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Project Reminder

e Brief 5-minute presentations of projects will take place on Nov 19. You
need to send me 6-7 slides in pdf formtat describing your project.

e Deadline: Sunday Nov 17, 2012. Submit your slides by e-mail:
rsalakhu@utstat.toronto.edu

 You should have your name, and project title on the first slide.

 You will have 5-7 mins to briefly describe your project and what you
would want to accomplish in this project.

* Brief presentations will be done in an alphabetical order.



Sequential Data

» So far we focused on problems that assumed that the data points were
independent and identically distributed (i.i.d. assumption).

» Express the likelihood function as a product over all data points of the
probability distribution evaluated at each data point.

* Poor assumption when working with sequential data.

* For many applications, e.g. financial forecasting, we want to predict the next
value in a time series, given past values.

e Intuitively, the recent observations are likely to be more informative in predicting
the future.

e Markov models: future predictions are independent of all but the most recent
observations.
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e Example of a spectrogram of a spoken
word ‘Bayes theorem’:

e Successive observations are
highly correlated.



Markov Models

* The simplest model is the first-order Markov chain:

Xl: Xz: XS: X4:

* The joint distribution for a sequence of N observations under this model is:

p(X1, -y XN) = p(x1) H p(Xn|Xn-1)-

* From the d-separation property, the conditionals are given by:

p(Xn|X19 eey Xn—l) — p(Xn|Xn—1)-
e For many applications, these conditional distributions that define the model will
be constrained to be equal.

 This corresponds to the assumption of a stationary time series.
e The model is known as homogenous Markov chain.



Second-Order Markov Models

* \We can also consider a second-order Markov chain:

X1 X9 X3 X4

» The joint distribution for a sequence of N observations under this model is:
N

p(Xl, e XN) — p(Xl)p(X2|X1) H p(Xn’Xn—la Xn—2)-

n=3

» We can similarly consider extensions to an Mt order Markov chain.

e Increased flexibility — Exponential growth in the number of parameters.

» Markov models need big orders to remember past “events”.



Learning Markov Models

» The ML parameter estimates for a simple Markov model are easy.

Consider a Kt order model:

p(XNa ey Xk?—l—l‘Xl’ " Xk) —

N

n=k-+1

p(xn|xn—17 Xn—25 =y Xn—k)-

e Each window of k + 1 outputs is a training case for the model.

P(Xn | Xn—1,Xn—2y ooy Xk )-

e Example: for discrete outputs (symbols) and a 2nd-order Markov model we can

use the multinomial model:

p(Xn — m‘Xn—l = a,Xp—2 = b) = Omab-

e The maximum likelihood values for o are:

*

num(n, s.t. X, = m,X,_1 = a,X,_2 = b)

Xpab —

num(n, s.t. X,—1 = @, X,_2 = O]



State Space Models

* How about the model that is not limited by the Markov assumption to any
order.

e Solution: Introduce additional latent variables!

Al Z9 Zn 1 Zy Zn+1

e Graphical structure known
Xnt1 as the State Space Model.

X1 X2

 For each observation x,, we have a latent variable z,. Assume that latent
variables form a Markov chain.

e If the latent variables are discrete — Hidden Markov Models (HMMs).
Observed variables can be discrete or continuous.

e |f the latent and observed variables are Gaussian — Linear Dynamical
System.



State Space Models

* The joint distribution is given by:

N N
p(X1,...,XN,21,..,2Z2N) = p(2Z1) H (Zn|Zn—1 H (%X |2n)-
n=2 n=1
Z1 /) Zn 1 Zy, Zn+1

e Graphical structure known
as the State Space Model.

X1 X9 Xn+1

» There is always a path connecting two observed variables x,, X, via latent
variables.

e The predictive distribution:
P(Xn+1[X1, -0y XN)

does not exhibit any conditional independence properties! And so prediction
depends on all previous observations.

e Even though hidden state sequence is first-order Markov, the output process is
not Markov of any order!



