
STA 4273H:
Statistical Machine Learning

Department of Statistics!
rsalakhu@utstat.toronto.edu!

http://www.utstat.utoronto.ca/~rsalakhu/
Sidney Smith Hall, Room 6002

Lecture 10

Russ	
 Salakhutdinov	

Gaussian Processes
•  So far, we have considered linear regression models of the form:

where w is a vector of parameters and Á(x) is a vector of fixed nonlinear basis
functions.

•  A prior distribution over w induces a prior distribution over functions f(x,w).

•  Given a training dataset, we compute the posterior distribution over w, which
induces a posterior distribution over functions f(x,w).

Samples from the posterior

Gaussian Processes
•  In the Gaussian process viewpoint, we define a prior probability distributions
over functions directly.

•  May seem difficult: How can we define a distribution over the uncountably
infinite space of functions?

•  Insight: for a finite training set, we only need to consider the values of the
functions at discrete set of input values xn.

•  Hence in practice, we work in a finite space.

•  Many related models: In geostatistics literature, GP regression is known as
kriging. See also a recent book on GPs by Rasmussen & Williams (2006).

Linear Regression Revisited
•  Consider the following linear model, defined in terms of M linear combinations
of fixed basis functions:

•  We place a Gaussian prior over model parameters:

•  For any given fixed value of w, we have a corresponding linear function. A
probability distribution over w defines a probability distribution over functions.

•  Given a dataset we will denote the values of the
function as

•  Hence:

N by M Design
matrix

M by 1 vector
of model
parameters

Linear Regression Revisited

•  Observe that y is a linear combination of Gaussian random variables, and
hence is itself Gaussian:

Here, K is known as the Gramm matrix with elements:

where k(x,x’) is the kernel function.

•  This model provides a particular example of a Gaussian process.

Gaussian Process
•  A Gaussian process (GP) is a random function f: X ! R, such that for any
finite set of input points

where the parameters are the mean function m(x) and covariance kernel k(x,x’).

•  Note that a random function is a a stochastic process. It is a collection of
random variables {f(x)}x 2 X, one for each possible value x (see Rasmussen and
Williams, 2006).

•  Key point about Gaussian Processes: Given a dataset
the marginal distribution over is completely specified
by the second-order statistics: the mean and covariance.

Gaussian Process
•  In many applications, we will have no prior knowledge about the mean
function f(x). By symmetry, we take it be zero.

•  The specification of a Gaussian Process is then completed by specifying the
covariance function, evaluated at any two input points xn and xm:

•  One commonly used covariance function is squared exponential:

•  Covariance (kernel) function is typically chosen to express the property that,
for inputs xn and xm that are similar, the corresponding values f(xn) and f(xm) will
be more strongly correlated than for dissimilar points.

Visualizing Draws from GPs
•  Visualizing draws from 2-D Gaussian:

Laying out Gaussians
A way of visualizing draws from a 2D Gaussian:

−2 −1 0 1 2
−2

−1

0

1

2

f1

f 2 ⇔

x_1 x_2

−1

−0.5

0

f
Now it’s easy to show three draws
from a 6D Gaussian:

x_1 x_2 x_3 x_4 x_5 x_6
−1.5

−1

−0.5

0

0.5

1

1.5

f

Laying out Gaussians
A way of visualizing draws from a 2D Gaussian:

−2 −1 0 1 2
−2

−1

0

1

2

f1

f 2 ⇔

x_1 x_2

−1

−0.5

0

f
Now it’s easy to show three draws
from a 6D Gaussian:

x_1 x_2 x_3 x_4 x_5 x_6
−1.5

−1

−0.5

0

0.5

1

1.5

f

Laying out Gaussians
A way of visualizing draws from a 2D Gaussian:

−2 −1 0 1 2
−2

−1

0

1

2

f1

f 2 ⇔

x_1 x_2

−1

−0.5

0

f
Now it’s easy to show three draws
from a 6D Gaussian:

x_1 x_2 x_3 x_4 x_5 x_6
−1.5

−1

−0.5

0

0.5

1

1.5

f•  Three draws from a 6-D Gaussian:

Slide Credit: Iain Murray

Visualizing Draws from GPs
•  Three draws from 25-D Gaussian

•  To generate these, the mean was set to zero: zeros(25,1)

Slide Credit: Iain Murray

Building large Gaussians
Three draws from a 25D Gaussian:

−1

0

1

2

f

x

To produce this, we needed a mean: I used zeros(25,1)

The covariances were set using a kernel function: Σij = k(xi,xj).

The x’s are the positions that I planted the tics on the axis.

Later we’ll find k’s that ensure Σ is always positive semi-definite.

•  The covariance was set using a covariance function:

•  The x’s are the positions that are planted the tics on the axis.

We can visualize draws from a GP iterative sampling f(xn) | f(x1),...,f(xn−1) on a
sequence of input points x1, x2, . . xn.

Samples from GPs
Squared-exponential kernel

•  Ornstein-Uhlenbeck process that
describes Brownian motion.

Exponential kernel

GPs for Regression
•  We need to account for noise on the observed target values:

where fn = f(xn), and ²n is an independent random noise variable. We will
assume Gaussian noise:

•  Given a dataset and corresponding target values
 the conditional takes form:

•  From the definitions of a Gaussian process, the marginal distribution p(f) is
given by the Gaussian:

Illustration
•  Illustration of sampling of targets {tn} from a Gaussian process.

•  The blue curve shows a sample from a
GP prior:!

•  The red points show the values of fn,
obtained by evaluating the function at a set
of input values {xn}.!

•  The green points show the corresponding
values of {tn}:!

Marginal Distribution
•  The marginal distribution p(t), conditioned on the set of inputs X, can be
obtained by integrating over f:

where the covariance matrix is given by:

•  The two Gaussian sources of randomness, one associated with f(x) and the
other with noise, are independent, and so their covariances add.

Covariance Function
•  One widely used covariance (kernel) function for GP regression is given by
the squared-exponential plus constant and linear terms:

•  Note that the last term corresponds to a parametric model that is a linear
function of the input variables.

Covariance Function
•  One widely used covariance (kernel) function for GP regression is given by
the squared-exponential plus constant and linear terms:

•  Note that the last term corresponds to a parametric model that is a linear
function of the input variables.

Covariance Function
•  One widely used covariance (kernel) function for GP regression is given by
the squared-exponential plus constant and linear terms:

•  Note that the last term corresponds to a parametric model that is a linear
function of the input variables.

Prediction
•  Suppose we are given a dataset with target values

•  Our goal is predict tN+1 for a new input vector xN+1.

where CN is the N by N matrix with elements:

c is the scalar:

and k is the N by 1 vector with elements k(xn,xN+1).

•  Note that the joint distribution over t and tN+1 is given by:

Prediction
•  Suppose we are given a dataset with target values

•  Our goal is predict tN+1 for a new input vector xN+1.

•  Note that the joint distribution over t and tN+1 is given by:

with

•  Hence the conditional distribution is Gaussian:

Key results that define
GP regression

Positive: hence the
reduction in uncertainty

Illustration 1
•  We are given one training point, t1 and one test point. Conditioned on t1 (blue
line), we obtain predictive distribution p(t2 | t1) (green curve)

Predictive distribution.

t1

t2

Illustration 2
•  Illustration of GP regression applied to the sinusoidal data set.

•  The green curve shows the true
function.

•  The blue data points are samples
from the true function plus some
additive Gaussian noise

•  The red curve shows the mean of the
GP predictive distribution, with shaded
region corresponding to +/- 2 standard
deviations.

•  Restriction on the kernel function: The covariance matrix:

must be positive definite.

