Deep Belief Networks

Ruslan Salakhutdinov and Geoffrey Hinton
University of Toronto, Machine Learning Group
The Snowbird Workshop
March 22, 2007
Talk outline

- Deep Belief Nets as stacks of Restricted Boltzmann Machines.
 - Nonlinear Dimensionality Reduction.
 - Discriminative Fine-tuning for Regression and Classification.
- Deep Belief Nets as Generative Models.
 - A Generative Model of Simple Shapes.
- Another Application of Deep Belief Nets (if time permits).
We can model an ensemble of binary images using Restricted Boltzmann Machines (RBM).

RBM is a two-layer network in which visible, binary stochastic pixels \(v \) are connected to hidden binary stochastic feature detectors \(h \).

A joint configuration \((v, h) \) has an energy:

\[
E(v, h) = - \sum_{i \in \text{pixels}} b_i v_i - \sum_{j \in \text{features}} b_j h_j - \sum_{i,j} v_i h_j W_{ij}
\]

The probability that the model assigns to \(v \) is

\[
p(v) = \sum_{h \in \mathcal{H}} p(v, h) = \sum_{h \in \mathcal{H}} \frac{\exp(-E(v, h))}{\sum_{u,g} \exp(-E(u, g))}
\]
• Conditional distributions over hidden and visible units are given by logistic function:

\[
p(h_j = 1|v) = \frac{1}{1 + \exp(-b_j - \sum_i v_i W_{ij})}
\]
\[
p(v_i = 1|h) = \frac{1}{1 + \exp(-b_i - \sum_j h_j W_{ji})}
\]

• Maximum Likelihood learning:

\[
\Delta W_{ij} = \epsilon (<v_i h_j>_{data} - <v_i h_j>_{\infty})
\]

• Contrastive Divergence (1-step) learning:

\[
\Delta W_{ij} = \epsilon (<v_i h_j>_{data} - <v_i h_j>_{1})
\]
What a single RBM learns

- Random sample of the RBM’s receptive fields (W) for MNIST (left) and Olivetti (right).
- Input data

- Learned W
Learning Stacks of RBM’s

- A single layer of binary features generally cannot perfectly model the structure in the data.

- Perform greedy, layer-by-layer learning:
 - Learn and Freeze W_1.
 - Treat the existing feature detectors, driven by training data, $\sigma(W_1^T V)$ as if they were data.
 - Learn and Freeze W_2.
 - Greedily learn as many layers of features as desired.

- Under certain conditions adding an extra layer always improves a lower bound on the log probability of data (explained later).

- Each layer of features captures strong high-order correlations between the activities of units in the layer below.
Nonlinear Dimensionality Reduction

- Perform greedy, layer-by-layer pretraining.
- After pretraining multiple layers, the model is unrolled to create a deep autoencoder.

- Initially encoder and decoder networks use the same weights.
- The global fine-tuning uses backpropagation through the whole autoencoder to fine-tune the weights for optimal reconstruction.
- Backpropagation only has to do local search.
- We used a 625-2000-1000-500-30 autoencoder to extract 30-D real-valued codes for Olivetti face patches (7 hidden layers is usually hard to train).
- We used a 784-1000-500-250-30 autoencoder to extract 30-D real-valued codes for MNIST images.
Show Demo.
• We use a 2000-500-250-125-2 autoencoder to convert test documents into a two-dimensional code.

• The Reuters Corpus Volume II contains 804,414 newswire stories (randomly split into 402,207 training and 402,207 test).

• We used a simple “bag-of-words” representation. Each article is represented as a vector containing the counts of the most frequent 2000 words in the training dataset.
Results for 10-D codes

- We use the cosine of the angle between two codes as a measure of similarity.
- Precision-recall curves when a 10-D query document from the test set is used to retrieve other test set documents, averaged over 402,207 possible queries.
After layer-by-layer pretraining of a 784-500-500-2000-10 network, discriminative fine-tuning achieves an error rate of 1.2% on MNIST. SVM’s get 1.4% and randomly initialized backprop gets 1.6%.

Clearly pretraining helps generalization. It ensures that most of the information in the weights comes from modeling the input data.

The very limited information in the labels is used only to slightly adjust the final weights.
A Regression Task

• Predicting the orientation of a face patch.

-66.84 43.48 -57.14 14.22 -35.75 30.01

• Labeled Training Data:
 Input: 1000 labeled training patches Output: orientation
 from Olivetti faces of 30 training people.

• Labeled Test Data:
 Input: 1000 labeled test patches Predict: orientation
 from Olivetti faces of 10 new people.

• Gaussian Processes with Gaussian kernel (using Radford Neal’s software) achieves a RMSE of 16.35° (±0.45°).
Deep Belief Nets for Regression

-66.84 43.48 -57.14 14.22 -35.75 30.01 Unlabeled

- Additional Unlabeled Training Data: 12000 face patches from 30 training people.

- Pretrain a stack of RBM’s: 784-1000-500.

- Features were extracted with no idea of the final task.

Train a dumb linear regression model on the top-level features using the labeled 1000 training cases: RMSE 13.73°.

The same GP on the top-level features: RMSE 10.06° (±0.36°).
The Generative View of Stacks of RBM’s

- When $W_{\text{frozen}} = W$, the two models are the same.
- The weights W_{frozen} define $p(v_0|h_0, W_{\text{frozen}})$ but also indirectly define $p(h_0)$.
- Idea: Freeze bottom layer of weights at W_{frozen} and change higher layers to build a better model for $p(h_0)$, that is closer to the posterior hidden features produced by W_{frozen} applied to the data $p(h_0|v_0, W^T_{\text{frozen}})$.
- As we learn a new layer, the inference becomes incorrect, but the bound on the log probability of the data increases (see Hinton et.al.).
The Generative View of Stacks of RBM’s

Likelihood \times Prior $= \sigma(W_{\text{Frozen}}^T v0)$

• What about explaining away?
• A complementary prior exactly cancels out correlations created by explaining away! So the posterior factors.
Two Alternatives to Our Method

- Alternative 1:
 - Without complementary prior, learning one layer at a time is hard because of explaining away.

- Alternative 2:
 - If we start with different weights in each layer and try to learn them all at once, we have major problems.
 - Just to calculate the prior for h_0 requires integration over all higher-level hidden configurations! Good luck with that.
- Learn to map documents into semantic 20-D binary code and use these codes as memory addresses.

- We have the ultimate retrieval tool: Given a query document, compute its 20-bit address and retrieve all of the documents stored at the similar addresses with no search at all.
Semantic Hashing

- We used a simple C implementation on Reuters dataset (402,212 training and 402,212 test documents).
- For a given query, it takes about 0.5 milliseconds to create a short-list of about 3,000 semantically similar documents.
- It then takes 10 milliseconds to retrieve the top few matches from that short-list using TF-IDF, and it is more accurate than full TF-IDF.
- Locality-Sensitive Hashing takes about 500 milliseconds, and is less accurate.
- Our method is 50 times faster than the fastest existing method and is more accurate.
The End