, Φ1) that uses fΣ to transform each
model of �Σ2, Φ2� into a corresponding model of �Σ1, Φ1�. For each τ2 ∈ Mod(Σ2, Φ2), we
define τ1 = �fΣ(τ2) as follows:

1. ∀S ∈ S1, [[S]]τ1 = [[fΣ(S)]]τ2
2. ∀f ∈ F1, [[f]]τ1 = [[fΣ(f)]]τ2

4 Relaxing this restriction yields a more general type of signature morphism but for purposes the this paper,
injective functions are what we need and this restriction simplifies some of the technical details.

13

3. ∀p∈ P1, [[p]]τ1 = [[fΣ(p)]]τ2

Thus, τ1 is formed from τ2 by discarding any sorts, functions and predicates not found in the
image of fΣ. This is why �fΣ could be considered to be a projection function that extracts a �Σ1,
Φ1� model embedded within each �Σ2, Φ2� model. For notational simplicity, we will henceforth
drop the signature morphism indicator and just write �f and �f for metamodel morphism f.

In order for reducts to work as we expect them to, we must also show that the satisfaction
condition for institutions holds:

∀M ∈ Mod(Σ2, Φ2), S ∈ Sen(Σ1, Φ1). �f(M) �1 S � M �2 �f(S)

We do not prove this here but direct the reader to [1] in which proofs are provided for a wide
range of similar logics.

14

Figure 2.3 illustrates the notions of metamodel morphisms, sentence translations and reducts.

Here, we relate the metamodels Taxonomy = �ΣTaxonomy, ΦTaxonomy� and CD = �ΣCD, ΦCD�. The
metamodel morphism f:Taxonomy � CD has fΣ which maps the sort Category to the sort Class
and the predicate subCategory to the predicate subClassOf. With the resulting sentence
translation function we see that �f(“∀x:Category. �TC(subCategory)(x, x)”) = “∀x:Class.

�TC(subClassOf)(x, x)” which clearly follows logically from ΦCD = {∀c:Class.

�TC(subClassOf)(c, c)}. The bottom portion of the figure shows how an example of a

particular model Lib1:CD is transformed via the reduct �f into an instance of Taxonomy.

Attribute

Operation

Class
attrClass

subClassOf

OpClass

Association

startClass

endClass

∀c:Class. �TC(subClassOf)(c, c)

Category

subCategory

∀x:Category. �TC(subCategory)(x, x)

fΣ

∀x:Class. �TC(subClassOf)(x, x)
�fΣ �

Staff:Class Faculty:Class

StudentId:Attribute

Student:Class

:AttrClass

LibraryUser:Class

:subClassOf

:subClassOf :subClassOf

uses:Association

:startClass

getBook:Operation

Library:Class

:endClass

:opClass
Staff:Category Student:Category Faculty:Category

LibraryUser:Category

:subCategory :subCategory
:subCategory

Library:Category

Lib1:CD

IfΣ(Lib1):Taxonomy

Taxonomy CD

�f

Figure 2.3: Example of a metamodel morphism

f

15

Note that the transformation just removes all instances of all sorts, functions and predicates
other than Class and subClassOf, and these are converted into instances of Catetgory related by
subcategory.

2.3. Relation Models and Relation Model Types

Two models are related when the possible interpretations of one model constrain the possible
interpretations of the other model. Thus, at the semantic level it is a binary relation over the sets
of satisfying interpretations [2]. At the syntactic level, a relation between models can be
expressed as larger model (relator model) containing the related models (component models).
For example Figure 2.4 shows how class diagram M1:CD and communication diagram
M2:CommD for the library management domain can be related by embedding them in relator
model R1:RCC. Here, R1:RCC contains M1:CD, M2:CommD, a function mapping the objects
in M2 to classes in M1 and a function mapping from the messages in M2 to operations in M1.
We will call such a relator model, along with the designations of the embeddings of component
models, a model relation. A central premise of this paper is that a fruitful thing to do is to
classify model relations into model relation types. The approach we use for doing this is to
define projection functions from the model type of the relator model to the model types of the
component models that show how to “extract” the component models from each instance of the
relator model. In Figure 2.4, the model type of the relator model is [[RCC]] and the two
projection functions are πCD and πCommD.

2.3.1. Model Relation Types using Metamodels

In Figure 2.4, �[[RCC]], πCD, πCommD� defines a model relation type defined between model
types CD and CommD, and we can assume that there is a metamodel RCC that characterizes
the relator models of this relation type. Furthermore, the natural thing to consider is that πCD and
πCommD are actually the reducts corresponding to two metamodel morphisms pCD:CD�RCC and

pCommD:CommD�RCC that map these component metamodels into relator metamodel. Thus

we can get πCD and πCommD “for free” since πCD = �pCD and πCommD = �pCommD. Figure 2.5
illustrates this.

16

LibraryUser

Student
Catalog

BookSearch ()
Stacks

FindBook ()
Desk

BorrowBook ()

Library
GetBook ()

uses

:Student :Desk

:Catalog

:Stacks

1: Search for book

2: Find the book

3: Borrow the book:Student :Desk

:Catalog

:Stacks

1: Search for book

2: Find the book

3: Borrow the book

LibraryUser

Student
Catalog

BookSearch ()
Stacks

FindBook ()
Desk

BorrowBook ()

Library
GetBook ()

uses

R1:RCC

M1:CD

M2:CommD

πCD(R1)

πCommD(R1
)

πCommD

πCD

[[RCC]]

[[CD]]

[[CommD]]

Figure 2.4: Relation between a communication diagram and a class diagram

17

CD is defined as in Section 2.2.1. The details of CommD and RCC are as follows:

CommD =

sorts object, message, link
 func first: message, last:message
 startObject: link � object

 endObject: link � object

 messLink: message � link

 next:message o� message

 axioms
‘next’
‘the message “first” has no predecessor’
 ∀x:message. �(first = next(x))
‘only the message “last” has no successor’
 ∀x:message. x � last � �y:message. y = next(x)

AssociationAttribute

Operation

Class
startClass

endClass

attrClass

OpClass

subClassOf CD

pCD pCommD

CommD +AxCom

Object

Message

Link
endObject

startObject

messLink

+AxCD

Figure 2.5: RCC in Terms of Metamodels

RCC +AxRCC

Attribute
Object

Class
attrClass

instanceOf

Operation

OpClass
Message

instanceOf

Link
endObject

startObject

messLink

Association

startClass

endClass

subClassOf

next

next

18

RCC = CD + CommD +
 func instanceOf: object � class

 instanceOf: message � operation

 axioms
 ‘instanceOf maps messLink to opClass’

∀x:message.opClass(instanceOf(x)) =
 instanceOf(endObject(messLink(x)))

In addition, we assume that pCD:CD�RCC and CommD:CommD�RCC are the obvious inclusion
metamodel morphisms.

Note the following notational extensions used in these metamodels. The constants “first” and
“last” are given as functions with no arguments and only a return type specified. The function
“next” in CommD is a partial function since the last message has no next message. We
designate a partial function using “o�”. The metamodel RCC includes the metamodels for CD
and CommD and this is expressed by the “RCC = CD + CommD +”.

Each instance of RCC has the two “instanceOf” functions that map objects to classes and
messages to operations. In addition, the axiom of RCC requires that if a message maps to an
operation then the class of the receiver of the message should contain that operation.

Clearly, the reducts �pCD:[[RCC]]�[[CD]] and �pCD:[[RCC]]�[[CommD]] extract the CD

and CommD out of each RCC instance. Thus �[[RCC]], �pCD, �pCommD� is the desired model
relation type.

We can now generalize the procedure with RCC as follows. Given metamodels M1, …, Mn, a
relator metamodel R and metamodel morphisms f1:M1�R, …, f1:M1�R, we can define the

model relation type �[[R]], �f1, …, �fn�. Correspondingly, we will say that the metamodel for
the relation type is �R, f1, f2, …, fn� and call it a relation metamodel.