Hidden Markov Model

e First order Markov chain generates hidden state sequence (known as
transition probabilities):

p(zn =k|Zn_1 =j) = Aji, p(z1 =k)=mp.
* A set of output probability distributions (one per state) converts state path into
sequence of observable symbols/vectors (known as emission probabilities):

p(X”ﬂ |Zn’ qb) Gaussian, if x is continuous.
Conditional probability table if x is discrete.
z Zy Zp—1 Zp Zn+1

X1 X2

State transition Observation model

VA

p(X1, s XN, 21, -, 28) = p(21) | | P(20|Zn-1) | | P(%n20).

n=2 n=1



Links to Other Models

* You can view HMM as: A Markov chain with stochastic measurements.

We will adopt this view,
as we worked with
mixture model before.

'

Z Zy

X1 X2




Transition Probabilities

* |t will be convenient to use 1-of-K encoding for the latent variables.

» The matrix of transition probabilities takes form:
p(znk—1|zn 1,9 —]- jk7 ZAjk:l

e The conditionals can be written as:

K K

p(Zn\Zn—hA) _ HAzn 1g,znk Z1|7T H ﬂ_zm.

kljl

» We will focus on homogenous models: all of the conditional distributions over
latent variables share the same parameters A.

« Standard mixture model for i.i.d. data: special case in which all parameters A,
are the same for all j.

* Or the conditional distribution p(z,|z,_,) is independent of z,_,



Emission Probabilities

* The emission probabilities take form:

p(Xn|2Zn, @) Hp Xp | )"

e For example, for a continuous x, we have

K
p(Xn|Zna Cb) — HN(Xn‘,u'k:a 2k>znk

k=1

 For the discrete, multinomial observed variable x, using 1-of-K encoding, the
conditional distribution takes form:

D K
Xn|Zn, H H Mwnzznkz.

1=1 k=1



HMM Model Equations

* The joint distribution over the observed and latent variables is given by:

N N
p(X,Z|0) = p(z1|7) | | p(zn|zn-1,A) | | p(xnl2n, @),
n=2 n=1

where 0 = {m, A, ¢} are the model parameters.

Zy Z9 [ Zn—ll Zy, Zn41

X1 X2

e Data are not i.i.d. Everything is coupled across time.

» Three problems: computing probabilities of observed sequences, inference
of hidden state sequences, learning of parameters.



HMM as a Mixture Through Time

e Sampling from a 3-state HMM with a 2-d Gaussian emission model.

1 T 1

0 1 0 .
0 0.5 1 0 0.5 1

* The transition matrix is fixed: A, =0.9 and A, = 0.05.



Applications of HMMs

e Speech recognition.

e Language modeling

» Motion video analysis/tracking.

» Protein sequence and genetic sequence alignment and analysis.

e Financial time series prediction.



Maximum Likelihood for the HMM

» \We observe a dataset X = {X4,...,X\}-
* The goal is to determine model parameters 6 = {7, A, ¢}.

» The probability of observed sequence takes form:

p(X|6) = Zp (X, Z|6).

p(observed sequence) Z p(observed outputs, state paths).
all paths

* In contrast to mixture models, the joint distribution p(X,Z | ) does not
factorize over n.

* It looks hard: N variables, each of which has K states. Hence NX total paths.

 Remember inference problem on a simple chain.



Probability of an Observed Sequence

 The joint distribution factorizes:

N
p(X[0) = ZpX Z10) = Y p(z1,x1) [ [ p(2nlZa—1)p(xn|20)
Zzi,..., Zz n=2

- ZP z1)p(X1]21) Zp Z2|z1)p(x2|22)...

ZP ZN|ZN—1 p XN|ZN)-

VA Zs

X1 X9

e Dynamic Programming: By moving the summations inside, we can save a
lot of work.



EM algorithm

» We cannot perform direct maximization (no closed form solution):
p(X|6) = Zp (X, Z|6).

* EM algorithm: we will derive efficient algorithm for maximizing the likelihood
function in HMMs (and later for linear state-space models).

e E-step: Compute the posterior distribution over latent variables:
p(Z|X, 6°').