Mean of Predictive Distribution
•  Note that the mean of the predictive distribution

can be written as a function of xN+1:

•  Also, note that the mean and variance of the predictive distribution both
depend on xN+1.

Remember: k is the N by 1 vector with elements k(xn,xN+1).

an is the nth component of

Linear combination

Computational Complexity
•  The central computation in using GPs will involve the inversion of an N by N
matrix CN, which is of order O(N3):

•  By contrast, in the basis function model, we have to invert a matrix SN of
size M by M (where M is the number of basis functions).

•  If the number of M basis functions is smaller than the number N of data
points, then it will be computationally more efficient to work in the basis
function framework (see the first few slides)

•  The advantage of GPs is that we can consider covariance functions that
can only be expressed in terms of an infinite number of basis functions.

Learning the Hyperparameters
•  The predictions of a GP regression model will depend on the choice of the
covariance function.

•  These parameters may govern the length scale of the correlations or the
precision of the noise model and correspond to the hyperparameters in a
standard parametric model.

•  How can we infer the values of these parameters?

•  Instead of fixing the covariance function, we may prefer to use a parametric
family of functions and infer the parameter values from data.

hyperparameters

Learning the Hyperparameters
•  We can compute the marginal likelihood function:

Hyperparameters of the
GP model

•  One option is to maximize the log of the marginal likelihood with respect to µ.

•  This corresponds to the type II maximum likelihood, or empirical Bayes:

•  The maximization can be performed using gradient-based optimization
techniques, such as conjugate gradients. The gradients take form:

Learning the Hyperparameters

•  Because ln p(t|µ) will be a nonconvex function, it will have multiple maxima.

•  In the fully Bayesian approach, we can introduce a prior p(µ) and infer the
posterior p(µ | t).

•  In general, the posterior will not have a closed form solution, so we must
resort of approximations (typically MCMC).

•  Noise: We have assumed that the additive noise, governed by ¯, is constant.

•  For some models, known as heteroscedastic, the noise variance itself will
depend on x (e.g. by introducing another GP that will model log ¯ (x)).

Automatic Relevance Determination
•  How can we detect inputs variables that have very little effect on the
predictive distribution (irrelevant inputs).
•  Consider a GP with 2-D input space x = (x1, x2) with the following covariance
function:

•  As ´i becomes small,
the function becomes
insensitive to the
corresponding value of xi
(input xi becomes less
relevant).

Automatic Relevance Determination
•  The ARD framework can be easily incorporated into exponential-quadratic
kernel:

Control relevance of input dimension i, where
D is the dimensionality of the input space

•  We can optimize these parameters by performing type II maximum likelihood
(by optimizing marginal log-likelihood)

•  The relative importance of different inputs can be inferred from data.

Illustration
•  Example: We have a dataset with 3-D inputs (x1, x2, x3). The target variables tn
are sampled as follows:
•  Sample 100 values of x1 from a Gaussian, evaluate the function sin(2¼x1),
and add Gaussian noise.

•  Let x2 = x1, and add Gaussian noise.

•  Sample 100 values of x3 from an independent Gaussian distribution.

•  Hence x1 is a good predictor of t, x2 is a more noisy predictor of t, and x3 has
only chance correlation with t.

•  Plot displays ´1 (red), ´2 (green), and ´3 (blue)
as a function of the number of iterations when
optimizing the marginal likelihood.

Classification with GPs
•  Consider a two-class problem with targets t 2 {0,1}.
•  Define a Gaussian process over a function f(x).

•  Hence y(x) 2 (0,1).

•  Transform the function using sigmoid function:

Transformed sample using
sigmoid function

Classification with GPs
•  After transformation, we obtain a non-Gaussian stochastic process over
functions y(x).

Transformed sample using
sigmoid function

•  The probability distribution over t is given by the Bernoulli distribution:

Classification with GPs
•  Suppose we are given a dataset with target values

•  Our goal is predict tN+1 for a new input vector xN+1

•  Predictive distribution is given by:

given by Posterior is also
intractable.

