
STA 4273H:
Statistical Machine Learning

Russ	
 Salakhutdinov	

Department of Statistics!

rsalakhu@utstat.toronto.edu!
http://www.utstat.utoronto.ca/~rsalakhu/

Sidney Smith Hall, Room 6002

Lecture 11

Project Reminder
• 

•  Brief presentations will be done in an alphabetical order.

•  You should have your name, and project title on the first slide.

•  Brief 5-minute presentations of projects will take place on Nov 19. You
need to send me 6-7 slides in pdf formtat describing your project.

•  You will have 5-7 mins to briefly describe your project and what you
would want to accomplish in this project.

•  Deadline: Sunday Nov 17, 2012. Submit your slides by e-mail:
rsalakhu@utstat.toronto.edu

Sequential Data

•  Express the likelihood function as a product over all data points of the
probability distribution evaluated at each data point.

•  So far we focused on problems that assumed that the data points were
independent and identically distributed (i.i.d. assumption).

•  Poor assumption when working with sequential data.

•  For many applications, e.g. financial forecasting, we want to predict the next
value in a time series, given past values.

•  Intuitively, the recent observations are likely to be more informative in predicting
the future.

•  Markov models: future predictions are independent of all but the most recent
observations.

Example of a Spectrogram

•  Example of a spectrogram of a spoken
word ‘Bayes theorem’:

•  Successive observations are
highly correlated.

Markov Models

•  The joint distribution for a sequence of N observations under this model is:

•  The simplest model is the first-order Markov chain:

•  From the d-separation property, the conditionals are given by:

•  For many applications, these conditional distributions that define the model will
be constrained to be equal.

•  This corresponds to the assumption of a stationary time series.
•  The model is known as homogenous Markov chain.

Second-Order Markov Models

•  The joint distribution for a sequence of N observations under this model is:

•  We can also consider a second-order Markov chain:

•  We can similarly consider extensions to an Mth order Markov chain.

•  Increased flexibility ! Exponential growth in the number of parameters.

•  Markov models need big orders to remember past “events”.

Learning Markov Models
•  The ML parameter estimates for a simple Markov model are easy.
Consider a Kth order model:

•  Each window of k + 1 outputs is a training case for the model.

•  Example: for discrete outputs (symbols) and a 2nd-order Markov model we can
use the multinomial model:

•  The maximum likelihood values for ® are:

State Space Models
•  How about the model that is not limited by the Markov assumption to any
order.

•  For each observation xn, we have a latent variable zn. Assume that latent
variables form a Markov chain.

•  Solution: Introduce additional latent variables!

•  Graphical structure known
as the State Space Model.

•  If the latent variables are discrete ! Hidden Markov Models (HMMs).
Observed variables can be discrete or continuous.

•  If the latent and observed variables are Gaussian ! Linear Dynamical
System.

State Space Models
•  The joint distribution is given by:

•  There is always a path connecting two observed variables xn, xm via latent
variables.

•  The predictive distribution:

does not exhibit any conditional independence properties! And so prediction
depends on all previous observations.

•  Even though hidden state sequence is first-order Markov, the output process is
not Markov of any order!

•  Graphical structure known
as the State Space Model.

Hidden Markov Model
•  First order Markov chain generates hidden state sequence (known as
transition probabilities):

•  A set of output probability distributions (one per state) converts state path into
sequence of observable symbols/vectors (known as emission probabilities):

State transition Observation model

Gaussian, if x is continuous.
Conditional probability table if x is discrete.

Links to Other Models
•  You can view HMM as: A Markov chain with stochastic measurements.

•  Or a mixture model with states coupled across time.
We will adopt this view,
as we worked with
mixture model before.

Transition Probabilities
•  It will be convenient to use 1-of-K encoding for the latent variables.

•  We will focus on homogenous models: all of the conditional distributions over
latent variables share the same parameters A.

•  The matrix of transition probabilities takes form:

•  The conditionals can be written as:

•  Standard mixture model for i.i.d. data: special case in which all parameters Ajk
are the same for all j.