» M-step: Maximize the expected complete data log-likelihood:

Q(0,6°") = > " p(Z|X,6°) log p(X, Z0).
Z

* If we knew the true state path, then ML parameter estimation would be ftrivial.

» We will first look at the E-step: Computing the true posterior distribution over
the state paths.



Inference of Hidden States

* We want to estimate the hidden states given observations. To start with, let
us estimate a single hidden state:

p(X|zy)p(z,)
p(X)

e Using conditional independence property, we obtain:

V(Zn) = p(2zn|X) =

p(Xla <oy Xn|zn>p(xn—|—17 seey XN|Zn)p(Zn)

p(zn|X) =

p(X)
_ p(X17 ey Xnyy Zn>p(xn—|—17 ceey XN‘ZTL) _ (I(Zn)ﬁ(Zn)
p(X) p(X)
z Zo Zn—1 Zn Zn+1

X1 X2




Inference of Hidden States

) P(X1y ey Xy Zn ) DXyt 15 -ovy XN |Z2) _ a(zn)6(2n,)
p(X) p(X)

The joint probability of observing all
/ of the data up to time n and z,,.

a(zn) = p(X1, -y Xny Zn)

B(zy) = p(x X |Zn) The conditional probability of all
n) = P\Xn+1;. XN |Zn). future data from time n+1 to N.

« Each a(z,) and §(z,) represent a set of K numbers, one for each of the
possible settings of the 1-of-K binary vector z,..

» We will derive efficient recursive algorithm, known as the alpha-beta
recursion, or forward-backward algorithm.

» Relates to the sum-product message passing algorithm for tree-structured
graphical models.



The Forward («) Recursion

e The forward recursion:

a(zn) = p(X1,.sXn,2n)
= p(Xp|Zn)p(X1, s Xn—1,%n)

— p(Xn|Zn) Zp(xla"axn—l7zn—lazn)

Zyp—1

= p(xXnlzn) Y P(X15 s Xn—1,Zn—1)p(Zn|Zn_1)

Zy —
' Computational cost

= p(x,|zn) Z (2 1)p(2n|2Zn_1) 7 scales like O(K?2).

Z Z Zy—1 Zy Zn 1

* Observe:

p(X) =) alzn).

X1 X2

 This enables us to easily (cheaply) compute the desired likelihood.



The Forward («) Recursion

e The forward recursion:

1 | l
./ \‘ \\‘ ,.a
— e ‘, —c. i -
3T O 8 1=
S 1! ’I \‘ , .\ 8 ’*
N L “ # \. \\ @ 7)) .,’
« . - .- II - i ,I
- o R
. \‘I T
time o—> time
Exponentially many paths. At each node, sum up the values

of all incoming paths.

 This is exactly dynamic programming.



The Forward («) Recursion

e |llustration of the forward recursion

o(zn—1,1) o(zn,1) Here a(z, ,) is obtained by

e Taking the elements a(z, _4,))

« Summing the up with weights A;;,
corresponding to p(z, | z,.1)

» Multiplying by the data contribution
p(xn | Zn1)-

( Xn|Zn Z@ Zy 1 Zn‘zn 1)

Zp—1

e The initial condition is glven by o

a(z1) = p(x1|z1)p H mrp(x1| )] 7.



YA

X1

The Backward () Recursion

 There is also a simple recursion for 3(z,,):

B(zn)

Z3

X2

]9(}(an17"7)(DJ’ZTl)

Z P(Xpt 1y s XN Zt 1|20

Z P(Xpt1y s XN|Zna1s Zn ) D(Znt1|20)

Z P(Xnt1; -y XN|Zn41)P(Zn+1]2n)

D p(%nt2, o XN (20t 1)P(Xn 4120 41)P (241 20)

Z B(Zpn+1)p(Xnt1]2Zn41)p(Zn41]20)

Zp—1 Zoy, Zpt1




The Backward () Recursion

e |llustration of the backward recursion

B(zn,1) B(zn+1,1) B(zn)
Aqq
=1
\p(Xn|2n+1,1)
ﬂ(znﬂ,z)
= DA13
\P(Xn|2n+1,2)

B(zny1,3)

" n+IN P(Xn|2n41,3)

— Z B(Zn+1)P(Xn+1|Zn+1)P(Zn+1|2n)

Zn+1

e |nitial condition:

_ o(zn)B(zN)
P = T
_ .p()(>ZPJ%6(ZPJ)
p(X)
Hence:
5(ZN)=



The Backward () Recursion

* a(z,,) gives total inflow of probability to node (n,k).