2.3.2. Soundness of a Relation Type

In the above example, the axiom in RCC eliminates inconsistent relations as instances. For
example, say that it was possible to define a relator R2:RCC that was the same as R1:RCC in
Figure 2.4 except that the message “Search for Book” maps to the operation “BorrowBook”
(this violates the constraint). Under the usual, interpretations of CD and CommD, there could be
no interpretation for M1:CD and M2:CommD that are related via R2:RCC since the receiver
object of “Search for Book” does not contain the operation “BorrowBook.” This means that the
set of interpretations for R2:RCC is empty and hence it is an inconsistent relation.

19

Thus, the axioms of the relator metamodel can be used to define semantic consistency
constraints that are syntactically expressible. In general, we are interested in relation types that
are sound – i.e. where every relation of the type is consistent.

2.3.3. Derived Elements

An RCC relation as defined above can only partially express the way a communication diagram
can be related to a class diagram. A richer relation could also show how the links of the
communication diagram are instances of associations in the class diagram; however, here we
run into a problem – what if the associations these links represent are not explicit, but rather
derived? For example in Figure 2.4, the link between :Student and :Catalog is an instance of an
implicit association “stuCat” between classes Student and Catalog that is derived from the
“uses” association between LibraryUser and Library and the “part of” relation between Library
and Catalog. In particular, stuCat is derived as follows:

o Derive stuUses(Student, Library) by specializing uses(LibraryUser, Library) to restrict
its (left) domain to Student.

o Derive stuCat(Student, Catalog) by composing stuUses(Student, Library) with
partOf(Library, Catalog)

If we had the appropriate algebraic operators available, we might express this as:

stuCat = composeAssoc(leftSubAssoc(Student, uses), partOf)

Note that a derivation such as this does not add any information to the model – stuCat was there
all along, only implicitly. Thus, derivation is a way to extend a model, without adding
information to it, in order to get to the appropriate form for establishing the relationship
between elements.

We can support the expression of derived associations by defining a richer type of relation
RCC1 as follows:

RCC1 = RCC +
 sorts association1
 subsorts association � association1

 func startClass1: association1 � class

 endClass1: association1 � class

 leftSubAssoc: class × association1 o� association1

 composeAssoc: association1 × association1 o� association1

 instanceOf: object � class

 instanceOf: link � association

 instanceOf: message � operation

20

 axioms
 ‘association1 is derived from association’
 association1 derivedFrom: association

 ‘startClass1 is an extension of startClass’
 ∀x:association. startClass(x) = startClass1(x)
 ‘endClass1 is an extension of endClass’
 ∀x:association. endClass(x) = endClass1(x)

 ‘instanceOf’
 ‘instanceOf maps startObject to startClass’
 ∀x:link.instanceOf(startObject(x)) = startClass(instanceOf(x))
 ‘instanceOf maps endObject to endClass’

 ∀x:link. instanceOf(endObject(x)) = endClass(instanceOf(x))
 ‘instanceOf maps messLink to opClass’

 ∀x:message.opClass(instanceOf(x)) = instanceOf(messLink(x))

‘leftSubAssoc’
‘in leftSubAssoc(c, x) = y, c must be a subclass of the start class of x’

∀c:class,x,y:association1.leftSubAssoc(c, x) = y
 � subClassOf(c, startClass1(x))

 ‘in leftSubAssoc(c, x) = y, c must be the start class of y’
 ∀c:class,x:association1.startClass1(leftSubAssoc(c, x)) = c
 ‘in leftSubAssoc(c, x) = y, end class of x must be the end class of y’

∀c:class,x:association1.endClass1(leftSubAssoc(c, x)) =
endClass1(x)

 ‘composeAssoc’
 ‘in composeAssoc(x, y), the end class of x is the start class of y’

∀x, y, z:association1.composeAssoc(x, y) =z � endClass1(x) =
startClass1(y)

 ‘in composeAssoc(x, y) = z, the start class of z is start class of x’
 ∀x, y:association1. startClass1(composeAssoc(x, y)) = startClass1(x)
 ‘in composeAssoc(x, y) = z, the end class of z is end class of y’
 ∀x, y:association1. endClass1(composeAssoc(x, y)) = endClass1(x)

‘the leftSubAssoc of a composeAssoc(x, y) is the same as first doing
leftSubAssoc on x and then composing’

∀ x, y:association1. leftSubAssoc(c, composeAssoc(x, y)) =
composeAssoc(leftSubAssoc(c, x), y)

21

Here we introduce a new sort “association1” and use the “subsorts” directive to express the fact
that it extends the sort “association” from CD (within the included RCC). This sort will be used to
“glue” derived associations onto the existing CD using the derivation functions leftSubAssoc(..)
and composeAssoc(..). Another notational extension is the “derivedFrom” construct (described
below) used to enforce the constraint that every element of association1 must have been derived
from an association in the CD – i.e. we do not want to allow instances of RCC1 in which there is
an element of type association1 that was not derived because this would be adding “new
information.”

2.3.4. Formalizing “derivedFrom”

Derivation is an important technique for defining model relations. The intuition is that before
we can relate the elements of different models, we may need to first change the form of the
elements or move them to another level of abstraction without adding more information (but
possibly taking some away).

The “DerivedFrom” construct used in the metamodel above is syntactic sugar used to express
the constraint that in all models, the elements of one sort must all be derived from the elements
of other sorts. Specifically, if metamodel M with sorts S, S1, S2, …, Sn contains the sentence ‘S
derivedFrom: S1, S2, .., Sn,’ this means that for all models M ∈ [[M]], and elements s ∈ [[S]]M, s
is expressed as a term consisting only of the elements of [[S1]]M, [[S2]]M, …,[[Sn]]M and the
functions in M. Thus, every element of [[S]]M is computed from the elements of [[S1]]M,
[[S2]]M, …,[[Sn]]M and hence is not net “new.”

The use of derivedFrom can be converted into FO+ as follows:

1. Add a “universal” sort U and make every other sort a subsort of this.
2. Add the binary relation der(U, U).
3. For each function or partial function h:T1 × … × Tm� T, add the axiom:

∀x:T. (�t1:T1, … tm:Tm. h(t1,…,tm) = x) � (der(x, t1) � … � der(x, tm))
4. Replace each occurrence of ‘S derivedFrom: S1, S2, .., Sn’ with the axiom:

∀x:S, z:U. TC(der(x, z)) � (�y:S1.y = z) 	 … 	 (�y:Sn.y = z)

This says that every element of type S at the root of a derivation tree must have its leaves in
elements of types S1, …, Sn.

2.3.5. Structure of a Relation Metamodel

We have characterized a relation type in terms of a metamodel – and in particular, the
metamodel of the relator; however, it is not clear that all FO+ metamodels should be allowed as
relator metamodels. In some sense, we expect that a model relation should only contain enough
information to express the way its component models are related and no more. Adding more
information than this would seem to suggest that the information should be expressed in another

22

model rather than in a model relation. For example, there is nothing restricting us from adding
another sort called “package” with associated functions to RCC as:

RCC2 = RCC +
 sorts package
 func packageOf: object � package

 packageOf: link � package

 packageOf: class � package

 packageOf: association � package

However, this seems to be introducing information that is not directly relevant to the way a CD
and CommD are related. It would seem more appropriate to create a separate type of model (e.g.
package diagram) that expresses the packages and then have model relations between CD or
CommD and this model.

Some “heuristic” criteria for possible reasonable extensions to RCC might include the
following:

o Functions that derive new elements from existing elements in the CD or CommD.
o Sorts that are completely derived from elements in the CD or CommD.
o Predicates that have at least one argument being a CD sort and at least one argument

being a CommD sort.

Some extensions that would seem unreasonable include:

o Sorts whose elements cannot be derived from either CD or CommD (e.g. the case of
package above).

o Predicates that have all their arguments in either CD or CommD.

We leave the deeper analysis and formalization of these criteria to future work.

