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Gaussian Processes 
•  So far, we have considered linear regression models of the form: 

where w is a vector of parameters and Á(x) is a vector of fixed nonlinear basis 
functions.   

•  A prior distribution over w induces a prior distribution over functions f(x,w). 

•  Given a training dataset, we compute the posterior distribution over w, which 
induces a posterior distribution over functions f(x,w).  

Samples from the posterior 



Gaussian Processes 
•  In the Gaussian process viewpoint, we define a prior probability distributions 
over functions directly.  

•  May seem difficult: How can we define a distribution over the uncountably 
infinite space of functions? 

•  Insight: for a finite training set, we only need to consider the values of the 
functions at discrete set of input values xn.  

•  Hence in practice, we work in a finite space.  

•  Many related models: In geostatistics literature, GP regression is known as 
kriging. See also a recent book on GPs by Rasmussen & Williams (2006).  



Linear Regression Revisited 
•  Consider the following linear model, defined in terms of M linear combinations 
of fixed basis functions:  

•  We place a Gaussian prior over model parameters: 

•  For any given fixed value of w, we have a corresponding linear function. A 
probability distribution over w defines a probability distribution over functions.  

•  Given a dataset                                        we will denote the values of the 
function as  

•  Hence: 

N by M Design 
matrix 

M by 1 vector 
of model 
parameters 



Linear Regression Revisited 

•  Observe that y is a linear combination of Gaussian random variables, and 
hence is itself Gaussian: 

Here, K is known as the Gramm matrix with elements: 

where k(x,x’) is the kernel function.  

•  This model provides a particular example of a Gaussian process.  



Gaussian Process 
•  A Gaussian process (GP) is a random function f: X ! R, such that for any 
finite set of input points  

where the parameters are the mean function m(x) and covariance kernel k(x,x’).  

•  Note that a random function is a a stochastic process. It is a collection of 
random variables {f(x)}x 2 X, one for each possible value x (see Rasmussen and 
Williams, 2006).  

•  Key point about Gaussian Processes: Given a dataset  
the marginal distribution over                                             is completely specified 
by the second-order statistics: the mean and covariance.    



Gaussian Process 
•  In many applications, we will have no prior knowledge about the mean 
function f(x). By symmetry, we take it be zero.  

•  The specification of a Gaussian Process is then completed by specifying the 
covariance function, evaluated at any two input points xn and xm: 

•  One commonly used covariance function is squared exponential:  

•  Covariance (kernel) function is typically chosen to express the property that, 
for inputs xn and xm that are similar, the corresponding values f(xn) and f(xm) will 
be more strongly correlated than for dissimilar points.     



Visualizing Draws from GPs 
•  Visualizing draws from 2-D Gaussian:  

Laying out Gaussians
A way of visualizing draws from a 2D Gaussian:
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f•  Three draws from a 6-D Gaussian:  

Slide Credit: Iain Murray 



Visualizing Draws from GPs 
•  Three draws from 25-D Gaussian 

•  To generate these, the mean was set to zero: zeros(25,1)  

Slide Credit: Iain Murray 

Building large Gaussians
Three draws from a 25D Gaussian:
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To produce this, we needed a mean: I used zeros(25,1)

The covariances were set using a kernel function: Σij = k(xi,xj).

The x’s are the positions that I planted the tics on the axis.

Later we’ll find k’s that ensure Σ is always positive semi-definite.

•  The covariance was set using a covariance function:   

•  The x’s are the positions that are planted the tics on the axis.  

We can visualize draws from a GP iterative sampling f(xn) | f(x1),...,f(xn−1) on a 
sequence of input points x1, x2, . . xn.  



Samples from GPs 
Squared-exponential kernel  

•  Ornstein-Uhlenbeck process that 
describes Brownian motion.  

Exponential kernel 



GPs for Regression  
•  We need to account for noise on the observed target values:  

where  fn = f(xn), and ²n is an independent random noise variable. We will 
assume Gaussian noise:   

•  Given a dataset                                       and corresponding target values 
                                   the conditional takes form: 

•  From the definitions of a Gaussian process, the marginal distribution p(f) is 
given by the Gaussian:  



Illustration 
•  Illustration of sampling of targets {tn} from a Gaussian process. 

•  The blue curve shows a sample from a 
GP prior:!

•  The red points show the values of fn, 
obtained by evaluating the function at a set 
of input values {xn}.!

•  The green points show the corresponding 
values of {tn}:!



Marginal Distribution  
•  The marginal distribution p(t), conditioned on the set of inputs X, can be 
obtained by integrating over f: 

where the covariance matrix is given by: 

•  The two Gaussian sources of randomness, one associated with f(x) and the 
other with noise, are independent, and so their covariances add.  