* G(z,) gives total outflow of probability.

] M ]
‘.‘ '. \ P \ ‘,
- . - .
% SR !
= e
- - T
175 : * ®
‘\ ’.\ ’ \‘ /. A
NN WS S Y2 e " S N -
T &
o—> ttime <«—f3

* In fact, we can do one forward pass to compute all the a(z,) and one
backward pass to compute all the 3(z,) and then compute any +(z,) we want.
Total cost is O(K2N).



Computing Likelihood

* Note that

D (zn) =) p(z|X) = 1.
 We can compute the likelihood at any time using « - 5 recursion:
p(X[0) =) a(z0)B(zn).
* In the forward calculation we proposed originally, we did this at the final

time step n = N.
p(X|0) = Zoz ZN).

Because ((z,)=1.

 This is a good way to check your code!



Two-Frame Inference

* We will also need the cross-time statistics for adjacent time steps:

§(Zn-1,2n) = pP(Zn-1,2n|X)
p(X|zn—1,2n)p(Zn—1,%n)
p(X)
P(X1y ey Xn—1|Z00—1)P(Xn |20 ) P(Xin 1y - vvy XN |20 ) P(Z00 | 21— 1) P(Zin—1)

p(X)
(Zn—1)P(Xn|2n)0(Zn|Zn—1)5(2n)
p(X) '

e This is a K x K matrix with elements £(i,j) representing the expected number of
transitions from state i to state j that begin at time n-1, given all the observations.

z Zy Zn—1 Zp Zn+1
e [t can be computed with the
same « and ( recursions.

X1 X2




likelihood

EM algorithm

e Intuition: if only we knew the true state path then ML parameter estimation
would be trivial.

o E-step: Compute the posterior distribution over the state path using a - 8
recursion (dynamic programming):

p(Z|X, 0°'%).

» M-step: Maximize the expected complete data log-likelihood (parameter re-
estimation):

Q0,0 = " p(Z|X,0°%) log p(X, Z).
Z

» We then iterate. This is also known as a Baum-Welch algorithm (special case

of EM).

* In general, finding the ML parameters is
NP hard, so initial conditions matter a lot
and convergence is hard to tell.

/

parameter space



Complete Data Log-likelihood

e Complete data log-likelihood takes form:

- N N
logp(X,Z10) = log |p(z1|m) | | p(zalzn-1,4) | | p(xnl2zn, cb)]
- n=2 n=1
- K N K K N K
= log H Tk H H AZpmmdme H Hp(xn!zn)z”"’]
- k=1 n=2 k=1 j=1 n=1k=1
N K N K
- z o 3003 el log A + 303 2 logplxal)
n=2 k=1 j=1 / n=1 k=1 /
transition model observation model

o Statistics we need from the E-step are:
Y(2zn) = p(2n|X).
g(zn—la Zn) — p(zn—la Zn‘X)



Expected Complete Data Log-likelihood

» The complete data log-likelihood takes form:

Q(6,0°%) = Zp<Z|X, 6°'") log p(X, Z|6).

K N K K
Z zlk logﬂ-k—FS‘S‘;‘S Zn 1,7 4nk logAjk:"_ZZ’Ynk: logp Xn|Zn)-
k=1 n=2 k=1 j=1 n=1 k=1

* Hence in the E-step we evaluate:
V(2n) = p(2n|X).
g(zn—la Zn) — p(zn—la Zn‘X)

* In the M-step we optimize Q with respect to parameters: § = {x, A, ¢}.