2.3.6. Micro and Macro Semantics

Since model relations are classified by relation types and relation types have particular
semantics, knowing the relation type carries useful information even if the details of the relation
are not visible. We will refer to this information as the macro semantics of a relation while the
micro semantics concerns the meaning of the internal details of the relation. The value of this
macro semantics is the key theme of this paper. Consider the following examples of model
relation:

• R:overlapStatechart(A:Statechart, B:Statechart)

o macro semantics: A shares some states/transitions with B
o micro semantics: R contains the mapping of common elements

• R:detailOf (A:Statechart,B:Statechart)

23

o macro semantics: A shows the substates/transitions of a state in B
o micro semantics: R identifies the state of B

• R:substateRefinement (A:Statechart, B:Statechart)
o macro semantics: A has more fine-grained states than B but the behaviour expressed

by B is also expressed by A
o micro semantics: R maps the states of A to their superstate in B

• R:refactorX (A:Statechart, B:Statechart)
o macro semantics: B is a type X structural modification of A but expresses the same

behaviour
o micro semantics: R maps the before/after modifications

In each of these cases, the macro semantics conveys some useful information about syntactic
and semantic relationships5 between statecharts A and B. When applied to the more general
case of a multimodel with many different types of relationships, the resulting macromodel turns
out to be a useful level of abstraction for understanding and developing the multimodel.

2.3.7. Classes of Model Relation Types

The relation types that commonly arise in software engineering can themselves be organized
into different classes. In fact, the a key part of the macro semantics that come from a relation
type is due to the class it is in. We list some of these classes of relation types in Table S1. Here,
each class is parameterized by given model types and it is characterized by the way its relation
types relate the models of the given types .

Relation Type Class Macro semantics
Detail(M, M) The second M-model is a refinement of an element

in the first M-Model

Homomorphism(M, M) There is a structure preserving mapping from the
first M-model to the second M-model.

Submodel(M, M) The first M-model is part of the second M-model
Aspect(M, M1) The M-model consists of a set of fragments of the

M1-model.
Transformation(M) � M1 Each M-model is transformed into an M1–model

Projection(M) � M1 The M1-model is constructed by discarding some
sorts, functions and predicates of the M-model.

Translation(M) � M1 The M1-model is semantically equivalent to the M-
model but syntactically different.

Abstracting
Transformation(M) � M1

The transformation is many-one but the meaning of
the M1-model follows from the meaning of the M-
model.

5 Note that the macro semantics is the meaning conveyed by the relation type and this can include information
about both the syntax and the semantics of an instance of that type.

24

Aggregating abstraction(M, M) Each element of the first M-model is refined into a
set of elements in the second M-model.

Refactoring(M, M) The second M-model shares semantic properties
with the first M-model

DerivedExtension(M, M) The first M-model is a submodel of the second M-
Model but all additional elements of the second M-
model are derived from elements in the first M-
model.

2.3.8. Constructed Relation Types

The fact that these classes of relation types are parameterized by model type suggests that a
generic approach could be taken, in some cases, to producing the relation type of a given class
for a given model type – constructed relation types. We discuss three of these briefly here as
they are used in the examples of Section 3. Given any model type T, we can define
submodelOf[T] where for any T-models M1:T and M2:T, submodelOf[T](M1, M2) holds iff
each element of M1 is also an element of M2 and each relation between elements that holds in
M1 also holds in M2. For example, if we had sequence diagrams M1:SequenceDiagram and
M2:SequenceDiagram with metamodel as in Figure 2, then when
submodelOf[SequenceDiagram](M1, M2) holds this means that every Object of M1 is an Object
of M2, every Message of M1 is a Message of M2 and if nextMessage(m1, m2) holds for
messages in M1 then this is also true in M2. Appendix B elaborates the submodelOf relation type
further.

Each submodel relation submodelOf [T] has useful property that it is a partial order over T-
models. This also implies that given any multimodel K consisting of T-models, we can define
merge[T](K) as the least upper bound of K – i.e. the least model of type T such that has every
model in K is a submodel. Note that this may not always exist. For example in Figure 5, there
are two ClassDiagrams with the same classes but they cannot be merged into a single class
diagram because this would violate the well-formedness condition for ClassDiagrams that a
class cannot be a direct or indirect subclass of itself. Thus, merge[T] is a partial function from
T-multimodels to T-models.

25

Finally, we define eq[T] as follows: eq[T](M1, M2) holds iff there is an isomorphism between
M1 and M2 where we interpret corresponding elements as being semantically equal – i.e. they
denote the same semantic entities. This is a special case of the homomorphism relationship
defined in Appendix B.

We leave the further investigation of constructed relation types to future work.

2.4. Multimodels and Macromodels

Now that we have an approach for defining relationship types we can characterize a multimodel
type in terms of the model types and relationship types that it contains and the type of
macromodel that can be used to define its structure. A macromodel is a hierarchical model
whose elements are used to denote models and model relationships and can express integrity
constraints on these. A multimodel is a macromodel and collection of models/relationships that
conform to their types and in addition, conform to the constraints in their macromodel.

Figure 2.7 depicts a simple example of this. The upper part is a multimodel metamodel

SequenceDiagram

objectsOf

ObjectDiagram ObjectDiagram

SequenceDiagram

pod

psd
objectsOf

*M2:ObjectDiagram

M1:SequenceDiagram

*f:objectsOf
M3:ObjectDiagram

M4:SequenceDiagram

*f1:refines

M1:SequenceDiagram

M3:ObjectDiagram

M4:SequenceDiagram

conforms to

denotes

conforms to

Figure 2.7: A multimodel metamodel and an instance of it

 +axioms

SimpleMulti

M:SimpleMulti

refines

refines pod1

pod2

A

B B

A

M2:ClassDiagram M1:ClassDiagram

Figure 2.6: Un-mergeable class
diagrams

26

SimpleMulti containing a metamodel for instance macromodels (right side) and a set of
metamodels for the model and relationship types (left side). The axioms of the macromodel
limit the possible well-formed collections of models and relationships that can occur in a
multimodel of this type. Note that the notation for macromodels expresses binary model
relationship types as directed arrows between model types although they should be understood
as consisting of a relator model and two metamodel morphisms. The simple illustration in
Figure 2.7 does not depict hierarchy but Figure 1.1 shows a more complex one that we used in
the example in Section 3.

The lower part of Figure 2.7 depicts a particular multimodel M:SimpleMulti that conforms to
the metamodel. This consists of a macromodel and the set of models and relationships that
conform to it. The asterisk preceding f:objectsOf, M2:ObjectDiagram and f1:refines indicate
that they are “unrealized” models and relationships. This implies that there is no corresponding
instance for these in the multimodel and they are just placeholders. A model or relationship may
be unrealized for two main reasons. Firstly, in the context of a development project they may
represent models and relationships that are required to be created. Despite the fact that they do
not (yet) exist, they can still participate in defining integrity constraints. Secondly, the model or
relationship may be derived from others and hence it is “transient.” The macromodel in Figure
2.7 expresses the constraint that “M4 is a sequence diagram and the object diagram
corresponding to sequence diagram M1 is a refinement of object diagram M3.” Translated into
FO+ sentences we have:

SequenceDiagram(M4),
SequenceDiagram(M1),
ObjectDiagram(M3),
�f, f1,m2. objectsOf(f) � psd(f) = M1 � pod(f) = m2

� refines(f1) � pod1(f1) = m2 � pod2(f1) = M3

� ObjectDiagram(m2)

Here we are using projection functions with the same name as their corresponding metamodel
morphisms to associate relator models with the models they relate. Each connected set of
unrealized elements in the macromodel is translated to an existential sentence with the
unrealized models and relationships as existentially quantified variables. We will use this
translation approach for defining the semantics of macromodels in general, below.

2.4.1. Macromodel Syntax

Figure 2.8 shows the abstract syntax of the macromodel language. The following well-
formedness constraints hold over macromodels:

(R1) There is a unique root Macromodel

 ∀m, m1:Macromodel.
(��m2:Macromodel.contains(m2, m)) � (��m3:Macromodel.contains(m3, m1)) � m= m1

27

(R2) If any of its arguments are unrealized then a Relation is unrealized
 ∀r:Relation�ri:Role.

ri.Relation = r � ri.Model.realized = false � r.realized = false.

