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Talk outline

•Markov Random Fields (MRF’s) and Restricted Boltzmann Machines
(RBM’s)

•Deep Belief Nets as stacks of Restricted Boltzmann Machines.
–Nonlinear Dimensionality Reduction.
–Discriminative Fine-tuning for Regression and Classification.
–Deep Belief Nets as Generative Models.

• Semantic Hashing for Fast Document Retrieval.
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Markov Random Fields

• AMarkov Random Field (undirected graphical
model) is a model of the joint probability
distribution over a set of random variables.

• It contains a set of nodes (vertices) that
represent random variables, and a set of
undirected links (edges) that represent
dependencies between those random variables.

• The joint distribution takes the form of the
product of non-negative potential functions ψC
over the maximal cliques (connected subsets of nodes):

p(X = x) =
1

Z

∏

C

ψC(xC) Z =
∑

x

∏

C

ψC(xC)

• The normalizing constant Z is called a partition function.

• Computing Z is often very hard. This represents a major limitation of
undirected graphical models.
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Markov Random Fields

p(X = x) =
1

Z

∏

C

ψC(xC) Z =
∑

x

∏

C

ψC(xC)

• Each ψC is a mapping from joint configurations of random variables
in clique C to non-negative real numbers.

• The choice of potential functions is not restricted to having specific
probabilistic interpretations.

• Potential functions are often represented as exponentials:
ψC(xC) = exp (−EC(xC))

where real-valued function EC(xC) is called an energy function.
Thus:

p(X = x) =
1

Z

∏

C

ψC(xC) =
1

Z
exp (−

∑

C

EC(xC)) =
1

Z
exp (−E(x))

4



Restricted Boltzmann Machines
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•We can model an ensemble of binary images
using Restricted Boltzmann Machines (RBM’s).

• An RBM is a type of MRF with hidden units.

• RBM’s have a two-layer architecture in which
visible, binary stochastic pixels v are connected to
hidden binary stochastic feature detectors h.

• A joint configuration (v,h) has an energy:
E(v,h) = −

∑

i∈pixels

bivi −
∑

j∈features

bjhj −
∑

i,j

vihjWij

• The probability that the model assigns to v is

p(v) =
∑

h∈H
p(v,h) =

∑

h∈H

exp(−E(v,h))
∑

u,g exp(−E(u,g))
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Inference
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•Conditional distributions over hidden and visible units are given by
logistic functions:

p(hj = 1|v) =
1

1 + exp(−bj −
∑

i viWij)

p(vi = 1|h) =
1

1 + exp(−bi −
∑

j hjWji)

•Note that due to RBM’s special architecture, for a given data vector
v, posterior over h factors:

p(h|v) =
∏

j

p(hj|v)

6



Learning
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<v h >i
<v h >
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Pmodel
i dataP<v h >j

j i j

reconstruction model fantasy

•Maximum Likelihood learning is hard:
∂ log p(v)

∂Wij
= EPdata[vihj] − EPmodel[vihj]

due to the second term. One way of estimating this expectation is via
MCMC→ slow.

• Instead, we will use Contrastive Divergence (1-step) learning:
∆Wij = EPdata[vihj] − EPrecon[vihj]
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RBM’s for continuous data
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•Hidden units remain binary.

• The visible units are replaced by linear stochastic
units that have Gaussian noise.

• The energy becomes:

E(v,h) =
∑

i∈pixels

(vi − bi)
2

2σ2
i

−
∑

j∈features

bjhj −
∑

i,j

vi
σi
hjWij

• Conditional distributions over hidden and visible units are:
p(hj = 1|v) =

1

1 + exp(−bj −
∑

iWijvi/σi)

p(vi = v|h) =
1√
2πσi

exp
(

−
(v − bi − σi

∑

j hjWij)
2

2σ2
i

)
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What a single RBM learns

• Random sample of the RBM’s receptive fields (W ) for MNIST (left)
and Olivetti (right).

• Input data

• Learned W
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RBM’s for Collaborative Filtering
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• A restricted Boltzmann machine can
also be applied to collaborative
filtering. In particular, it performs
quite well on the Netflix movie rating
problem.