•  Or the conditional distribution p(zn|zn-1) is independent of zn-1.

Emission Probabilities
•  The emission probabilities take form:

•  For example, for a continuous x, we have

•  For the discrete, multinomial observed variable x, using 1-of-K encoding, the
conditional distribution takes form:

HMM Model Equations
•  The joint distribution over the observed and latent variables is given by:

where are the model parameters.

•  Data are not i.i.d. Everything is coupled across time.

•  Three problems: computing probabilities of observed sequences, inference
of hidden state sequences, learning of parameters.

HMM as a Mixture Through Time
•  Sampling from a 3-state HMM with a 2-d Gaussian emission model.

•  The transition matrix is fixed: Akk=0.9 and Ajk = 0.05.

Applications of HMMs
•  Speech recognition.
•  Language modeling

•  Motion video analysis/tracking.

•  Protein sequence and genetic sequence alignment and analysis.

•  Financial time series prediction.

Maximum Likelihood for the HMM
•  We observe a dataset X = {x1,…,xN}.
•  The goal is to determine model parameters

•  The probability of observed sequence takes form:

•  In contrast to mixture models, the joint distribution p(X,Z | µ) does not
factorize over n.

•  It looks hard: N variables, each of which has K states. Hence NK total paths.

•  Remember inference problem on a simple chain.

Probability of an Observed Sequence
•  The joint distribution factorizes:

•  Dynamic Programming: By moving the summations inside, we can save a
lot of work.

EM algorithm
•  We cannot perform direct maximization (no closed form solution):

•  EM algorithm: we will derive efficient algorithm for maximizing the likelihood
function in HMMs (and later for linear state-space models).

•  E-step: Compute the posterior distribution over latent variables:

•  M-step: Maximize the expected complete data log-likelihood:

•  We will first look at the E-step: Computing the true posterior distribution over
the state paths.

•  If we knew the true state path, then ML parameter estimation would be trivial.

Inference of Hidden States
•  We want to estimate the hidden states given observations. To start with, let
us estimate a single hidden state:

•  Using conditional independence property, we obtain:

Inference of Hidden States
•  Hence:

The joint probability of observing all
of the data up to time n and zn.

The conditional probability of all
future data from time n+1 to N.

•  Each ®(zn) and ¯(zn) represent a set of K numbers, one for each of the
possible settings of the 1-of-K binary vector zn.

•  Relates to the sum-product message passing algorithm for tree-structured
graphical models.

•  We will derive efficient recursive algorithm, known as the alpha-beta
recursion, or forward-backward algorithm.

The Forward (®) Recursion
•  The forward recursion:

•  Observe:

•  This enables us to easily (cheaply) compute the desired likelihood.

Computational cost
scales like O(K2).

The Forward (®) Recursion

Exponentially many paths.

Probability of an Observed Sequence

• To evaluate the probability P({y}), we want:

P({y}) =
∑

{x}
P({x}, {y})

P(observed sequence) =
∑

all paths

P(observed outputs , state path)

• Looks hard! (#paths = N τ). But joint probability factorizes:

P({y}) =
∑

x1

∑

x2

· · ·
∑

xτ

T∏

t=1
P(xt|xt−1)P(yt|xt)

=
∑

x1

P(x1)P(y1|x1)
∑

x2

P(x2|x1)P(y2|x2) · · ·
∑

xτ

P(xτ |xτ−1)P(yτ |xτ)

• By moving the summations inside, we can save a lot of work.

The forward (α) recursion

•We want to compute:

L = P({y}) =
∑

{x}
P({x}, {y})

• There exists a clever “forward recursion” to compute this huge sum
very efficiently. Define αj(t):

αj(t) = P(yt
1 , xt = j)

αj(1) = πjAj(y1) induction to the rescue...