Parameter Estimation

e |nitial state distribution: expected number of times in state k at time 1:

new __ ’Y(Zlk)
ﬂ-k? = i .
23:1 v(215)
» Expected # of transitions from state j to k which begin at time n-1:

f(zn—l,ja Zn,kz) — p(zn—l,j7 Zp,k X)a

so the estimated transition probabilities are:

N
new __ Zn:2 g(zn—laﬁ an?)

Jk K N .
Zl:l ZnZQ g(zn—l,ja znl)

» The EM algorithm must be initialized by choosing starting values for = and A.

* Note that any elements of = or A that initially are set to zero will remain zero in
subsequent EM updates.



Parameter Estimation: Emission Model

» For the case of discrete multinomial observed variables, the observation

model takes form: Same as fitting Bernoulli
p(Xn|2n, @ H H piEnk, mixture model.

i=1 k=1 e

ZN—l ’Y(an:)xnz
* And the corresponding M-step update: ;" = == :

* For the case of the Gaussian emission model: Remember:
’7(Zn) = p(zn\X).
p(Xn|Zn7 (b) — H N(Xn“l’ka Zk)znk
k=1

e And the corresponding M-step updates:
Same as fitting a Gaussian

new _ E :,.)/ an X, Ny = E 7 an mixture model.

N
new 1
2 = Fk Z V(Ynk ) (Xn — pg) (Xn — Nk)Tv
n=1



Viterbi Decoding

e The numbers ~+(z,) above gave the probability distribution over all states at
any time.

» By choosing the state v*(z,,) with the largest probability at each time, we
can make an “average” state path. This is the path with the maximum
expected number of correct states.

* To find the single best path, we do Viterbi decoding which is Bellman’s
dynamic programming algorithm applied to this problem.

* The recursions look the same, except with max instead of ..

e Same dynamic programming trick: instead of summing, we keep the term
with the highest value at each node.

* There is also a modified EM (Baum-Welch) training based on the Viterbi
decoding. Like K-means instead of mixtures of Gaussians.

» Relates to the max-sum algorithm for tree structured graphical models.



Viterbi Decoding

A fragment of the HMM lattice showing two possible paths:

n—2 n—1 n n+1

« Viterbi decoding efficiently determines the most probable path from the
exponentially many possibilities.

» The probability of each path is given by the product of the elements of the
transition matrix A, along with the emission probabilities associated with
each node in the path.



Using HMMs for Recognition

» We can use HMMs for recognition by:

- training one HMM for each class (requires labeled training data)
- evaluating probability of an unknown sequence under each HMM
- classifying unknown sequence by choosing an HMM with highest likelihood

' '

L1 L2 Lk

 This requires the solution of two problems:

- Given model, evaluate probability of a sequence. (We can do this exactly
and efficiently.)

- Given some training sequences, estimate model parameters. (We can
find the local maximum using EM.)



Autoregressive HMMs

* One limitation of the standard HMM is that it is poor at capturing long-
range correlations between observations, as these have to be mediated via
the first order Markov chain of hidden states.

 Autoregressive HMM: The distribution over x, depends depends on a
subset of previous observations.

 The number of additional links must be limited to avoid an excessive
number of free parameters.

» The graphical model framework motivates a number of different models
based on HMMs.



Input-Output HMMSs

e Both the emission probabilities and the transition probabilities depend on
the values of a sequence of observations u,,...,uy.

* Model parameters can be efficiently fit using EM, in which the E-step
involves forward-backward recursion.



Factorial HMMs

e Example of Factorial HMM comprising of two Markov chains of latent
variables:

2 2
Zgzzl 2 Z’El—f)-l

e Motivation: In order to represent 10
bits of information at a given time step,
a standard HMM would need
K=210=1024 states.

» Factorial HMMs would use 10 binary
chains.

e Much more powerful model.

» The key disadvantage: Exact inference is intractable.
* Observing the x variables introduces dependencies between latent chains.

» Hence E-step for this model does not correspond to running forward-
backward along the M latent chain independently.



Factorial HMMs

» The conditional independence property: z,., L z, 4 | z,does not hold for the
individual latent chains.

(2) (2)

2
Zn—1 Z% ) Zp+1

» There is no efficient exact E-step for
this model.