•  This integral is analytically intractable. Can resort to MCMC by approximately
sampling from the posterior, and performing Monte Carlo integration:

where

Approximations
•  Another option:

Gaussian approximation

•  Use approximate formula for the convolution of a logistic sigmoid and a
Gaussian distribution.

•  Three different approaches to obtaining a Gaussian approximation:

•  Variational Inference

•  Expectation Propagation

•  Laplace Approximation

Laplace Approximation
•  We seek to obtain a Gaussian approximation to the posterior. Using Bayes
rule we have:

Easy to compute:
Gaussian.

Laplace approximation

•  Here p(fN) is given by a zero-mean GP with covariance matrix CN, and the
data term:

•  Obtain the Laplace approximation by Taylor expanding log of the posterior:
log p(fN | tN).

Classification Results

Optimal decision boundary from the true
distribution (green) and the decision
boundary from GP classifier (black)

Predictive posterior probability together
with GP decision boundary.

Combining Models

•  Example: We may train K different models and then make predictions using the
average of predictions made by each model.

•  In practice, it is often found that one can improve performance by combining
multiple models, instead of using a single model.

•  Such combinations of models are called committees.

•  One important variant of the committee method is called boosting.

•  Another approach is to use different models in different regions of the input
space.
•  One widely used framework is known as a decision tree.

•  One can take a probabilistic approach -- mixture of experts framework.

•  The hope of “meta-learning” is that it can “supercharge” a mediocre learning
algorithm into an excellent learning algorithm.

Model Averaging

•  Example: Consider a mixture of Gaussians:

•  It is useful to distinguish between: Bayesian model averaging and model
combination.

•  Hence for i.i.d. data:

•  This is an example of model combination.

•  Different data points within the same dataset can be generated from different
values of the latent variables (or by different components).

Bayesian Model Averaging

•  Example: one model can be a mixture of Gaussians, another one can be a
mixture of Cauchy distributions.

•  Suppose we have several different models, indexed by h=1,..,H, with prior
probabilities p(h).

•  The marginal over the dataset is:

•  This is an example of the Bayesian model averaging.

•  Interpretation: Just one model is responsible for generating the whole dataset!
•  The distribution over h reflects our uncertainty as to which model that is.

•  As we observe more data, the uncertainty decreases, and the posterior p(h|X)
becomes focused on just one model.

•  The same reasoning apply for the conditional distributions p(t|x,X,T).

Committees

•  Motivation: Bias-variance trade-off:

•  Average the predictions of a set of individual models.

-  bias: difference between the model and the true function to be predicted.
-  variance: sensitivity of the model due to the given dataset.

Average predictions over all
datasets differ from the
optimal regression function.

Solutions for individual datasets
vary around their averages -- how
sensitive is the function to the
particular choice of the dataset.

Intrinsic variability
of the target
values.

Low bias
High variance

•  When we average a set of
low-bias models (e.g. higher-
order polynomials, we obtain
accurate predictions.

Bagging

•  In practice, we only have one dataset: Need a way to introduce variability
between different models.

•  Bagging = Bootstrap aggregation.

•  One idea: Generate M bootstrap samples from your original training set and
train B separate models.

- For regression, average predictions.

- For regression, average class probabilities (or take the majority vote if
only hard outputs available).

•  The size of each bootstrap sample is equal to the size of the original training
set, but they are drawn with replacement, so each one contains some duplicates
of certain training points and leaves out other training points completely.

Variance Reduction by Averaging

•  The committee prediction is given by:

•  Suppose we M bootstrap datasets and train M models ym(x).

•  Assume that the true function is h(x), hence

•  The average sum-of-squares error takes the form:

Expectation with respect to
the distribution over the input
vector x.