αk(t + 1) = {
∑

j
αj(t)Tjk}Ak(yt+1)

• Notation: xb
a ≡ {xa, . . . , xb}; yb

a ≡ {ya, . . . ,yb}
• This enables us to easily (cheaply) compute the desired likelihood L

since we know we must end in some possible state:

L =
∑

k

αk(τ)

Bugs on a Grid

• Naive algorithm:

1. start bug in each state at t=1 holding value 0
2. move each bug forward in time by making copies of it and

incrementing the value of each copy by the probability of the
transition and output emission

3. go to 2 until all bugs have reached time τ
4. sum up values on all bugs

st
at
es

time

Bugs on a Grid - Trick

• Clever recursion:
adds a step between 2 and 3 above which says: at each node, replace
all the bugs with a single bug carrying the sum of their values

st
at
es

timeα

• This is exactly dynamic programming.

Probability of an Observed Sequence

• To evaluate the probability P({y}), we want:

P({y}) =
∑

{x}
P({x}, {y})

P(observed sequence) =
∑

all paths

P(observed outputs , state path)

• Looks hard! (#paths = N τ). But joint probability factorizes:

P({y}) =
∑

x1

∑

x2

· · ·
∑

xτ

T∏

t=1
P(xt|xt−1)P(yt|xt)

=
∑

x1

P(x1)P(y1|x1)
∑

x2

P(x2|x1)P(y2|x2) · · ·
∑

xτ

P(xτ |xτ−1)P(yτ |xτ)

• By moving the summations inside, we can save a lot of work.

The forward (α) recursion

•We want to compute:

L = P({y}) =
∑

{x}
P({x}, {y})

• There exists a clever “forward recursion” to compute this huge sum
very efficiently. Define αj(t):

αj(t) = P(yt
1 , xt = j)

αj(1) = πjAj(y1) induction to the rescue...

αk(t + 1) = {
∑

j
αj(t)Tjk}Ak(yt+1)

• Notation: xb
a ≡ {xa, . . . , xb}; yb

a ≡ {ya, . . . ,yb}
• This enables us to easily (cheaply) compute the desired likelihood L

since we know we must end in some possible state:

L =
∑

k

αk(τ)

Bugs on a Grid

• Naive algorithm:

1. start bug in each state at t=1 holding value 0
2. move each bug forward in time by making copies of it and

incrementing the value of each copy by the probability of the
transition and output emission

3. go to 2 until all bugs have reached time τ
4. sum up values on all bugs

sta
te
s

time

Bugs on a Grid - Trick

• Clever recursion:
adds a step between 2 and 3 above which says: at each node, replace
all the bugs with a single bug carrying the sum of their values

sta
te
s

timeα

• This is exactly dynamic programming.At each node, sum up the values
of all incoming paths.

•  The forward recursion:

•  This is exactly dynamic programming.

The Forward (®) Recursion
•  Illustration of the forward recursion

•  The initial condition is given by:

Here ®(zn,1) is obtained by
•  Taking the elements ®(zn-1,j)
•  Summing the up with weights Aj1,
corresponding to p(zn | zn-1)
•  Multiplying by the data contribution
p(xn | zn1).

The Backward (¯) Recursion
•  There is also a simple recursion for ¯(zn):

The Backward (¯) Recursion
•  Illustration of the backward recursion

•  Initial condition:

•  Hence:

The Backward (¯) Recursion
•  ®(znk) gives total inflow of probability to node (n,k).

•  ¯(znk) gives total outflow of probability.

Inference of Hidden States

•What if we we want to estimate the hidden states given
observations? To start with, let us estimate a single hidden state:

p(xt|{y}) = γ(xt) =
p({y}|xt)p(xt)

p({y})

=
p(yt

1|xt)p(yτ
t+1|xt)p(xt)

p(yτ
1)

=
p(yt

1, xt)p(yτ
t+1|xt)

p(yτ
1)

p(xt|{y}) = γ(xt) =
α(xt)β(xt)

p(yτ
1)

where

αj(t) = P(yt
1 , xt = j)

βj(t) = p(yτ
t+1 | xt = j)

