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Approximate Inference 
•  When using probabilistic graphical models, we will be interested in evaluating the 
posterior distribution p(Z|X) of the latent variables Z given the observed data X.  

•  For example, in the EM algorithm, we need to evaluate the expectation of the 
complete-data log-likelihood with respect to the posterior distribution over the latent 
variables.  

•  For more complex models, it may be infeasible to evaluate the posterior 
distribution, or compute expectations with respect to this distribution.   

•  Last class we looked at variational approximations, including mean-field, 
variational Bayes.  

•  We now consider sampling-based methods, known as Monte Carlo techniques.  



Bayesian Matrix Factorization 
•  Let us first look at a few examples.  

•  We have N users, M movies, and integer rating values from 1 to K.!

•  Let rij be the rating of user i for movie j, and U 2 RD £ N, and V 2 RD£ M be latent 
user and movie feature matrices: !

•  Our goal is to predict missing values (missing ratings). !



Bayesian Matrix Factorization 
•  We can define a probabilistic bilinear model with Gaussian observation noise: 

•  We can place Gaussian priors over latent variables: 

•  We next introduce Gaussian-Wishart priors over the user and movie hyper-
parameters:!



Bayesian Matrix Factorization 



Predictive Distribution 
•  Consider predicting a rating r*ij for user and query movie j.   

•  Exact evaluation of this predictive distribution is analytically intractable.  

•  Posterior distribution over parameters and hyper-parameters is complicated and 
does not have a closed-form expression.  

•  Need to approximate.  

•  One option would be to approximate the posterior using factorized distribution Q 
and use variational framework.  

•  Alternative would be to resort to Monte Carlo methods.  



Bayesian Neural Networks 
•  Another example is to consider Bayesian neural nets, that often give state-of-the 
art results for a range of regression problems.   

•  Regression problem: We are given a set of i.i.d. observations X = {x1,…,xN} with 
corresponding targets T = {t1,…,tN}.  

•  Likelihood: 

where ¾(x) is the sigmoid function.  

•  The mean is given by the output of the 
neural network: 

•  We place Gaussian prior over model parameters:  



Bayesian Neural Networks 
•  We therefore have: 

•  Likelihood: 

•  The posterior is analytically intractable: 

Cannot analytically 
compute normalizing 
constant.  

•  We need the posterior to compute predictive 
distribution for t given a new input x.  

Nonlinear function of 
inputs.  

•  Gaussian prior over parameters: 



Undirected Graphical Models 
•  Let x be a binary random vector with xi 2 {-1.1}: 

where Z(µ) is a normalizing constant (also 
known as partition function): 

•  If x is 100-dimensional, we need to sum over 2100 terms.  

•  The sum might decompose, which would be the case for the tree structured 
graphical models (or models with low tree-width). Otherwise, we need to 
approximate.  



Notation 
•  For most situations, we will be interested in evaluating expectations (for 
example in order to make predictions): 

where the integral will be replaced with 
summation in case of discrete variables.   

•  We will make use of the following notation:  

•  We can evaluate         pointwise but cannot evaluate   

-  Posterior distribution: 

-  Markov Random Fields: 



Simple Monte Carlo  
•  General Idea: Draw independent samples {z1,..,zn} from distribution p(z) to 
approximate expectation:  

 so the estimator has correct mean (unbiased).   

•  Remark: The accuracy of the estimator does not depend on dimensionality of z.  

Note that:  

•  The variance:  

•  Variance decreases as 1/N.  



Simple Monte Carlo  
•   High accuracy may be achieved with a small number N of independent samples 
from distribution p(z).  

•  Problem 1: we may not be able to draw 
independent samples. 

•  Problem 2: if f(z) is large in regions where p(z) is small (and vice versa), then 
the expectations may be dominated by regions of small probability. Need larger 
sample size.  



Simple Monte Carlo  
•  In general: 

•  Problem: It is hard to draw exact samples 
from p(z). 

•  Predictive distribution:  



Directed Graphical Models 
•  For many distributions, the joint distribution can be conveniently specified in 
terms of a graphical model.  

•  For directed graphs with no observed variables, 
sampling from the joint is simple: 

The parent variables 
are set to their 
sampled values 

•  After one pass through the graph, we obtain a sample from the joint.  



Directed Graphical Models 
•  Consider the case when some of the nodes are observed.  

•  Naive idea: Sample from the joint.   

•  The algorithm samples correctly from the posterior.  

•  If the sampled values agree with the observed 
values, we retain the sample.  

•  Otherwise, we disregard the whole sample.  

•  The overall probability of accepting the sample from the posterior decreases 
rapidly as the number of observed variables increases.  