The notation of macromodels is summarized as follows:
o A Model element is represented as a box containing the model name. When the name is

preceded with an asterisk then it is has the realized attribute set to false.
o A Relation element is represented with an arrow, if binary, or as a diamond with n legs, if n-

ary. It is annotated with its name and with optional Role labels. When the name is preceded
with an asterisk then it is has the realized attribute set to false

o A sub-Macromodel element is represented as a box containing its name. It optionally can
show the sub-macromodel as the contents of the box.

o A Macrorelation element is represented with an arrow, if binary, or as a diamond with n
legs, if n-ary. It is annotated with its name and with optional Macrorole labels. It optionally
can show its contents as a dashed oval linked to the main the arrow or diamond symbol.

Note that there are no means to directly refer to the internal structure of a Model or Relation
element. Macromodels are intended to stay at the level of abstraction of models and model
relations and so the internal structure of any simple model is considered opaque.

2.4.2. Macromodel Semantics

In this section we define the formal semantics of macromodels. Our aim is to formally define
the set of multimodels that are instances of a macromodel. A macromodel is interpreted by
mapping it into a semantic domain.

Role

1..*

{ordered}

*

Model
realized = {true, false}

*

Relation

1..*

1..*

MacroRelation

Macromodel

*

*

1..*
{ordered}

**

MacroRole

Figure 2.8 – Metamodel for macromodels

28

Assume that we have a macromodel K which has a metamodel T. To define the formal
semantics of macromodels we will proceed by first translating T to an FO+ signature ΣT
reflecting the different model and relationship types in it. We then construct a particular
“universal” interpretation JT of this that consists of all possible models and relationships using
these types. Then, K is translated to a FO+ theory �ΣT
 ΣK, ΦK� where ΣK consists of a set of
constants corresponding to the realized models and relationships in K and ΦK is a set of axioms
as illustrated in the example above. We characterize a multimodel of K as any interpretation JM
that extends JT to ΣT
 ΣK. That is, each assignment of the constants in ΣK to elements of the
appropriate types in JT is a multimodel.

The translation algorithm for T is as follows:
 ΣT is initially empty, then,
o For each metamodel X = �ΣX, ΦX� denoted by a Model or Relation element, add a sort

symbol SX and a unary predicate symbol X: SX to ΣT
o For each metamodel morphism p: �ΣX, ΦX���ΣY, ΦY� denoted by a Role element, add a

function symbol p:SY�SX to ΣT

The interpretation JT is constructed as follows:
o To each sort symbol SX assign the set Mod(ΣX)
o To each predicate symbol X: SX assign the unary relation defined by the set Mod(ΣX, ΦX)
o To each function symbol p:SY�SX assign the function �p: Mod(ΣY) �Mod(ΣX) induced by

the signature morphism pΣ:ΣX � ΣY

The translation algorithm for K is as follows:
 ΣK and ΦK are initially empty, then,
o For each realized Model or Relation element M of type X add the constant M:SX to ΣK and

the axiom ‘X(M)’ to ΦK.
o For each Role element of type p from realized relation R to a realized model M, add the

axiom ‘p(R) = M’ to ΦK.
o For each connected set S={M1, …, Mn} of unrealized Model and Relation elements, add the

axiom ‘�m1, …, mn. φS’ to ΦK where φS is a conjuction constructed as follows:
 φS is initially empty, then,

o For each element Mi of type X add the conjunct ‘X(mi)’ to φS.
o For each Role element of type p from relation Mi to realized model M, add the

conjunct ‘p(mi) = M’ to φS.
o For each Role element of type p from relation Mi to model Mj, add the conjunct

‘p(mi) = mj’ to φS.
o For each Role element of type p from realized relation R to model Mi, add the

conjunct ‘p(R) = mi’ to φS.

29

Note that in the translation algorithm for K, the connected sets of unrealized Model and Relation
elements are obtained by treating the macromodel as a graph and forming the maximally
connected subgraphs consisting of unrealized elements.

Based on these algorithms, the full translation of the example in Figure 2.6 is as follows:

sorts SobjectsOf, Srefines, SObjectDiagram, SSequenceDiagram
pred objectsOf: SobjectsOf

 refines: Srefines

 ObjectDiagram: SObjectDiagram

 SequenceDiagram: SSequenceDiagram
func pod: SobjectsOf � SObjectDiagram

 psd: SobjectsOf � SSequenceDiagram

 pod1: Srefines � SObjectDiagram

 pod2: Srefines � SObjectDiagram

 M1, M4: SSequenceDiagram

 M3: SObjectDiagram

axioms
 SequenceDiagram(M4),

SequenceDiagram(M1),
ObjectDiagram(M3),
�f: SobjectsOf, f1: Srefines,m2: SObjectDiagram.

objectsOf(f) � psd(f) = M1 � pod(f) = m2

� refines(f1) � pod1(f1) = m2 � pod2(f1) = M3

� ObjectDiagram(m2)

3. Example Scenarios Revisited

In this section, we reconsider the example scenarios described in the “Motivating Problems”
section of the introduction and apply the formalism discussed above to addressing these.

3.1. Scenario 1: Exposing Multimodel Structure

The discussion in this scenario in the introduction suggested that a macromodel of a multimodel
is a potentially useful view in software development. In order to do a preliminary assessment of
the validity of this hypothesis, we have taken an existing set of UML diagrams that comprise a
UML design model, a hypothetical multimodel metamodel for UML and constructed the
corresponding multimodel and macromodel based on this schema. The informally observed

30

result is that the macromodel provides significant support in helping to understand the content
of the UML model and the way it is decomposed into diagrams.

The UML diagrams are taken from [10] which is a document of the European
Telecommunications Standards Institute (ETSI) and describes a methodology for standards
development based on UML. As an example to illustrate the methodology, the document details
the development of a standard for a Private User Mobility dynamic Registration service
(PUMR) – a simple standard for integrating telecommunications networks in order to support
mobile communications. More specifically, it describes the interactions between Private
Integrated Network eXchanges (PINX) within a Private Integrated Services Network (PISN).
The following is a description from the document:

Private User Mobility Registration (PUMR) is a supplementary service that enables a Private User
Mobility (PUM) user to register at, or de-register from, any wired or wireless terminal within the PISN.
The ability to register enables the PUM user to maintain the provided services (including the ability to
make and receive calls) at different access points. [pg. 43]

The example consists of three models: a context model (4 diagrams), a requirements model (6
diagrams) and a specification model (32 diagrams).

Figure 3.1 shows the multimodel metamodel for “UMLMulti” that was used. The relation types
are described informally as follows:

Relation Type Macro Semantics
detailOf(ClassDiagram,
ClassDiagram)

detailOf(A:ClassDiagram, B:ClassDiagram) holds iff the
following conditions are true:

o A and B share exactly one class. Call this class X.
o Every association in B is either an aggregate of X, a

composite of X a generalization or a realization.

overlap(ClassDiagram,
ClassDiagram)

overlap(A:ClassDiagram, B:ClassDiagram) holds iff A and
B share at least one class.

detailOf(Statechart,
ClassDiagram)

detailOf(A: Statechart, B:ClassDiagram) holds iff A
specifies a state machine for some class in B.

detailOf(StateDiagram,
StateDiagram)

detailOf(A: Statechart, B: Statechart) holds iff A specifies
a substatechart for some state in B.

instanceOf(ObjectDiagram,
ClassDiagram)

instanceOf(A:ObjectDiagram, B:ClassDiagram) holds iff
every object and link in A is an instance of a class and
association, respectively, in B.

objectsOf(SequenceDiagram,
ObjectDiagram)

objectsOf(A:SequenceDiagram, B:ObjectDiagram) holds
iff the following conditions are true:

o Every object in A is found as an object in B
o If a message is passed from object X to object Y in

A then there is a link in B between X and Y

31

refines(UMLDiagrams,
UMLDiagrams)

refines(A, B) holds iff models in A have refinement
relations to models in B. These may be any of the
following:

o refines(ObjectDiagram, ObjectDiagram)
o eq(Model, Model)
o caseOf(SequenceDiagram, SequenceDiagram)

diagramsOf(UMLDiagrams,
UML)

diagramsOf(A, B) holds iff each model M in A has a
diagramOf(M, B) relation and each relation f in A as a
SubmodelOf(f, B) relation.

refines(ObjectDiagram,
ObjectDiagram)

refines(A, B) holds iff
o Every object in B is refined into one or more

objects in A and every object in A is in exactly one
such a refinement.

o Every link in B is refined into one or more links in
A and every link in A is in exactly one such a
refinement.

o The link refinements must be consistent with the
object refinements of their endpoints.

caseOf(SequenceDiagram,
SequenceDiagram)

caseOf(A, B) holds iff the following conditions are true:
o Every object in B is refined into one or more

objects in A and every object in A is in exactly one
such a refinement.

o Every message in B is specialized and then refined
into one or more messages in A and every message
in A is in exactly one such refinement.

o The message refinements must be consistent with
the object refinements of their endpoints.