γi(t) = p(xt = i | yτ
1)

Forward-Backward Algorithm

•We compute these quantities efficiently using another recursion.
Use total prob. of all paths going through state i at time t to
compute the conditional prob. of being in state i at time t:

γi(t) = P(xt = i | yτ
1)

= αi(t)βi(t)/L

where we defined:

βj(t) = P(yτ
t+1 | xt = j)

• There is also a simple recursion for βj(t):

βj(t) =
∑

k

TjkAk(yt+1)βk(t + 1)

βj(τ) = 1

• αi(t) gives total inflow of prob. to node (t, i)
βi(t) gives total outflow of prob.

Forward-Backward Algorithm

• αi(t) gives total inflow of prob. to node (t, i)
βi(t) gives total outflow of prob.

sta
te
s

timeα β

• Bugs again: we just let the bugs run forward from time 0 to t and
backward from time τ to t.

• In fact, we can just do one forward pass to compute all the αi(t)
and one backward pass to compute all the βi(t) and then compute
any γi(t) we want. Total cost is O(M 2T).

Likelihood from Forward-Backward Algorithm

• Since
∑

xt
γ(xt) = 1, we can compute the likelihood at any time

using the results of the α − β recursions:

L = p({y}) =
∑

xt

α(xt)β(xt)

• In the forward calculation we proposed originally, we did this at the
final timestep t = τ :

L =
∑

xτ

α(xτ)

because βτ = 1.

• This is a good way to check your code!

•  In fact, we can do one forward pass to compute all the ®(zn) and one
backward pass to compute all the ¯(zn) and then compute any °(zn) we want.
Total cost is O(K2N).

Computing Likelihood
•  Note that

•  We can compute the likelihood at any time using ® - ¯ recursion:

•  In the forward calculation we proposed originally, we did this at the final
time step n = N.

Because ¯(zn)=1.

•  This is a good way to check your code!

Two-Frame Inference
•  We will also need the cross-time statistics for adjacent time steps:

•  This is a K £ K matrix with elements »(i,j) representing the expected number of
transitions from state i to state j that begin at time n-1, given all the observations.

•  It can be computed with the
same ® and ¯ recursions.

EM algorithm
•  Intuition: if only we knew the true state path then ML parameter estimation
would be trivial.

•  E-step: Compute the posterior distribution over the state path using ® - ¯
recursion (dynamic programming):

•  M-step: Maximize the expected complete data log-likelihood (parameter re-
estimation):

•  In general, finding the ML parameters is
NP hard, so initial conditions matter a lot
and convergence is hard to tell.

•  We then iterate. This is also known as a Baum-Welch algorithm (special case
of EM).

Baum-Welch (EM) Training

1. Intuition: if only we knew the true state path then ML parameter
estimation would be trivial.

2. But: can estimate state path using the DP trick.

3. Baum-Welch algorithm (special case of EM): estimate the states,
then compute params, then re-estimate states, and so on . . .

4. This works and we can prove that it always improves likelihood.

5. However: finding the ML parameters is NP hard, so initial
conditions matter a lot and convergence is hard to tell.

lik
el

ih
oo

d

parameter space

Parameter Estimation with EM

• Complete log likelihood:

log p(x, y) = log{πx1

τ−1∏

t=1
Txt,xt+1

τ∏

t=1
Axt(yt)}

= log{
∏

i
π

[xi
1]

i

τ−1∏

t=1

∏

j
T

[xi
t,x

j
t+1]

ij

τ∏

t=1

∏

k

Ak(yt)
[xk

t]}

=
∑

i
[xi

1] log πi +
τ−1∑

t=1

∑

j
[xi

t, x
j
t+1] log Tij +

τ∑

t=1

∑

k

[xk
t] log Ak(yt)

where the indicator [xi
t] = 1 if xt = i and 0 otherwise

• Statistics we need from the E-step are:
p(xt|{y}) and p(xt, xt+1|{y}).