Covariance Function 
•  One widely used covariance (kernel) function for GP regression is given by 
the squared-exponential plus constant and linear terms:  

•  Note that the last term corresponds to a parametric model that is a linear 
function of the input variables.  
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Covariance Function 
•  One widely used covariance (kernel) function for GP regression is given by 
the squared-exponential plus constant and linear terms:  

•  Note that the last term corresponds to a parametric model that is a linear 
function of the input variables.  



Prediction 
•  Suppose we are given a dataset                                       with target values 

•  Our goal is predict tN+1 for a new input vector xN+1. 

where CN is the N by N matrix with elements: 

c is the scalar: 

and k is the N by 1 vector with elements k(xn,xN+1).  

•  Note that the joint distribution over t and tN+1 is given by: 



Prediction 
•  Suppose we are given a dataset                                       with target values 

•  Our goal is predict tN+1 for a new input vector xN+1. 

•  Note that the joint distribution over t and tN+1 is given by: 

with 

•  Hence the conditional distribution is Gaussian:  

Key results that define 
GP regression 

Positive: hence the 
reduction in uncertainty 



Illustration 1 
•  We are given one training point, t1 and one test point. Conditioned on t1 (blue 
line),  we obtain predictive distribution p(t2 | t1) (green curve)  

Predictive distribution.   

t1 

t2 



Illustration 2 
•  Illustration of GP regression applied to the sinusoidal data set.  

•  The green curve shows the true 
function.  

•  The blue data points are samples 
from the true function plus some 
additive Gaussian noise 

•  The red curve shows the mean of the 
GP predictive distribution, with shaded 
region corresponding to +/- 2 standard 
deviations.  

•  Restriction on the kernel function: The covariance matrix: 

must be positive definite.  



Mean of Predictive Distribution 
•  Note that the mean of the predictive distribution  

can be written as a function of xN+1: 

•  Also, note that the mean and variance of the predictive distribution both 
depend on xN+1. 

Remember: k is the N by 1 vector with elements k(xn,xN+1).  

an is the nth component of  

Linear combination 



Computational Complexity 
•  The central computation in using GPs will involve the inversion of an N by N 
matrix CN, which is of order O(N3): 

•  By contrast, in the basis function model, we have to invert a matrix SN of 
size M by M (where M is the number of basis functions).   

•  If the number of M basis functions is smaller than the number N of data 
points, then it will be computationally more efficient to work in the basis 
function framework (see the first few slides) 

•  The advantage of GPs is that we can consider covariance functions that 
can only be expressed in terms of an infinite number of basis functions.  



Learning the Hyperparameters 
•  The predictions of a GP regression model will depend on the choice of the 
covariance function.  

•  These parameters may govern the length scale of the correlations or the 
precision of the noise model and correspond to the hyperparameters in a 
standard parametric model.  

•  How can we infer the values of these parameters? 

•  Instead of fixing the covariance function, we may prefer to use a parametric 
family of functions and infer the parameter values from data.   

hyperparameters  



Learning the Hyperparameters 
•  We can compute the marginal likelihood function: 

Hyperparameters of the 
GP model  

•  One option is to maximize the log of the marginal likelihood with respect to µ.  

•  This corresponds to the type II maximum likelihood, or empirical Bayes: 

•  The maximization can be performed using gradient-based optimization 
techniques, such as conjugate gradients. The gradients take form:  



Learning the Hyperparameters 

•  Because ln p(t|µ) will be a nonconvex function, it will have multiple maxima.  

•  In the fully Bayesian approach, we can introduce a prior p(µ) and infer the 
posterior p(µ | t). 

•  In general, the posterior will not have a closed form solution, so we must 
resort of approximations (typically MCMC).    

•  Noise: We have assumed that the additive noise, governed by ¯, is constant.    

•  For some models, known as heteroscedastic, the noise variance itself will 
depend on x (e.g. by introducing another GP that will model log ¯ (x)).   



Automatic Relevance Determination 
•  How can we detect inputs variables that have very little effect on the 
predictive distribution (irrelevant inputs).   
•  Consider a GP with 2-D input space x = (x1, x2) with the following covariance 
function: 

•  As ´i becomes small, 
the function becomes 
insensitive to the 
corresponding value of xi  
(input xi becomes less 
relevant).  



Automatic Relevance Determination 
•  The ARD framework can be easily incorporated into exponential-quadratic 
kernel:   

Control relevance of input dimension i, where 
D is the dimensionality of the input space  

•  We can optimize these parameters by performing type II maximum likelihood 
(by optimizing marginal log-likelihood) 

•  The relative importance of different inputs can be inferred from data.  