• A restricted Boltzmann machine
with binary hidden units and softmax
visible units.

• For each user, the RBM includes
softmax units for the movies that
a user has rated.

•We let h represent stochastic binary
hidden features that have different values for different users.

(See Salakhutdinov, Mnih, and Hinton, ICML 2007)
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Learning Stacks of RBM’s
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• A single layer of binary features generally
cannot perfectly model the structure in the data.

• Perform greedy, layer-by-layer learning:
– Learn and FreezeW1.
– Treat the existing feature detectors, driven
by training data, σ(W T

1 V ) as if they were data.
– Learn and FreezeW2.
–Greedily learn as many layers of features
as desired. .

• Under certain conditions adding an extra layer
always improves a lower bound on the log
probability of data (explained later).

• Each layer of features captures strong high-order
correlations between the activities of units in the
layer below. .
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DEEP BELIEF NETS WITH APPLICATIONS TO

NONLINEAR DIMENSIONALITY REDUCTION
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Dimensionality Reduction

• Problem: How to discover low-dimensional structure from
high-dimensional observations.

• The compact representation can be used for exploratory data
analysis, preprocessing, data visualization and compression.

•Variety of dimensionality reduction techniques:
– Linear methods (such as Principal Component Analysis)
–Non-linear mappings (such as autoencoders)
– Proximity based methods (such as Local Linear Embedding)
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Drawbacks of Existing Methods

• Linear Methods:
– If the data lie on an embedded low-dimensional nonlinear
manifold then linear methods cannot recover this structure.

• Proximity based methods are more powerful, BUT
– computational cost scales quadratically with the number of
observations.
– cannot be applied to very large high-dimensional data sets.

•Nonlinear mapping algorithms, such as autoencoders:
– painfully slow to train.
– prone to getting stuck in local minima.
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Nonlinear Dimensionality Reduction
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• Perform greedy, layer-by-layer pretraining.
• After pretraining multiple layers, the model is
unrolled to create a deep autoencoder.

• Initially encoder and decoder networks use the
same weights.

• The global fine-tuning uses backpropagation
through the whole autoencoder to fine-tune the
weights for optimal reconstruction. .

• Backpropagation only has to do local search.
•We used a 625-2000-1000-500-30 autoencoder to
extract 30-D real-valued codes for Olivetti face
patches (7 hidden layers is usually hard to train).

•We used a 784-1000-500-250-30 autoencoder to
extract 30-D real-valued codes for MNIST images.
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The Big Picture
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Show Demo.
(See Hinton and Salakhutdinov, Science 2006)
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DEEP BELIEF NETS FOR

CLASSIFICATION AND REGRESSION
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Deep Belief Nets for Classification
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•After layer-by-layer pretraining of a 784-500-500-2000-10 network,
discriminative fine-tuning achieves an error rate of 1.2% on MNIST.
SVM’s get 1.4% and randomly initialized backprop gets 1.6%.

•Clearly pretraining helps generalization. It ensures that most of the
information in the weights comes from modeling the input data.

• The very limited information in the labels is used only to slightly
adjust the final weights.
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A Regression Task

• Predicting the orientation of a face patch.

32.99 −41.15 66.38−22.07 27.49

Training Data Test Data

• Labeled Training Data:
Input: 1000 labeled training patches Output: orientation

from Olivetti faces of 30
training people.

• Labeled Test Data:
Input: 1000 labeled test patches . Predict: orientation

from Olivetti faces of 10
new people.

•Gaussian Processes with spherical Gaussian kernel achieves a RMSE
of 16.33◦.
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Deep Belief Nets for Regression

32.99 −41.15 66.38−22.07 27.49 Unlabeled
Training Data

•Additional Unlabeled Training Data: 12000 face patches from 30
training people.

• Pretrain a stack of RBM’s: 784-1000-1000-1000.

• Features were extracted with no idea of the final task.

The same GP on the top-level features: RMSE 11.22◦.