•We saw how to get single time marginals p(xt|{y}), but what
about two-frame estimates p(xt, xt+1|{y})?

Two-frame inference

• Need the cross-time statistics for adjacent time steps:

ξij = p(xt = i, xt+1 = j|{y})

• This can be done by rewriting:

p(xt, xt+1|{y}) = p(xt, xt+1, {y})/p({y})
= p(xt,y

t
1)p(xt+1,y

τ
t+1|xt,y

t
1)/L

= p(xt,y
t
1)p(xt+1|xt)p(yt+1|xt+1)p(yτ

t+2|xt+1)/L
= αi(t)TijAj(yt+1)βj(t + 1)/L

= ξij

• This is the expected number of transitions from state i to state j
that begin at time t, given the observations.

• It can be computed with the same α and β recursions.

New Parameters are just
Ratios of Frequency Counts

• Initial state distribution: expected #times in state i at time 1:

π̂i = γi(1)

• Expected #transitions from state i to j which begin at time t:

ξij(t) = αi(t)TijAj(yt+1)βj(t + 1)/L

so the estimated transition probabilities are:

T̂ij =
τ−1∑

t=1
ξij(t)

/
τ−1∑

t=1
γi(t)

• The output distributions are the expected number of times we
observe a particular symbol in a particular state:

Âj(y) =
∑

t|yt=y

γj(t)

/
τ∑

t=1
γj(t)

Complete Data Log-likelihood
•  Complete data log-likelihood takes form:

•  Statistics we need from the E-step are:

transition model observation model

Expected Complete Data Log-likelihood
•  The complete data log-likelihood takes form:

•  In the M-step we optimize Q with respect to parameters:

•  Hence in the E-step we evaluate:

Parameter Estimation
•  Initial state distribution: expected number of times in state k at time 1:

•  Note that any elements of ¼ or A that initially are set to zero will remain zero in
subsequent EM updates.

•  Expected # of transitions from state j to k which begin at time n-1:

so the estimated transition probabilities are:

•  The EM algorithm must be initialized by choosing starting values for ¼ and A.

Parameter Estimation: Emission Model
•  For the case of discrete multinomial observed variables, the observation
model takes form:

•  And the corresponding M-step update:

•  For the case of the Gaussian emission model:

•  And the corresponding M-step updates:
Same as fitting a Gaussian
mixture model.

Same as fitting Bernoulli
mixture model.

Remember:

Viterbi Decoding
•  The numbers °(zn) above gave the probability distribution over all states at
any time.

•  By choosing the state °*(zn) with the largest probability at each time, we
can make an “average” state path. This is the path with the maximum
expected number of correct states.

•  To find the single best path, we do Viterbi decoding which is Bellman’s
dynamic programming algorithm applied to this problem.

•  The recursions look the same, except with max instead of ∑.

•  There is also a modified EM (Baum-Welch) training based on the Viterbi
decoding. Like K-means instead of mixtures of Gaussians.

•  Relates to the max-sum algorithm for tree structured graphical models.

•  Same dynamic programming trick: instead of summing, we keep the term
with the highest value at each node.

Viterbi Decoding
•  A fragment of the HMM lattice showing two possible paths:

•  Viterbi decoding efficiently determines the most probable path from the
exponentially many possibilities.

•  The probability of each path is given by the product of the elements of the
transition matrix Ajk, along with the emission probabilities associated with
each node in the path.

Using HMMs for Recognition
•  We can use HMMs for recognition by:

-  training one HMM for each class (requires labeled training data)
-  evaluating probability of an unknown sequence under each HMM
-  classifying unknown sequence by choosing an HMM with highest likelihood

Viterbi Decoding

• The numbers γj(t) above gave the probability distribution over all
states at any time.

• By choosing the state γ∗(t) with the largest probability at each
time, we can make an “average” state path. This is the path with
the maximum expected number of correct states.

• But it is not the single path with the highest likelihood of
generating the data. In fact it may be a path of probability zero!