Figure 3.1: Multimodel metamodel for UMLMulti

ObjectDiagram

SequenceDiagram

objectsOf

ClassDiagram

detailOf

instanceOf

StatemachineDiagram

detailOf

detailOf

refines

overlap

UMLDiagrams

UML

diagramsOf

refines

32

Appendix A shows an example relation for each relation type listed. Figures 3.2 and 3.3 show
two portions of the resulting macromodel.

3.1.1. Observations

Models vs. Diagrams

An interesting issue we encountered in the context of UML is the question of how to treat
diagrams vs. models. In the modeling community a model is typically distinguished as the
artifact of “core value” while the diagrams of the model are secondary as views of it. Despite
this it is clear that in actual development projects, the majority of human interaction with the
model is through diagrams and the choices made about how this information is distributed
across the various diagrams is itself an important part of the information carried by the model.
In order to address this, we decided to treat a diagram as a special type of model that identifies a
submodel of the model for which it is a diagram. This allows both the diagram structure within
a UML model and the relational structure across UML models to be expressed within a
macromodel.

The diagram in Figure 3.2 illustrates this. It shows part of the PUMR macromodel containing
two sub-macromodels representing the diagrams of the context model and a subset of the
diagrams of the specification model. Relationships are shown both among the diagrams within
each UML model and also between the diagrams across the models. Note that the relationships
between diagrams are marked as unrealized because they are derivable from the underlying
UML model and hence are not required to be maintained separately.

Complexity Management

It is clear that these macromodels provide significantly more structural information than the list
of diagrams alone could provide. In particular, from the perspective of our personal experience,
as we tried to understand the PUMR example, we found that we had a great difficulty in
“grasping” the model as whole. Although the model was decomposed into many diagrams (or
perhaps, because the model was decomposed into many diagrams) it was still difficult to
understand the big picture. In fact, we did not have a good understanding until we created the
macromodel and the underlying structure of the decomposition emerged.

33

Thus, it would seem, that although the decomposition of a model into multiple models (i.e. a
multimodel) provides a way to manage the complexity of a large model, it can create its own
secondary complexity problem when the number of models itself becomes large. Managing this
secondary complexity problem requires more than just a mechanism for grouping sets of
models, such as the UML “package” construct. This is because, an important aspect of using
multimodels to manage the primary complexity problem is way that multiple models
decompose information this decompositional structure is only “visible” if the relations between
the models are made explicit. Thus, macromodels play a key complexity management function
in multimodeling.

55 - De - Registration
:SequenceDiagram

58 - Registration Processing
:StatemachineDiagram

51 - Basic Domain Model
:ClassDiagram

 PUMR Detailed
 Domain Model

57 -

:ClassDiagram

61 - Identification of PUMR
signaling at QSIG
interfaces:ClassDiagram

52 - PUMR Object Model
:ObjectDiagram

*:instanceOf

53 - Registration using the
PUM Number

:SequenceDiagram

54 - Registration using
Alternative Identifier
:SequenceDiagram

 59 - Registration Request
:StatemachineDiagram

Specification Model Diagrams1: UMLDiagrams

Figure 3.2: PUMR Macromodel 1

40 - Context Model Packages
:PackageDiagram

41 - Simple PUMR Domain Model
:ClassDiagram

42 - Flow between User and PISN
:SequenceDiagram

43 - PUMR System Architecture
:ObjectDiagram

 *42a:ObjectDiagram

*:instanceOf

*:refines

*:instanceOf

 Context Model Diagrams: UMLDiagrams

:refines

 *:overlap

:caseOf :caseOf

*:objectsOf

:eq :eq

*:objectsOf

*54a: ObjectDiagram

*53a: ObjectDiagram

*55a: ObjectDiagram

*:merge[ObjectDiagram]

*:objectsOf

*:objectsOf

*(PINX:Class):detailOf

Request:State):detailOf
*(Processing PUM Registration

*(Home PINX:Class):detailOf

34

Relation Name Construction

Note that in the PUMR macromodels, for instances of the three “detailOf” relation types, we
have used the relation name to indicate the name of the element that is being detailed in order to
provide more information at the macromodel level. While this is only a convention and hence
not formally enforced, it is interesting to consider the possibility that the naming scheme for a
relation (or model) could be defined formally so that an informative name could be
automatically constructed (or partially constructed as a prefix). For example, in the case of the
detailOf relation types, information about the element that is being detailed can be extracted
automatically using a query in terms of the relation metamodel that can be executed on any
instance. Such an approach would be particularly valuable when multiple instances of relation
type could exist, as with “detailOf.” We do not explore this idea further here and leave it for
future work.

*FuncDecomp

*RoleDecomp

67 - PUMR registration message
types :ClassDiagram

68 - PUMR de - registration
message types :ClassDiagram

69 - PUMR delete registration
message types :ClassDiagram

70 PUMR interrogation
message types :ClassDiagram

71 - PISN enquiry message
types :ClassDiagram

Figure 3.3: PUMR Macromodel 2

66 - Contents of PUMR error
messages :ClassDiagram

65 - Contents of PUMR response
messages :ClassDiagram

64 - PUMR message types carried in
the CONNECT signal :ClassDiagram

62 - Identification of two QSIG signals
used for carrying PUMR message info

:ClassDiagram

63 - PUMR message contents carried in
the SETUP signal :ClassDiagram

*(PUM_SETUP:Class):detailOf

*(PUM Errors:Class):detailOf
*(PUM Responses:Class):detailOf

*(PUM_CONNECT:Class):detailOf

*:merge[ClassDiagram]

 *:merge[ClassDiagram]

 *CommClasses
:ClassDiagram

35

Expressing Complex Relationships

We found several interesting situations where we needed to express complex relationships using
unrealized models. In Figure 3.2, the relationship between sequence diagram 42 and class
diagram 41 is expressed using the unrealized object diagram *42a and this is also used to show
that object diagram 43 is a refinement of the objects in diagram 42. Another example is the one
between the three sequence diagrams 53, 54, 55 and the object diagram 52. The macromodel
shows that 52 is the smallest superset (i.e. the merge) of the object diagrams corresponding to
each of these sequence diagrams.

The lower part of the macromodel in Figure 3.3 shows a case where two collections of diagrams
are related to one another in a way that suggests an “alternate decomposition” of the same set of
classes. The set of class diagrams FuncDecomp = {63, 65, 66} and RoleDecomp ={67, 68,
69,70 ,71}each decomposes the same set of “communication message” classes in alternate
ways. FuncDecomp groups classes according to whether they are “setup,” “response” or
“error” messages while RoleDecomp groups classes according to whether they are
“registration”, “de-registration”, “delete registration”, “interrogation” or “enquiry” messages.
Note that both of these sub-macromodels are unrealized – i.e. they are introduced only for the
purposes of expressing the alternate decomposition. The collections are related by the fact that
they merge to the same class diagram containing the communication message classes.