Illustration 
•  Example: We have a dataset with 3-D inputs (x1, x2, x3). The target variables tn 
are sampled as follows:   
•  Sample 100 values of x1 from a Gaussian, evaluate the function sin(2¼x1), 
and add Gaussian noise.   

•  Let x2 = x1, and add Gaussian noise.  

•  Sample 100 values of x3 from an independent Gaussian distribution.   

•  Hence x1 is a good predictor of t, x2 is a more noisy predictor of t, and x3 has 
only chance correlation with t.  

•  Plot displays ´1 (red), ´2 (green), and ´3 (blue) 
as a function of the number of iterations when 
optimizing the marginal likelihood.  



Classification with GPs 
•  Consider a two-class problem with targets t 2 {0,1}. 
•  Define a Gaussian process over a function f(x).  

•  Hence y(x) 2 (0,1).  

•  Transform the function using sigmoid function: 

Transformed sample using 
sigmoid function  



Classification with GPs 
•  After transformation, we obtain a non-Gaussian stochastic process over 
functions y(x).  

Transformed sample using 
sigmoid function  

•  The probability distribution over t is given by the Bernoulli distribution:  



Classification with GPs 
•  Suppose we are given a dataset                                       with target values 

•  Our goal is predict tN+1 for a new input vector xN+1 

•  Predictive distribution is given by: 

given by  Posterior is also 
intractable.  

•  This integral is analytically intractable. Can resort to MCMC by approximately 
sampling from the posterior, and performing Monte Carlo integration:   

where  



Approximations 
•  Another option: 

Gaussian approximation 

•  Use approximate formula for the convolution of a logistic sigmoid and a 
Gaussian distribution.   

•  Three different approaches to obtaining a Gaussian approximation: 

•  Variational Inference  

•  Expectation Propagation 

•  Laplace Approximation 



Laplace Approximation 
•  We seek to obtain a Gaussian approximation to the posterior. Using Bayes 
rule we have: 

Easy to compute: 
Gaussian.   

Laplace approximation 

•  Here p(fN) is given by a zero-mean GP with covariance matrix CN, and the 
data term: 

•  Obtain the Laplace approximation by Taylor expanding log of the posterior:  
log p(fN | tN). 



Classification Results 

Optimal decision boundary from the true 
distribution (green) and the decision 
boundary from GP classifier (black) 

Predictive posterior probability together 
with GP decision boundary.  



Combining Models 

•  Example: We may train K different models and then make predictions using the 
average of predictions made by each model.    

•  In practice, it is often found that one can improve performance by combining 
multiple models, instead of using a single model.   

•  Such combinations of models are called committees.  

•  One important variant of the committee method is called boosting.  

•  Another approach is to use different models in different regions of the input 
space.  
•  One widely used framework is known as a decision tree.  

•  One can take a probabilistic  approach -- mixture of experts framework.  

•  The hope of “meta-learning” is that it can “supercharge” a mediocre learning 
algorithm into an excellent learning algorithm.  



Model Averaging 

•  Example: Consider a mixture of Gaussians:  

•  It is useful to distinguish between: Bayesian model averaging and model 
combination.   

•  Hence for i.i.d. data: 

•  This is an example of model combination.  

•  Different data points within the same dataset can be generated from different 
values of the latent variables (or by different components).  



Bayesian Model Averaging 

•  Example: one model can be a mixture of Gaussians, another one can be a 
mixture of Cauchy distributions.  

•  Suppose we have several different models, indexed by h=1,..,H, with prior 
probabilities p(h).  

•  The marginal over the dataset is: 

•  This is an example of the Bayesian model averaging.  

•  Interpretation: Just one model is responsible for generating the whole dataset!  
•  The distribution over h reflects our uncertainty as to which model that is.  

•  As we observe more data, the uncertainty decreases, and the posterior p(h|X) 
becomes focused on just one model.  

•  The same reasoning apply for the conditional distributions p(t|x,X,T).  



Committees  

•  Motivation: Bias-variance trade-off:  

•  Average the predictions of a set of individual models.  

-  bias: difference between the model and the true function to be predicted. 
-  variance: sensitivity of the model due to the given dataset.  

Average predictions over all 
datasets differ from the 
optimal regression function. 

Solutions for individual datasets 
vary around their averages -- how 
sensitive is the function to the 
particular choice of the dataset.  

Intrinsic variability 
of the target 
values. 

Low bias 
High variance 

•  When we average a set of 
low-bias models (e.g. higher-
order polynomials, we obtain 
accurate predictions.  



Bagging 

•  In practice, we only have one dataset: Need a way to introduce variability 
between different models.   

•  Bagging = Bootstrap aggregation.  

•  One idea: Generate M bootstrap samples from your original training set and  
train B separate models. 

- For regression, average predictions. 

- For regression, average class probabilities (or take the majority vote if 
only hard outputs available). 