•  Rarely used in practice.  



Basic Sampling Algorithm  
•  How can we generate samples from simple non-uniform distributions assuming 
we can generate samples from uniform distribution. 

•  Define: 

•  Sample: 

•  Then  

 is a sample from p(y).  



Basic Sampling Algorithm  
•  For example, consider the exponential distribution:  

•  Problem: Computing h(y) is just as hard! 

•  In this case: 

•  Sample: 

•  Then  

 is a sample from p(y).  



Rejection Sampling 
•  Sampling from the target distribution                            is difficult. Suppose we 
have an easy-to-sample proposal distribution q(z), such that:  

•  Sample: 

•  Sample: 

•  Sample (z0, u0) has uniform distribution under the curve of 

•  If                        the sample is rejected.  



Rejection Sampling 
•  Probability that a sample is accepted is calculated as: 

•  It is often hard to find q(z) with optimal k.  

•  The fraction of accepted 
samples depends on the ratio 
of the area under          and   



Rejection Sampling 
•  Consider the following simple problem: 

•  Useful technique in one of two dimensions. Typically applies as a subroutine in 
more advanced techniques.    

•  Target distribution: 

•  Proposal distribution:  

•  We must have: 

•  The optimal k is given by:  

•  Hence the acceptance rate diminishes exponentially!  



Importance Sampling  
•  Suppose we have an easy-to-sample proposal distribution q(z), such that 

are known as importance weights. 

•  Unlike rejection sampling all samples are retained.  

•  But wait: we cannot compute   

•  The quantities  



Importance Sampling  
•  Let our proposal be of the form: 

•  But we can use the same weights to approximate 

Consistent but biased.  

•  Hence: 



Importance Sampling: Example  
•  With importance sampling, it is hard to estimate how reliable the estimator is: 

•  Huge variance if the proposal density q(z) is small in a region where |f(z)p(z)| is 
large 

•  Example of using Gaussian distribution as 
a proposal distribution (1-d case).  

•  Even after 1 million samples, the estimator 
has not converged to the true value.  



Importance Sampling: Example  
•  With importance sampling, it is hard to estimate how reliable the estimator: 

•  Huge variance if the proposal density q(z) is small in a region where |f(z)p(z)| is 
large 

•  Example of using Cauchy distribution as a 
proposal distribution (1-d case).  

•  After 500 samples, the estimator appears 
to converge 

•  Proposal distribution should have heavy 
tails.  



Monte Carlo EM 
•  Sampling algorithms can also be used to approximate the E-step of the EM 
algorithm when E-step cannot be performed analytically.   

•  We are given visible (observed) variables X, hidden (latent) variables Z and 
model parameters µ.  

•  In the M-step, we maximize the expected complete data log-likelihood: 

•  We can approximate the integral with: 

•  The samples are drawn from the current estimate of the posterior distribution.  

•  The Q function is optimized in the usual way in the M-step.  



IP Algorithm 
•  Suppose we move from the maximum likelihood approach to the fully Bayesian 
approach.  

•  In this case, we would like to get samples from the joint p(Z,µ | X), but let us 
assume that this is difficult.  

•  We also assume that it is easy to sample from the complete-data parameter 
posterior p(µ | Z,X).   

•  This inspires the data-augmentation algorithm, which alternates between two 
steps: 

-  I-step (imputation step), analogous to E-step.  

-  P-step (posterior step), analogous to M-step.  



IP Algorithm 
•  Let us look at the two steps: 
•  I-step: We want to sample from p(Z | X), but we cannot do it directly. However:  

•  Approximate by: 

-  For l=1,…,L, draw: 
-  For l=1,…,L, draw: 

•  P-step: Use the relation:  

which is, by assumption, easy to sample from.  

•  Using samples Zl we obtained in the I-step, we approximate: 



Summary so Far 
•  If  our proposal distribution q(z) poorly matches our target distribution p(z) then: 

-  Rejection sampling: almost always rejects  

-  Importance Sampling: has large, possibly infinite, variance (unreliable 
estimator).!

•  For high-dimensional problems, finding good proposal distributions is very hard. 
What can we do? 

•  Markov Chain Monte Carlo.  



Markov Chains 
•  A first-order Markov chain: a series of random variables                   , such that 
the following conditional independence property holds for!

•  We can specify Markov chain:  

-  Probability distribution for initial state p(z1). 
-  Conditional probability for subsequent states in the form of transition 

probabilities: 

•                           is often called a transition kernel.  



Markov Chains 
•  A marginal probability of a particular state can be computed as: 

•  A given Markov chain may have many stationary distributions.             

is the identity transformation. Then any distribution is invariant. 