GP with fine-tuned covariance Gaussian kernel: RMSE 6.42◦.
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Learning Covariance Kernel using Deep Belief Nets
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•Using DBN, we can initialize covariance function of the Gaussian
Process parametrized by θ = {α, β} andW as:

Knm = α exp
(

− 1

2β
||F (vn|W) − F(vm|W)||2

)

And learn the parameters of this covariance function by maximizing
the marginal likelihood.

(See Salakhutdinov and Hinton, NIPS 2007)
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Learning Covariance Kernel using Deep Belief Nets
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•A scatter plot of the two most relevant features, with each point
replaced by the corresponding input test image.
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The Generative View of Stacks of RBM’s
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•WhenWfrozen = W, the two models are the same.

• The weightsWfrozen define p(v0|h0,Wfrozen) but also indirectly
define p(h0).

• Idea: Freeze bottom layer of weights atWfrozen and change higher
layers to build a better model for p(h0), that is closer to the posterior
hidden features produced byWfrozen applied to the data
p(h0|v0,W

T
frozen).

•As we learn a new layer, the inference becomes incorrect, but the
bound on the log probability of the data increases (see Hinton et.al.).
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The Generative View of Stacks of RBM’s
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• For any approximating distribution Q(h|v0,W) we can write:

log p(v0) ≥
∑

h0
Q(h0|v0,W)

[

log p(h0|W)+log p(v0|h0,W)
]

−
∑

hQ(h0|v0,W) log Q(h0|v0,W)

• Initially Q(h0|v0,W) = p(h0|v0,W).

• FreezingW atWfrozen will freeze Q(h0|v0,Wfrozen) and
p(v0|h0,Wfrozen).

•Maximizing the above bound is equivalent to maximizing:
∑

h0

Q(h0|v0,Wfrozen) log p(h0|W)
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The Generative View of Stacks of RBM’s
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•What about explaining away?
•A complementary prior exactly cancels out correlations created by
explaining away! So the posterior factors.
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Two Alternatives to Our Method

Prior W
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Likelihood
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v0

h0

•Alternative 1:
–Without complementary prior, learning one layer at a time is hard
because of explaining away.

•Alternative 2:
– If we start with different weights in each layer and try to learn
them all at once, we have major problems.
– Just to calculate the prior for h0 requires integration over all
higher-level hidden configurations!
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The Generative View of Stacks of RBM’s

•Demo of Digits and Faces
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SEMANTIC HASHING FOR FAST INFORMATION

RETRIEVAL
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Existing Methods

•One of the most popular and widely used in practice algorithms for
document retrieval tasks is TF-IDF. However:

– It computes document similarity directly in the word-count space, which can
be slow for large vocabularies.

– It assumes that the counts of different words provide independent evidence
of similarity.

– It makes no use of semantic similarities between words.

• To overcome these drawbacks, models for capturing
low-dimensional, latent representations have been proposed and
successfully applied in the domain of information retrieval.

•One such simple and widely-used method is Latent Semantic
Analysis (LSA), which extracts low-dimensional semantic structure
using SVD to get a low-rank approximation of the word-document
co-occurrence matrix.
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Drawbacks of Existing Methods

• LSA is a linear method so it can only capture pairwise correlations
between words. We need something more powerful.

•Numerous methods, in particular probabilistic versions of LSA were
introduced in the machine learning community.

• These models can be viewed as graphical models in which a single
layer of hidden topic variables have directed connections to variables
that represent word-counts.

• There are limitations on the types of structure that can be represented
efficiently by a single layer of hidden variables.

•We will build a network with multiple hidden layers and with
millions of parameters and show that it can discover latent
representations that work much better.
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RBM’s for count data
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•Hidden units remain binary and the visible word
counts are modeled by the Constrained Poisson
Model.

• The energy is defined as:
E(v,h) = −∑

i bivi −
∑

j bjhj

−∑

i,j vihjWij +
∑

i log v!

• Conditional distributions over hidden and visible units are:
p(hj = 1|v) =

1

1 + exp(−bj −
∑

iWijvi)

p(vi = n|h) = Poisson

(

exp (λi +
∑

j hjWij)
∑

k exp
(

λk +
∑

j hjWkj

)N

)

•where N is the total length of the document.
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Reuters Corpus: Learning 2-D code space

Autoencoder 2−D Topic Space

Legal/JudicialLeading Ecnomic 
Indicators

European Community
Monetary/Economic

Accounts/
Earnings

Interbank Markets

Government 
 Borrowings

Disasters and
Accidents

Energy Markets

LSA 2−D Topic Space

•We use a 2000-500-250-125-2 autoencoder to convert test documents
into a two-dimensional code.