•  The size of each bootstrap sample is equal to the size of the original training 
set, but they are drawn with replacement, so each one contains some duplicates 
of certain training points and leaves out other training points completely. 



Variance Reduction by Averaging 

•  The committee prediction is given by: 

•  Suppose we M bootstrap datasets and train M models ym(x).  

•  Assume that the true function is h(x), hence 

•  The average sum-of-squares error takes the form: 

Expectation with respect to 
the distribution over the input 
vector x.  

•  The average error made by the models acting individually is therefore: 



Variance Reduction by Averaging 
•  The committee prediction is given by: 

•  The expected error from the committee is given by:  

•  Assuming the errors are uncorrelated: 



Variance Reduction by Averaging 
•  Hence we have: 

•  This dramatic result suggests that the average error of a model can be reduced 
by a factor of M simply by averaging M versions of the models.  

•  Too good to be true!  

•  The above result depends on the key assumption that the errors of the 
individual models are uncorrelated.  

•  In practice, the errors will be highly correlated (remember, we are using 
bootstrap datasets).  



Why do Committees Work? 
•  All committee learning (often called meta-learning) is based on one of two 
observations: 

- Variance Reduction: If we had completely independent training sets it 
always helps to average together an ensemble of learners because this 
reduces variance without changing bias. 

- Bias Reduction: For many simple models, a weighted average of those 
models (in some space) has much greater capacity than a single model 
(e.g. hyperplane classifiers, single-layer networks). Averaging models 
can often reduce bias substantially by increasing capacity; we can keep 
variance low by only fitting one member of the mixture at a time. 

•  Either reduces variance substantially without affecting bias (bagging), or 
vice versa (boosting). 



Finite Bagging Can Hurt 
•  Bagging helps when a learning algorithm is good on average but unstable 
with respect to the training set. 
•  But if we bag a stable learning algorithm, we can actually make it worse. 
(For example, if we have a Bayes optimal algorithm, and we bag it, we might 
leave out some training samples in every bootstrap, and so the optimal 
algorithm will never be able to see them.) 

•  Bagging almost always helps with regression, but even with unstable 
learners it can hurt in classification. If we bag a poor and unstable classifier 
we can make it horrible. 

•  Example: true class = A for all inputs.  
Our learner guesses class A with probability 0.4 and class B with probability 
0.6 regardless of the input. (Very unstable).  
It has error 0.6. But if we bag it, it will have error 1. 



Boosting 
•  Probably one of the most influential ideas in machine learning in the last 
decade.  

•  In the PAC framework, boosting is a way of converting a “weak” learning 
model (behaves slightly better than chance) into a “strong” learning mode 
(behaves arbitrarily close to perfect). 

•  Strong theoretical result, but also lead to a very powerful and practical 
algorithm which is used all the time in real world machine learning. 

•  Basic idea, for binary classification with tn = ±1. 

where ym(x) are models trained with reweighted datasets Dm, and the 
weights ®m are non-negative.    



AdaBoost Algorithm 
•  Initialize the data weights wn = 1/N. 
•  For m=1,..,M: 

- Fit a classifier ym(x) to the training data by minimizing the weighted error 
function:   

where                             is the indicator function and equals to one when                     
                       and zero otherwise.  

-  Evaluate: 

weighted measures of the 
error rates.  

Weighting coefficients.  



AdaBoost Algorithm 
•  Initialize the data weights wn = 1/N. 
•  For m=1,..,M: 

- Fit a classifier ym(x) to the training data by minimizing: 

-  Evaluate: 

-   Update the data weights: 

•  Make predictions using the final model:  



Some Intuitions 
•  The first classifier corresponds to the usual procedure for training a single 
classifier.  

•  The weight each intermediate classifier gets in the final ensemble depends 
on the error rate it achieved on its weighted training set at the time it was 
created. 

•  Hence the weighting coefficients ®m give greater weight to more accurate 
classifiers.  

- increases the weight on those examples the last classifier got wrong, 
- decreases the weight on those it got right. 

•  Over time, AdaBoost focuses on the examples that are consistently difficult 
and forgets about the ones that are consistently easy.  

•  At each round, boosting: 



Some Intuitions 
•  Schematic illustration of AdaBoost: 



Exponential Loss  
•  One explanation, which helps a lot to understand how boosting really 
works, is that classification boosting is equivalent to sequential minimization 
of the following loss (error) function: 

•  This is called exponential loss and it is very similar to other kinds of loss, 
e.g. classification loss. 

•  Green: exponential  
•  Red: cross-entropy  
•  Blue: hinge loss 
•  Black: misclassifications error (0-1 loss) 



•  Base learners are simple thresholds applied to one or another axis.  

Example 