• To find the single best path, we do Viterbi decoding which is just
Bellman’s dynamic programming algorithm applied to this problem.

• The recursions look the same, except with max instead of
∑

.

• Bugs once more: same trick except at each step kill all bugs but
the one with the highest value at the node.

• There is also a modified Baum-Welch training based on the Viterbi
decode. Like K-means instead of mixtures of Gaussians.

Using HMMs for Recognition

• Use many HMMs for recognition by:

1. training one HMM for each class (requires labelled training data)
2. evaluating probability of an unknown sequence under each HMM
3. classifying unknown sequence: HMM with highest likelihood

L1 L2 Lk

• This requires the solution of two problems:

1. Given model, evaluate prob. of a sequence.
(We can do this exactly & efficiently.)

2. Give some training sequences, estimate model parameters.
(We can find the local maximum of parameter space nearest our
starting point.)

Symbol HMM Example

• Character sequences (discrete outputs)

−
*

9

A B C D E
F GH I J

K L M N O

P Q R ST
U V WX Y

−
*

9

AB C D E
F G H IJ

K L M N O
P Q R S T

U V W X Y

−

*

9

A BCD E

F G H I J

K LMNO

P Q R STUVWX Y

−

*

9

AB C D E
F G H I J

K L M N O

P Q R ST
U V W X Y

Mixture HMM Example

• Geyser data (continuous outputs)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
40

50

60

70

80

90

100

110

y1

y2

State output functions

•  This requires the solution of two problems:

-  Given model, evaluate probability of a sequence. (We can do this exactly
and efficiently.)
-  Given some training sequences, estimate model parameters. (We can
find the local maximum using EM.)

Autoregressive HMMs
•  One limitation of the standard HMM is that it is poor at capturing long-
range correlations between observations, as these have to be mediated via
the first order Markov chain of hidden states.

•  Autoregressive HMM: The distribution over xn depends depends on a
subset of previous observations.
•  The number of additional links must be limited to avoid an excessive
number of free parameters.

•  The graphical model framework motivates a number of different models
based on HMMs.

Input-Output HMMs
•  Both the emission probabilities and the transition probabilities depend on
the values of a sequence of observations u1,…,uN.

•  Model parameters can be efficiently fit using EM, in which the E-step
involves forward-backward recursion.

Factorial HMMs
•  Example of Factorial HMM comprising of two Markov chains of latent
variables:

•  The key disadvantage: Exact inference is intractable.

•  Motivation: In order to represent 10
bits of information at a given time step,
a standard HMM would need
K=210=1024 states.

•  Factorial HMMs would use 10 binary
chains.

•  Much more powerful model.

•  Observing the x variables introduces dependencies between latent chains.
•  Hence E-step for this model does not correspond to running forward-
backward along the M latent chain independently.

Factorial HMMs
•  The conditional independence property: zn+1 ? zn-1 | zn does not hold for the
individual latent chains.

•  Another alternative is to resort to variational inference.

•  There is no efficient exact E-step for
this model.

•  One solution would be to use MCMC
techniques to obtain approximate
sample from the posterior.

•  The variational distribution can be described by M separate Markov chains
corresponding to the latent chains in the original model (structured mean-
field approximation).

Regularizing HMMs
•  There are two problems:

-  for high dimensional outputs, lots of parameters in the emission model
-  with many states, transition matrix has many (squared) elements

•  First problem: full covariance matrices in high dimensions or discrete symbol
models with many symbols have lots of parameters. To estimate these
accurately requires a lot of training data.

•  We can use mixtures of diagonal
covariance Gaussians.

•  For discrete data, we can use mixtures of
base rates.

•  We can also tie parameters across states.

Regularizing HMMs

• Two problems:

– for high dimensional outputs, lots of parameters in each Aj(y)

– with many states, transition matrix has many2 elements

• First problem: full covariance matrices in high dimensions or
discrete symbol models with many symbols have lots of parameters.
To estimate these accurately requires a lot of training data.
Instead, we often use mixtures of diagonal covariance Gaussians.