* One solution would be to use MCMC
techniques to obtain approximate
sample from the posterior.

e Another alternative is to resort to variational inference.

» The variational distribution can be described by M separate Markov chains
corresponding to the latent chains in the original model (structured mean-
field approximation).



Regularizing HMMs

e There are two problems:

- for high dimensional outputs, lots of parameters in the emission model
- with many states, transition matrix has many (squared) elements

e First problem: full covariance matrices in high dimensions or discrete symbol
models with many symbols have lots of parameters. To estimate these
accurately requires a lot of training data.

» We can use mixtures of diagonal
covariance Gaussians.

» For discrete data, we can use mixtures of
base rates.

e We can also tie parameters across states.



Regularizing Transition Matrices

* One way to regularize large transition matrices is to constrain them to be
sparse: instead of being allowed to transition to any other state, each state
has only a few possible successor states.

A very effective way to constrain the transitions is to order the states in the
HMM and allow transitions only to states that come later in the ordering.

e Such models are known as “linear HMMs”, “chain HMMs” or “left- to-right
HMMs”. Transition matrix is upper- diagonal (usually only has a few bands).

A1 Ao

0o
s(t)

s(t+1)



Linear Dynamical Systems

* In HMMSs, latent variables are discrete but with arbitrary emission
probability distributions.

Zq Zo Zy 1 Zy Zn—l—l

X1 X2

* We now consider a linear-Gaussian state-space model, so that latent
variables and observed variables are multivariate Gaussian distributions.

* An HMM can be viewed as an extension of the mixture models to allow for
sequential correlations in the data

 Similarly, the linear dynamical system (LDS) can be viewed as a
generalization of the continuous latent variable models, such as probabilistic
PCA.



Linear Dynamical Systems

e The model is represented by a tree-structured directed graph, so inference
can be solved efficiently using the sum-product algorithm.

» The forward recursions, analogous to the a-messages of HMMs are known
as the Kalman filter equations.

* The backward recursions, analogous to the -messages, are known as the
Kalman smoother equations.

» The Kalman filter is used in many real-time tracking applications.

e Because the LDS is a linear-Gaussian model, the joint distribution over all
variables, as well as marginals and conditionals, will be Gaussian.

 This leads to tractable inference and learning.



The Model

» We can write the transition and emission distributions in the general form:

Zq /) Zn1 Zy, Zp 11

p(zn‘zn—l) — N(Zn|AZn—17F)7
p(xp|2n) = N(x,|Czy,, 2),

p(z1) = N(z1|pg, Vo).

X1 X2

» These can be expressed in terms of noisy linear equations:

Zn = Az, 1+ Wy, w ~ N(wl|0,T),
X, = Czy, + Vi, v ~ N(v]0,X),
Z1 = Mo t U, UNN(H‘O,VO).

» Model parameters § = {A,T", C, X, pu,, Vo } can be learned using EM
algorithm (similar to standard HMM case).



Inference in LDS

e Consider forward equations. The initial message is Gaussian, and since each
of the factors is Gaussian, all subsequent messages will also be Gaussians.

z z Zn_1 Zn Znt1
Zyp = Az, _1+ W, w ~ N(wl|0,T),
xp, = Czy + Vi, v ~ N (v]0,X),
z1 = Py + U, u ~ N (ul0,Vy).

X1 X9

 Similar to HMMs, let us define the normalized version of a(z,):

A O‘(Zn)
&(zn) = p(2,|X1, .0, Xp) = = N (2, |pt,,, V).
( ) ( ‘ 1 ) p(Xl,--.,Xn) ( |/’l’ )
Remember: for HMMs
 Using forward recursion, we get: a(zy,) = p(xp|2n) Z (zn—1)p(Zn|2Zn_1)
Cn&(zn) — p(X’rL|Zn) /&(Zn—l)p(zn|zn—1)dzn—l

= N(Xn|czn72) /N(Zn—1|/1’n—17Vn—l)N(Zn|AZn—17F)dzn—1’



Inference in LDS

* Hence we obtain;

Cn&(zn) — p(Xn|Zn)/&(Zn—l)p(zn|zn—1)dzn—l

= N(Xn|czn72) /N(Zn—lh“l’n—lvVn—1>N(Zn|AZn—17F)dzn—l’

in which case a(z,)) is Gaussian:

cn@(zn) = N(zn|1t,,, V).