3.2. Scenario 2: Structuring the Development Process

In scenario 1, a macromodel is used to express a known set of models and relations between
them. Another possibility is to use a macromodel as template in which some of the models and

Figure 3.5: PUMR Macromodel Template

:sub

27 - User Registration <<Sequence

55 - De-Registration
<<Sequence Diagram>>

56 - PUMR Interrogation
<<Sequence Diagram>>

51- Basic Domain Model <<Class Diagram>>

57- PUMR Detailed Domain Model
<<Class Diagram>>

(PINX:Class):detailOf

52 - PUMR Object Model
<<Object Diagram>>

:objectsOf

:objectsOf

:instanceOf

53 - Registration using the PUM Number
<<Sequence Diagram>>

:objectsOf :caseOf

 54 - Registration using Alternative Identifier
<<Sequence Diagram>>

:objectsOf

:caseOf

PINX
<<Class Diagram>>

:detailOf

36

relations are just placeholders and may be unknown at some stage in the development process.
Thus, we are using a macromodel to assert what models must be developed and how they must
relate to existing models and other unknown models. For example, the macromodel in Figure
3.3 expresses an earlier development stage to the one in Figure 3.1, in which diagrams 56 and
57 are as yet not created. The underbars on the names indicate that they are placeholders for
models and relations of particular types rather than actual models and relations. Note that when
a model is represented by a placeholder then so must all relations connected to it since these
cannot be known if any of the models they relate are not known. Thus, in this case, diagram 53
must be a sequence diagram which refines sequence diagram 27 and has its objects within
object diagram 52. Note that this macromodel template not only requires that diagram 53 be
created but also the details of the caseOf and objectOf relations and these must, of course, all
satisfy the axioms of their respective metamodels.

In the case of diagram 57, we desire that it be a detail of the particular class PINX within the
basic domain model (diagram 51). We cannot use the fact that the placeholder is named
“(PINX:Class)” to enforce this because the naming here is an informal convention. One
possibility is to partially construct diagram 57 by including the single class PINX within it;
however, this “hides” part of the constraint expressed by template within a particular model.
Another, more explicit, possibility, is to construct a separate model containing this information
and assert that it must be a submodel (i.e. via :sub) to the placeholder. Thus, in the figure, we
construct a new class diagram with a single class PINX within it and a detailOf relation that
maps this class to the corresponding class PINX within diagram 516. The :sub relation is
asserted to hold between this detailOf relation and the placeholder (PINX:Class):detailOf – i.e.
the former must be a sub-relation of the latter.

3.3. Scenario 3: Model Manipulation Operators

In this section we work through the details of the AutoRefine transformation operator proposed
in the introduction. We will first define the refinement relation type RefCommD(CommD,
CommD) and SimpleRefCommD(CommD, CommD) corresponding to the types of the
refinement relations Ref2 and Ref1 in Figures 2.3 and 2.2, respectively. Next we define the
transformation relation type AutoRefine(CommD, SimpleRefCommD, CommD).

In order to understand the refinement RefCommD first observe the basic case illustrated in
Figure 3.5. In M1, upon invocation of the call mess 17, a series of calls mess 2 � mess n-1 are
made on various objects before mess 1 returns and mess n is called. M2 shows an abstracted
version of M1 in which we have rolled up or “absorbed” mess 2 to mess n-1 into a new message
mess A that hides all the detail. Thus RefCommD is an application of one or more such
message absorptions. In addition, we can decompose an absorption into a series of pairwise
absorptions. This allows us to derive:

6 One might think that because they have the same name, this mapping should be “automatic,” but in general we
don’t want to make this assumption – i.e. we might have the same class in different models but having different
names. If we want to make the assumption that naming is a global identifier then this can be built into the axioms
of the relation type.
7 For this example we will assume that messages are synchronous calls on an object.

37

mess A = absorb(mess 1, absorb(mess 2, … (absorb(mess n-2, mess n-1))…))

We can now use this to define the metamodel for RefCommD as follows:
RefCommD = CommD.1 + CommD.2 +

sorts messageDer
func absorb:messageDer × messageDer o� messageDer

 messLinkDer: messageDer � link.2

 nextDer:messageDer � messageDer

 id:message.1 � messageDer

 id:link.1 � link.2

 id:object.1 � object.2
axioms

‘messageDer is derived from message.2’
 messageDer derivedFrom: message.2

‘messageDer is an extension of message.2’
 messageDer � message.2
 ∀x: message.2. messLinkDer(x) = messLink.2(x)
 ∀x: message.2. nextDer(x) = next.2(x)

‘absorb’
‘the receiver of the first message must be the sender of the second message

∀x, y, z:messageDer. z = absorb(x, y) � startObject(messLinkDer(y)) =
endObject(messLink(x))

‘the messages must be contiguous’
∀x, y, z:messageDer. z = absorb(x, y) � y = nextDer(x)

‘the result message has the same sender and receiver as the first message’
∀x, y:messageDer. startObject(messLinkDer(absorb(x, y))) =
startObject(messLinkDer(x))
∀x, y:messageDer. endObject(messLinkDer(absorb(x, y))) =
endObject(messLinkDer(x))

 ‘the successor of the result message is the successor of the second message’
∀x, y:messageDer.nextDer(absorb(x, y)) = nextDer(y)

 ‘the sender of the successor of the result must be the receiver of the result’
∀x, y:messageDer. startObject(messLinkDer(nextDer(absorb(x, y)))) =
endObject(messLinkDer(absorb(x, y))

 ‘id’

∀x:message.1. id(messLink.1(x)) = messLinkDer(id(x))
∀x:message.1. id(next.1(x)) = nextDer(id(x))

38

∀x:link.1. id(startObject(x)) = startObject(id(x))
∀x:link.1. id(endObject(x)) = endObject(id(x))

This metamodel is similar to the example of RCC1 described in section 2.3.3. There are two
component models of type CommD and an intermediate sort messageDer that is derived from
the messages of the refined communication diagram CommD.2 using the absorb(..) derivation
function. This allows new, more abstract, messages to of type messageDer to be added to
CommD.2 until there is a 1-1 correspondence with messages in CommD.1 and then this
mapping can be established using the id relation. Figure 3.6 shows the refinement for the
example in Figure 1.3 partially illustrated on top of the concrete syntax. Both communication
diagrams are seen here as part of the refinement Ref2:RefCommD. In addition, messages 1 to 7
in M4:CommD.2 are absorbed into a new message – for readability, only the final derived
message is shown (with dashed lines) but the others are present as well. The successor of this
message using nextDer(..) is the message “Get the book.” Finally, all the elements of
M3:CommD.1 are mapped to their corresponding elements via id(..) - for readability, only the
mappings of messages are shown but objects and links are mapped via id(..) as well.

SimpleRefCommD is just a version of RefCommD that is constrained so that the first
(unrefined) communication diagram contains a single message. This is defined as follows:

SimpleRefCommD = RefCommD +
 axioms
 ∀x,y: message.1. x = y

object1 object2

object3

mess 1

mess n

mess 2 � mess n-1

object1 object2

object3

mess A

mess n

Figure 3.5: Absorbing messages

M1:CommD

M2:CommD
:RefCommD

39

3.3.1. AutoRefine

With RefCommD and SimpleRefCommD defined we turn to defining AutoRefine(CommD,
SimpleRefCommD, CommD).

In order to compute AutoRefine(X:CommD, A:SimpleRefCommD, Z:CommD) we essentially
need to construct a B:RefCommD such that the following conditions hold:

1. X:CommD = B.CommD.1
2. Z:CommD = B.CommD.2
3. Each message in B.CommD.1 that matches A.CommD.1 refines to A.CommD.2 in

B.CommD.2
4. Each message in B.CommD.1 that does not match A.CommD.1 refines to itself in

B.CommD.2 – i.e. it is the identity refinement.