• For discrete data, we can use mixtures of base rates.

•We can also tie parameters across states.

Regularizing Transition Matrices

•One way to regularize large transition matrices is to constrain them
to be relatively sparse: instead of being allowed to transition to any
other state, each state has only a few possible successor states.

• For example if each state has at most p possible next states then
the cost of inference is O(pKT) and the number of parameters is
O(pK + KM) which are both linear in the number of states.

•

An extremely effective way to constrain the
transitions is to order the states in the HMM
and allow transitions only to states that come
later in the ordering. Such models are known
as “linear HMMs”, “chain HMMs” or “left-
to-right HMMs”. Transition matrix is upper-
diagonal (usually only has a few bands).

s(t+1)

s(
t)

Profile (String-Edit) HMMs

i = insert d = delete m = match

m1 m2 m3 mT

iT

dTd3

i3i2

d2d1

i1

(state transition diagram)

• A “profile HMM” or “string-edit” HMM is used for probabilistically
matching an observed input string to a stored template pattern
with possible insertions and deletions.

• Three kinds of states: match, insert, delete.
mn – use position n in the template to match an observed symbol
in – insert extra symbol(s) observations after template position n
dn – delete (skip) template position n

DP for Profile HMMs

• How do we fill in
the numbers for a
DP grid using a
string-edit HMM?

• Almost the same as
normal except:

– Now the grid is 3
times its normal
height.

– It is possible to
move down
without moving
right if you move
into a deletion
state.

eg: template length=4, test sequence length=5

in
se

rti
on

s
de

le
tio

ns
m

at
ch

es

Test Sequence Position
y1 y2 y3 y4

(e
m

it
on

 a
rr

iv
al

)

y5

Regularizing Transition Matrices
•  One way to regularize large transition matrices is to constrain them to be
sparse: instead of being allowed to transition to any other state, each state
has only a few possible successor states.

•  A very effective way to constrain the transitions is to order the states in the
HMM and allow transitions only to states that come later in the ordering.

•  Such models are known as “linear HMMs”, “chain HMMs” or “left- to-right
HMMs”. Transition matrix is upper- diagonal (usually only has a few bands).

Regularizing HMMs

• Two problems:

– for high dimensional outputs, lots of parameters in each Aj(y)

– with many states, transition matrix has many2 elements

• First problem: full covariance matrices in high dimensions or
discrete symbol models with many symbols have lots of parameters.
To estimate these accurately requires a lot of training data.
Instead, we often use mixtures of diagonal covariance Gaussians.

• For discrete data, we can use mixtures of base rates.

•We can also tie parameters across states.

Regularizing Transition Matrices

•One way to regularize large transition matrices is to constrain them
to be relatively sparse: instead of being allowed to transition to any
other state, each state has only a few possible successor states.

• For example if each state has at most p possible next states then
the cost of inference is O(pKT) and the number of parameters is
O(pK + KM) which are both linear in the number of states.

•

An extremely effective way to constrain the
transitions is to order the states in the HMM
and allow transitions only to states that come
later in the ordering. Such models are known
as “linear HMMs”, “chain HMMs” or “left-
to-right HMMs”. Transition matrix is upper-
diagonal (usually only has a few bands).

s(t+1)

s(
t)

Profile (String-Edit) HMMs

i = insert d = delete m = match

m1 m2 m3 mT

iT

dTd3

i3i2

d2d1

i1

(state transition diagram)

• A “profile HMM” or “string-edit” HMM is used for probabilistically
matching an observed input string to a stored template pattern
with possible insertions and deletions.

• Three kinds of states: match, insert, delete.
mn – use position n in the template to match an observed symbol
in – insert extra symbol(s) observations after template position n
dn – delete (skip) template position n

DP for Profile HMMs

• How do we fill in
the numbers for a
DP grid using a
string-edit HMM?

• Almost the same as
normal except:

– Now the grid is 3
times its normal
height.