M, = Al'l’n—l + Kn(xn - CAH’n—l)
vV, = I-K,C)P,_;
P, , = AV, AT +T.

and we have also defined the Kalman gain matrix:

K, =P, ,C” (CP,_,CT+%) .



Kalman Filter

e Let us examine the evolution of the mean:;

Z Z) Zp—1 Zy, Zyp 11
Zyp = Az, _1 + W, w ~ N (wl|0,T),
xXp = Czy + Vi, v ~ N (v]0,X),

! - z1 = po + U, u ~ N(u|0, Vy).
Predicted
Prediction of the observation for x,,.
mean over z,,. \ /
Ky = Al"’n—l + Kn(Xn T CA/"’n—l)
Predicted mean plus the Error between the predicted
correction term controlled by observation x,, and the actual
the Kalman gain matrix. observation X,

* We can view the Kalman filter as a process of making subsequent predictions
and then correcting these predictions in the light of the new observations.



Kalman Filter

* Example:
“n—1
P(Zn—1]X1; s Xp—1) P(Zn|X1; s Xn—1) P(Zn|X1,y ey X))
blue curve red curve blue curve
incorporate incorporate new observation
transition model (density of the new point is

given by the green curve)

* The new observation has shifted and narrowed the distribution compared to
(see red curve) P(Zn|X1, .oy Xn—1)-



Tracking Example

e LDS that is being used to track a moving object in 2-D space:

 Blue points indicate the true position of the object.

e Green points denote the noisy measurements.

» Red crosses indicate the means of the inferred posterior distribution of the
positions inferred by the Kalman filter.



Particle Filters

e For dynamical systems that are non-Gaussian (e.g. emission densities are non-
Gaussian), we can use sampling methods to find a tractable solution to the
inference problem.

e Consider a class of distributions represented by the graphical model:

zZ Zy Zn—1 Zy, Zn+1
e Suppose we observed X, =
{xX4,...,X,}, and we wish to
approximate:

X1 X2

Blf(a)) = [ S(mp(a)X,)dz,
— /f(zn)p(zn|xn,Xn_1)dzn
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Particle Filters
* Hence
Elf(zy)] /f 2 )P(2,| Xy ) dz, ~ Z zg) ~ p(2n| Xpn_1),

with importance weights:
!
() _ p(Xn|Z7(%))
W, = —7 TN
2 m=1P(Xn|zn"")

» Hence the posterior p(z, | X,,) is represented by the set of L samples together
with the corresponding importance weights.

* We would like to define a sequential algorithm.

e Suppose that a set of samples and weights have been obtained at time step n.
* We wish to find the set of new samples and weights at time step n+1.



Particle Filters

e From our previous result, let f(Zn) = p(Zn+1|Zn)>

p(zn—l—llxn) — /p(zn+1|zn)p(zn|Xn)dZn

L
~ ng)p(zn+1|zg))a 2y, ~ p(zn|Xn-1),
=1 l

(1) _ p(Xn|Z§L))

Wn" = 21 (m)y "

Zm:1p(xnlzn )

- At time n, we have a sample representation of the posterior distribution
p(z, | X,) expressed as L samples with corresponding weights.

e Summary of the particle filter algorithm:

- We next draw L samples from the mixture distribution (above).

- For each sample, we then use the new observation to re-evaluate the
weights:

l
o = P(Xn+1 |Z7(1—)l—1)

n+1 L
S (|2



p(2n|Xn)

p(zn+1|Xn)

p(xn—l—l |zn—l—1) s

plon %) O—-O—2—

« At time n, the posterior p(z, | X,,) is represented as a mixture distribution.

» We draw a set of L samples from this distribution (incorporating the transition
model).

* The new weights evaluated by incorporating the new observation x,,, 4.