Figure 3.6: A derived refinement

M3:CommD.1 M4:CommD.2

:LibraryUser

:Catalog

:Database

:Stacks:Desk

4: Construct DB
6: Format

1: Initiate search query

2: Request query type
3: Request query string

7: Provide resul ts

8: Get the book

9: Sign out the book

5: Initiate DB query

:LibraryUser

:Desk

:Catalog

:Stacks

1: Search for book

2: Get the book

3: Sign out the book

absorb(Initiate search query,
absorb(…))

id

Ref2:RefCommD

id

id

nextDer

40

By now it should be clear that encoding this as an FO++ metamodel is just an exercise in logic
programming. However, it is interesting to consider whether it would be possible to define
AutoRefine by staying at the same level of abstraction as the four steps expressed above
without delving into the detailed specification required in an FO++ metamodel. Although,
achieving this is beyond the scope of this paper, we sketch how it could be accomplished. First
we define the multimodel metamodel shown in Figure 3.7. Metamodels CommD, RefCommD
and SimpleRefCommD are defined as above. IdRefCommD is the trivial “identity refinement”
version of SimpleRefCommD and is defined by adding constraints to SimpleRefCommD.
SubRef is the submodel relation for RefCommD. Given these, we could write a definition of
AutoRefine in a hypothetical logical language over the multimodel metamodel as follows:

AutoRefine(x:CommD, a:SimpleRefCommD, z:CommD) :=

Min(b:RefCommD, SubRef).
x = R1(b) �

z = R2(b) �

∀y:RefCommD.:SubRef(y, a) � :SimpleRef(y)

� y = RS(a) 	 :IdRef(a)

This says that z:CommD is the refined side of the smallest RefCommD refinement of x:CommD
such that every simple sub refinement of it is either a:SimpleRefCommD or the identity
refinement. The use of minimization is necessary here in order to select one from an infinite set
of candidates for b:RefCommD that satisfies the criterion. Minimization is relative to the
submodel relation SubRef. The details of a logical language for models such as this are left to
future work.

IdRefCommD

AutoRefine

CommD

SimpleRefCommD RefCommD

R1
R2 S1 S2

I1

I2

A1 A3
A2

RS SI

SubRef

H1
H2

Figure 3.7: Multimodel metamodel for
AutoRefine

41

4. Related Work

OMG has defined a standard called QVT (Query/Views/Transformations) [12] for defining
model transformations in terms of their MOF metamodels using a relational approach8. It is
intended as a key specification required for the Model Driven Architecture (MDA) initiative
[11]. The QVT declarative language called the “Relations Language,” allows a transformation
between different model types to be defined as a set of relation specifications that must hold
between the elements of the models of those types. A relation specification consists of a
collection of structural patterns that bind to subsets of elements in each model and a set of
constraint expressions that these bound elements must satisfy. These can form a hierarchical
structure by referencing other relations from within the constraint expressions. A transformation
can either be used either passively to check a set of models to determine whether the relations
hold, or actively to enforce the relations that do not hold by adding and/or deleting structure
to/from the target model. Model transformation is implemented by applying relations in
enforcement mode with an empty target. In addition, when a transformation is applied, to a set
of models, the result is a set of relation binding instances. This provides a trace of the relation
application.

There are some strong similarities of QVT to what we are proposing. A QVT transformation
definition plays the same role as what we call a relation metamodel. The relation specifications
within a transformation correspond to the functions, predicates and axioms defined within a
relation metamodel. The trace instance of a transformation application is what we call a model
relation (i.e. an instance of a relation type). However, there are some important differences from
our approach as well. While QVT is focussed on transformations, we consider this to be just
one class of relation type – i.e. a relation type in which one argument can be completely
determined from the other arguments. Other classes are required as well in order to express the
relations between models more generally since not all models stand in a transformation relation
to each other. A more important difference is that we are taking a uniform and algebraically
grounded approach to defining relation types in terms of model types by using metamodel
morphisms. This allows us to define higher order relation types such as the AutoRefine
transformation described in scenario 3. It is not clear how one would correspondingly extend
QVT to define transformations of transformations. Additionally, since our work is not
intrinsically contingent on the metamodeling language FO+, we could apply it using MOF/OCL
and hence get the benefits of our approach with MOF.

The emerging field of Model Management [2] has close ties to our work. This has developed
from the problems of dealing with multiple models in meta data management such as schema
integration. A key part of the approach here is to express the relationship between two models
by defining a “mapping” between them and then models and mappings can be treated as basic
units that can be manipulated at the “macro” level by using a set of generic model management
operators. For example, performing the operation map12 = Match(M1, M2) can find a mapping
between models M1 and M2 while another operation M3 = Diff(M1, map12) will construct a

8 It also supports procedurally defined transformations but this is not relevant to our purposes here.

42

new model consisting of the parts of M1 not referenced by map12. This basic idea has been
elaborated in different ways. For example, Diskin [5] defines the semantics of model
management operators in terms of specific category theoretic constructions. In contrast, the
group [3] leaves the operator implementations open but defines the algebraic properties that
must hold between them.

In general, we view model management operators as a particular subclass of a transformation
relation type; however, we acknowledge that generic operators may not always be sufficient.
Some types of transformations, such as AutoRefine, are specialized to particular types of
models/relations and hence cannot be expressed in a completely generic way. On the other
hand, some types of relations, such as the submodel merge operator can be expressed
generically. Although, we don’t elaborate the formalism for defining such generic operators in
this paper, there is a natural extension of our work to do so and we discuss this in section 5.

The work on algebraic specification has several connections to our work. Firstly, we consider a
metamodel to be an algebraic specification and each of its models, in the model theoretic sense,
is what we consider a model (instance of the metamodel) in the modeling sense. This is related
to, but different from, the MOMENT model management framework [4] where model types are
defined using algebraic specification as abstract data types that define the algebraic operations
required to construct models from their components. Secondly, the ideas of institution theory
[7] are used in showing how a metamodel morphism induces sentence translation and model
projection (i.e. reduct functions); however, the version of this that we need does not require
category theory and hence takes a simplified form. Finally, work has also been done on the
notion of a “structured specification”[16] consisting of specifications connected by links that
show their relations and this is reminiscent of our notion of a multimodel; however, our
purposes are quite different from this work. In algebraic specification, a structured specification
a decomposition of a larger specification into smaller ones and the focus is modularity and
reuse. In our case, the individual models in a multimodel are primary and we are interested in
understanding how they relate. Thus, we admit relations such as refinement and refactoring
which are not considered as structuring relations in a structured specification.

43

5. Future Work

In this section we recap the topics that have been identified as candidates for future work. In
Section 2.3.7 we listed a set of classes of relation types. Each of these classes can be
characterized in terms of syntactic and semantic properties that all relation types in the class
share. Because they are so pervasive in software engineering, it seems worthwhile to both
enumerate such a catalog and to formally define their characterizing properties. In addition,
there is a close link between these and the generic operators proposed in Model Management.
Both have a degree of independence from the particulars of any specific model type – or rather,
they can parameterized by the metamodel for a model type to produce a version of a relation
type “customized” for the model type. The examples of the submodel and homomorphism
relations in Appendix B illustrate this. A natural extension of our approach that would provide a
way of dealing with these generic situations is to consider defining metamodel relation types
whose instances are relations between metamodels - these would need to be defined at the
metametamodel level. For example, this would allow us to define an operator that takes an
arbitrary metamodel for some model type M and transform it into a metamodel for the
submodel relation for models of type M, a merge operator for the models of type M, etc. Thus,
generic model management operators may be able to be defined as metamodel relation types.

Another area that requires further investigation is the criteria for what should be allowable in a
relator metamodel. It was discussed in Section 2.3.5 that not all metamodels seem to be
appropriate for specifying a relation type. Although we listed some “heuristics” to address this,
we suspect that this can be given a more formal foundation.

In the example macromodel of Section 3.1.1. we made two important observations that suggests
the need for further investigation. First, we noted that in some cases there is a natural and
informative way to construct relation names from the relation details. Second, when alternate
decompositions exist in the multimodel then we need a way of moving to a hierarchical
multimodel (and macromodel) and to be able to define relations between entire multimodels. It
was suggested that defining the concept of a “multimodel morphism” and then defining
relations based on these may be a way to approach this.