•  The average error made by the models acting individually is therefore:

Variance Reduction by Averaging
•  The committee prediction is given by:

•  The expected error from the committee is given by:

•  Assuming the errors are uncorrelated:

Variance Reduction by Averaging
•  Hence we have:

•  This dramatic result suggests that the average error of a model can be reduced
by a factor of M simply by averaging M versions of the models.

•  Too good to be true!

•  The above result depends on the key assumption that the errors of the
individual models are uncorrelated.

•  In practice, the errors will be highly correlated (remember, we are using
bootstrap datasets).

Why do Committees Work?
•  All committee learning (often called meta-learning) is based on one of two
observations:

- Variance Reduction: If we had completely independent training sets it
always helps to average together an ensemble of learners because this
reduces variance without changing bias.

- Bias Reduction: For many simple models, a weighted average of those
models (in some space) has much greater capacity than a single model
(e.g. hyperplane classifiers, single-layer networks). Averaging models
can often reduce bias substantially by increasing capacity; we can keep
variance low by only fitting one member of the mixture at a time.

•  Either reduces variance substantially without affecting bias (bagging), or
vice versa (boosting).

Finite Bagging Can Hurt
•  Bagging helps when a learning algorithm is good on average but unstable
with respect to the training set.
•  But if we bag a stable learning algorithm, we can actually make it worse.
(For example, if we have a Bayes optimal algorithm, and we bag it, we might
leave out some training samples in every bootstrap, and so the optimal
algorithm will never be able to see them.)

•  Bagging almost always helps with regression, but even with unstable
learners it can hurt in classification. If we bag a poor and unstable classifier
we can make it horrible.

•  Example: true class = A for all inputs.
Our learner guesses class A with probability 0.4 and class B with probability
0.6 regardless of the input. (Very unstable).
It has error 0.6. But if we bag it, it will have error 1.

Boosting
•  Probably one of the most influential ideas in machine learning in the last
decade.

•  In the PAC framework, boosting is a way of converting a “weak” learning
model (behaves slightly better than chance) into a “strong” learning mode
(behaves arbitrarily close to perfect).

•  Strong theoretical result, but also lead to a very powerful and practical
algorithm which is used all the time in real world machine learning.

•  Basic idea, for binary classification with tn = ±1.

where ym(x) are models trained with reweighted datasets Dm, and the
weights ®m are non-negative.

AdaBoost Algorithm
•  Initialize the data weights wn = 1/N.
•  For m=1,..,M:

- Fit a classifier ym(x) to the training data by minimizing the weighted error
function:

where is the indicator function and equals to one when
 and zero otherwise.

-  Evaluate:

weighted measures of the
error rates.

Weighting coefficients.

AdaBoost Algorithm
•  Initialize the data weights wn = 1/N.
•  For m=1,..,M:

- Fit a classifier ym(x) to the training data by minimizing:

-  Evaluate:

-  Update the data weights:

•  Make predictions using the final model:

Some Intuitions
•  The first classifier corresponds to the usual procedure for training a single
classifier.

•  The weight each intermediate classifier gets in the final ensemble depends
on the error rate it achieved on its weighted training set at the time it was
created.

•  Hence the weighting coefficients ®m give greater weight to more accurate
classifiers.

- increases the weight on those examples the last classifier got wrong,
- decreases the weight on those it got right.

•  Over time, AdaBoost focuses on the examples that are consistently difficult
and forgets about the ones that are consistently easy.

•  At each round, boosting:

Some Intuitions
•  Schematic illustration of AdaBoost:

Exponential Loss
•  One explanation, which helps a lot to understand how boosting really
works, is that classification boosting is equivalent to sequential minimization
of the following loss (error) function:

•  This is called exponential loss and it is very similar to other kinds of loss,
e.g. classification loss.

•  Green: exponential
•  Red: cross-entropy
•  Blue: hinge loss
•  Black: misclassifications error (0-1 loss)

•  Base learners are simple thresholds applied to one or another axis.

Example