• The Reuters Corpus Volume II contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

•We used a simple “bag-of-words” representation. Each article is
represented as a vector containing the counts of the most frequently
used 2000 words in the training dataset.
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Reuters Corpus: Learning 2-D code space

Autoencoder 2−D Topic Space

Legal/JudicialLeading Ecnomic 
Indicators

European Community
Monetary/Economic

Accounts/
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Interbank Markets

Government 
 Borrowings

Disasters and
Accidents

Energy Markets
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Results for 10-D codes

•We use the cosine of the angle between two codes as a measure of
similarity.

• Precision-recall curves when a 10-D query document from the test
set is used to retrieve other test set documents, averaged over
402,207 possible queries.
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Semantic Hashing
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• Learn to map documents into semantic 20-D binary code and use
these codes as memory addresses.

•We have the ultimate retrieval tool: Given a query document,
compute its 20-bit address and retrieve all of the documents stored at
the similar addresses with no search at all.
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The Main Idea of Semantic Hashing
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(See Salakhutdinov and Hinton, SIGIR 2007 workshop on Graphical
Models)
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Semantic Hashing

Reuters 2−D Embedding of 20−bit codes

Accounts/Earnings

Government 
Borrowing

European Community 
Monetary/Economic

Disasters and 
Accidents

Energy Markets

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2
0

10

20

30

40

50

Recall (%) 

P
re

ci
si

on
 (

%
)

 

TF−IDF
TF−IDF using 20 bits
Locality Sensitive Hashing

• Left picture shows a 2-dimensional embedding of the learned 20-bit
codes using stochastic neighbor embedding.

• Right picture shows Precision-Recall curves when a query document
from the test set is used to retrieve other test set documents,
averaged over all 402,207 possible queries.
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Semantic Hashing
Reuters 2−D Embedding of 20−bit codes
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TF−IDF
TF−IDF using 20 bits
Locality Sensitive Hashing

•We used a simple C implementation on Reuters dataset (402,212
training and 402,212 test documents).

• For a given query, it takes about 0.5 milliseconds to create a short-list
of about 3,000 semantically similar documents.

• It then takes 10 milliseconds to retrieve the top few matches from
that short-list using TF-IDF, and it is more accurate than full TF-IDF.

• Scaling up the learning to billion documents would not be too
difficult, since learning is linear in the size of the dataset.
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Deep Belief Nets → Good Generative Models?

• Remember, the idea behind learning DBN’s as a stack of RBM’s is
that you are always guaranteed to improve the lower bound on the
log-probability of the data.

•We would hope that this greedy recursive procedure is capable of
learning a good generative model of high-dimensional
highly-structured data.

• But are DBN’s really better in modeling data than simple mixture
models. I was avoiding this answer because I don’t know. Due to the
presence of the partition function we cannot calculate the
log-probability of the test data even for a simple RBM model.

• Instead I was saying that the top-level features that the DBN model
learns are good for various discriminative tasks such as classification,
regression, or compression.

• This, however, does not justify the claim that DBN’s are good
generative models of data.
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Deep Belief Nets → Good Generative Models?

•We have recently discovered an effective way of estimating the ratio
of partition functions of two RBM’s using Annealed Importance
Sampling (AIS) procedure introduced by Radford Neal (1998). This
allows us to compare various RBM’s.

• The same procedure can also be used to get unbiased estimate of the
partition function for a single RBM model. This allows us to compare
RBM’s to other generative models.

•Moreover, using variational inference, we can estimate the lower
bound on the log-probability that the DBN model assigns to the test
data.

• This allows us to get some quantitative judgement of whether DBN’s
are better when comparing to other generative models.

•Of course when using AIS in practice, we are relying on empirical
estimates of its accuracy, which can sometimes be misleading.
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THE END
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