Finally, in Section 3.1.3 a hypothetical logical language over a multimodel metamodel was
introduced in order to provide a higher level of abstraction for defining relation types. This
takes the idea of moving from the micro to the macro level and applies it to support the
definition of the relation types themselves.

44

6. Conclusions

In this paper we have suggested and explored three scenarios in which macro support for
multimodeling in software engineering would be useful. First, it was proposed that the use of
macromodels to reveal the structure of a multimodel would help with the model comprehension
problem and we actually found this to be the case with the PUMR example from the
telecommunications standards document. Second, the use of a macromodel template provides a
way to structure the development process by allowing a lead designer to specify the models that
must be created and also the types of relations that must hold between these and models that
already exist. Finally, the fact that relations can hold between other relations means that
operators can be defined as transformation relation types that manipulate relations. The
AutoRefine operator is an example of this.

In order to support these scenarios, a general theoretical framework was defined for specifying
model types and relation types in terms of metamodels and metamodel morphisms. These were
then used to define the notions of a multimodel metamodel, multimodel and macromodel.
Although these constructs provide a basic foundation for a formal theory of modeling, we plan
to extend them further in a number of ways as suggested in Section 5. The ultimate goal of this
work is to define a formal framework for modeling that can serve as a basis for tools that
facilitate the multimodeling in software engineering.

45

7. References

[1] Astesiano, E., Kreowski, H. -J., and Krieg-Bruckner, B. Algebraic Foundations of Systems
Specification. 1st. Springer-Verlag New York Inc., 1999.

[2] Bernstein, P. A. “Applying Model Management to Classical Meta Data Problems,” In Proc.
CIDR, 2003

[3] Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., and Sabetzadeh, M. 2006. “A
manifesto for model merging.” In Proceedings of the 2006 international Workshop on Global
integrated Model Management (Shanghai, China, May 22 - 22, 2006). GaMMa '06. ACM Press,
New York, NY, 5-12.

[4] Boronat, A., Carsí, J. A., Ramos, I. “An Algebraic Baseline for Automatic Transformations
in MDA,” Electr. Notes Theor. Comput. Sci. 127(3): 31-47 (2005)

[5] Diskin, Z. “Mathematics of Generic Specifications for Model Management I,” In
Encyclopedia of Database Technologies and Applications 2005: 351-358

[6] Eclipse Modeling Framework: http://www.eclipse.org/modeling/emf/docs/

[7] Goguen, J.A. and Burstall, R.M. “Institutions: Abstract Model Theory for Specification and
Programming.” J. ACM 39(1): 95-146, 1992.

[8] Gurr, C. “On the isomorphism, or lack of it, of representations.” In Visual Language Theory,
K. Marriott and B. Meyer, Eds.: Springer Verlag, 1998, pp. 293-306.

[9] Meta-Object Facility (MOF™) – Core specification V2.0:
http://www.omg.org/technology/documents/formal/MOF_Core.htm

[10] Methods for Testing and Specification (MTS); Methodological approach to the use of
object-orientation in the standards making process. ETSI EG 201 872 V1.2.1 (2001-08):
http://portal.etsi.org/mbs/Referenced%20Documents/eg_201_872.pdf

[11] Model Driven Architecture (MDA) : http://www.omg.org/mda/

[12] MOF™ Query / Views / Transformations (QVT) – Final Spec: http://www.omg.org/cgi-
bin/doc?ptc/2005-11-01

[13] Rational Unified Process: http://www-128.ibm.com/developerworks/rational/
library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf

46

[14] Sabetzadeh, M. and Easterbrook, S. “An Algebraic Framework for Merging Incomplete
and Inconsistent Views.” 13th IEEE International Requirements Engineering Conference, Paris,
France, 2005.

[15] Seidewitz, E. "What Models Mean," IEEE Software, vol. 20, no. 5, pp. 26-32, Sept/Oct,
2003.

[16] Tarlecki, A. “Abstract specification theory: an overview,” In M. Broy and M. Pizka,
editors, Models, Algebras, and Logics of Engineering Software, volume 191 of NATO Science
Series | Computer and System Sciences, pages 43-79. IOS Press, 2003.

[17] UML 2.0 Metamodel: http://www.omg.org/cgi-bin/apps/doc?ptc/04-10-05.zip

47

8. Appendix A – Examples of PUMR Diagrams

8.1. detailOf(ClassDiagram, ClassDiagram)

48

8.2. overlap(ClassDiagram, ClassDiagram)

49

8.3. detailOf(StateDiagram, ClassDiagram)

Home PINX:Class
(context)

50

8.4. detailOf(StateDiagram, StateDiagram)

Registration Request:State
(context)

51

8.5. instanceOf(ObjectDiagram, ClassDiagram)

52

8.6. objectsOf(SequenceDiagram, ObjectDiagram)

53

8.7. caseOf(SequenceDiagram, SequenceDiagram)

54

9. Appendix B – Submodel and Homomorphism

One of the most basic types of relations between models is that of the submodel relation.
Intuitively, given a metamodel M, A:M is a submodel of B:M iff the elements of A are a subset
of the elements of B and any function or relation that holds between elements in A also holds in
B. The metamodel for submodel over CD (as defined above) can be expressed as:

sub(CD,CD) = CD.1 + CD.2 +
 subsorts class.1 � class.2

 association.1 � association.2

 attribute.1 � attribute.2

 operation.1 � operation.2
 axioms
 ‘CD.1 is a subset of CD.2’
 ∀x:association.1. startClass.1(x) = startClass.2(x)

∀x:association.1. endClass.1(x) = endClass.2(x)
∀x:attribute.1. attrClass.1(x) = attrClass.2(x)
∀x:operation.1. opClass.1(x) = opClass.2(x)

πsub1:CD � sub(CD, CD), πsub2:CD � sub(CD, CD) are metamodel monomorphisms into CD.1
and CD.2, respectively.

With the submodel relation, the two class diagrams actually share the same symbols in their
abstract syntax. That is, the same class, association, attribute and operation symbols appear in
submodel as in the whole model. Thus, the submodel could be considered to simply be a
delineation of a portion of the whole model.

A more typical type of “submodel” relationship in software engineering is where the models are
syntactically distinct, but semantically overlap. This is based on the standard algebraic notion of
homomorphism. Homomorphism is an important type of syntactic relationship between models
that can be easily defined over any type of model given our metamodeling language. Given a
metamodel M, and two models A:M, B:M, a homomorphism f:A:M�B:M is a function from
the elements of A to the elements of B that preserves the element sorts and the way they are
related via the functions and relations of M.

For example, the metamodel for homomorphisms over CD can be expressed as:

hmorph(CD, CD) = CD.1 + CD.2 +
 func map:class.1 � class.2

 map:association.1 � association.2

55

 map:attribute.1 � attribute.2

 map:operation.1� operation.2
 axioms
 ‘mapping must preserve structure of CD.1’

∀x:association.1, y:association.2. map(x) = y �
 map (startClass.1(x)) = startClass.2(x)
∀x:association.1, y:association.2. map(x) = y �
 map (endClass.1(x)) = endClass.2(x)
∀x:attribute.1, y: attribute.2. map(x) = y �
 map (attrClass.1(x)) = attrClass.2(x)
∀x:operation.1, y: operation.2. map(x) = y �
 map (opClass.1(x)) = opClass.2(x)

πhmorph1:CD � hmorph(CD, CD), πhmorph2:CD � hmorph(CD, CD) are metamodel
monomorphisms into CD.1 and CD.2, respectively.

In order to make this a proper model relation, an interpretation for instances of hmorph(CD,
CD) is required. Let us assume that the portions due to CD.1 and CD.2 are interpreted as CD
and the “map” functions are as semantic identity – that is, map(s1, s2) � s1 denotes the same
thing as s2. Under this interpretation, :hmorph(A:CD,B:CD) preserves syntactic structure since
the image of A under the mapping is a submodel of B and A has the same semantic content as
this submodel. This means that homomorphism with the semantic identity interpretation
captures the notion of the submodel relationship between syntactically distinct models.

The submodel and homomorphism relation types have the characteristic that they can be
defined in a generic way for any model type given its metamodel.