– It is possible to
move down
without moving
right if you move
into a deletion
state.

eg: template length=4, test sequence length=5

in
se

rti
on

s
de

le
tio

ns
m

at
ch

es

Test Sequence Position
y1 y2 y3 y4

(e
m

it
on

 a
rr

iv
al

)

y5

Linear Dynamical Systems
•  In HMMs, latent variables are discrete but with arbitrary emission
probability distributions.

•  We now consider a linear-Gaussian state-space model, so that latent
variables and observed variables are multivariate Gaussian distributions.

•  An HMM can be viewed as an extension of the mixture models to allow for
sequential correlations in the data

•  Similarly, the linear dynamical system (LDS) can be viewed as a
generalization of the continuous latent variable models, such as probabilistic
PCA.

Linear Dynamical Systems
•  The model is represented by a tree-structured directed graph, so inference
can be solved efficiently using the sum-product algorithm.

•  The forward recursions, analogous to the ®-messages of HMMs are known
as the Kalman filter equations.

•  The backward recursions, analogous to the ¯-messages, are known as the
Kalman smoother equations.

•  The Kalman filter is used in many real-time tracking applications.

•  Because the LDS is a linear-Gaussian model, the joint distribution over all
variables, as well as marginals and conditionals, will be Gaussian.

•  This leads to tractable inference and learning.

The Model
•  We can write the transition and emission distributions in the general form:

•  These can be expressed in terms of noisy linear equations:

•  Model parameters can be learned using EM
algorithm (similar to standard HMM case).

Inference in LDS
•  Consider forward equations. The initial message is Gaussian, and since each
of the factors is Gaussian, all subsequent messages will also be Gaussians.

•  Similar to HMMs, let us define the normalized version of ®(zn):

•  Using forward recursion, we get:
Remember: for HMMs

Inference in LDS
•  Hence we obtain:

 in which case ®(zn) is Gaussian:

 and we have also defined the Kalman gain matrix:

Kalman Filter
•  Let us examine the evolution of the mean:

Predicted
observation for xn.

Error between the predicted
observation xn and the actual
observation xn.

Prediction of the
mean over zn.

Predicted mean plus the
correction term controlled by
the Kalman gain matrix.

•  We can view the Kalman filter as a process of making subsequent predictions
and then correcting these predictions in the light of the new observations.

Kalman Filter
•  Example:

blue curve red curve blue curve

incorporate
transition model

incorporate new observation
(density of the new point is
given by the green curve)

•  The new observation has shifted and narrowed the distribution compared to
(see red curve)

Tracking Example
•  LDS that is being used to track a moving object in 2-D space:

•  Blue points indicate the true position of the object.
•  Green points denote the noisy measurements.
•  Red crosses indicate the means of the inferred posterior distribution of the
positions inferred by the Kalman filter.

Particle Filters
•  For dynamical systems that are non-Gaussian (e.g. emission densities are non-
Gaussian), we can use sampling methods to find a tractable solution to the
inference problem.
•  Consider a class of distributions represented by the graphical model:

•  Suppose we observed Xn =
{x1,…,xn}, and we wish to
approximate:

Particle Filters
•  Hence

 with importance weights:

•  Hence the posterior p(zn | Xn) is represented by the set of L samples together
with the corresponding importance weights.

•  We would like to define a sequential algorithm.
•  Suppose that a set of samples and weights have been obtained at time step n.
•  We wish to find the set of new samples and weights at time step n+1.

Particle Filters
•  From our previous result, let

•  Summary of the particle filter algorithm:
-  At time n, we have a sample representation of the posterior distribution
p(zn | Xn) expressed as L samples with corresponding weights.

-  We next draw L samples from the mixture distribution (above).

-  For each sample, we then use the new observation to re-evaluate the
weights:

Example

•  At time n, the posterior p(zn | Xn) is represented as a mixture distribution.
•  We draw a set of L samples from this distribution (incorporating the transition
model).
•  The new weights evaluated by incorporating the new observation xn+1.