•  For example: 

•  A distribution ¼(z) is said to be invariant or stationary with respect to a Markov 
chain if each step in the chain leaves ¼(z) invariant: 



Detailed Balance 
•  A sufficient (but not necessary) condition for ensuring that ¼(z) is invariant is to 
choose a transition kernel that satisfies a detailed balance property: 

•  A transition kernel that satisfies detailed balance will leave that distribution 
invariant: 

•  A Markov chain that satisfies detailed balance is said to be reversible. 



Example 
•  Discrete example: 

•  In this case P* is invariant distribution of T since TP* = P*, or: 

•  P* is also the equilibrium distribution of T since: 

Example credit: Iain Murray. 



Markov Chains  
•  We want to sample from the target distribution (e.g. posterior distribution, or a 
Markov Random Field): 

•  Obtaining independent samples is difficult.  

-  Set up a Markov chain with transition kernel T(z’ ← z) that leaves our 
target distribution ¼(z) invariant. 

-  If the chain is ergodic, then the chain will converge to this unique 
equilibrium distribution.  

-  We obtain dependent samples drawn approximately from ¼(z) by 
simulating a Markov chain for some time. 

•  Ergodicity requires: There exists K, for any starting z,  

A state i is said to be ergodic if it is aperiodic and positive recurrent. If all states in an irreducible  
Markov chain are ergodic, then the chain is said to be ergodic. 



Combining Transition Operators 
•  In practice, we often construct the transition probabilities from a set of “base” 
transition operators B1,…,BK.  

•  One option is to consider a mixture distribution of the form: 

where mixing coefficients satisfy: 

•  Another option is to combine through successive application: 

•  If a distribution is invariant with respect to each of the base transitions, then it 
will also be invariant with respect to T(z’ Ã z). 



Combining Transition Operators 
•  For the case of the mixture: 

If each of the base distributions satisfies the detailed balance, then the mixture 
transition T will also satisfy detailed balance.  

•  For the case of using composite transition probabilities:  

this does not hold. 

•  A simple idea is to symmetrize the order of application of the base transitions: 

•  A common example of using composite transition probabilities is where each 
base transition changes only a subset of variables.    



Metropolis-Hasting Algorithm  
•  A Markov chain transition operator from the current state z to a new state z’ is 
defined as follows: 

-  A new “candidate” state z* is proposed according to some proposal 
distribution q(z*|z).!

-  A candidate z* is accepted with probability:  

-  If accepted, set z’ = z*. Otherwise z = z’, or the next state is the copy of 
the current state.  

•  Note: there is no need to compute normalizing constant.  

•  For symmetric proposals, e.g. N(z,¾2), the 
acceptance probability reduces to: 



Metropolis-Hasting Algorithm  
•  We can show that M-H transition kernel leaves ¼(z) invariant by showing that it 
satisfies detailed balance:!

•  Note that whether the chain is ergodic will depend on the particulars of the 
stationary distribution ¼ and proposal distribution q.!



Metropolis-Hasting Algorithm  
•  Using Metropolis algorithm to sample from Gaussian distribution with proposal 

•  accepted (green), rejected (red). 

•  150 samples were generated and 43 
were rejected.  

•  Note that generated samples are not 
independent.  



Random Walk Behaviour 
•  Consider a state-space consisting of integers with 

•  If the initial state is z1 = 0, then by symmetry: 

•  and  

•  Hence after t steps, the random walk traveled a distance that is on average 
proportional to the square root of t.  

•  This square root dependence is typical of random walk behavior.   

•  Ideally, we would want to design MCMC methods that avoid random walk 
behavior.  



•  Consider a Gaussian proposal: centered on the current state: 

Choice of Proposal 
•  Suppose that our goal is to sample from the correlated multivariate Gaussian 
distribution.  

•  ½ large -- many rejections 

•  ½ small -- chain moves too slowly. 

•  The specific choice of proposal can greatly affect the performance of the 
algorithm. 

•  To keep the rejection rate low, the scale ½ should be 
on the order of the smallest standard deviation ¾min.   

•  Random walk behaviour: The number of steps separating states 
that are approximately independent is of order: (¾max/¾min)2.  



Gibbs Sampler 
•  Consider sampling from p(z1,…,zN): 

•  Initialize zi, i=1,..,N. 

•  For t=1:T 

•  This procedure samples from the required 
distribution p(z).  

-  Sample: 

-  Sample: 
-  … 

-  Sample: 

•  When sampling                     the marginal distribution                is clearly 
invariant, as it does not change.    
•  Each step samples from the correct conditional, hence the joint distribution is 
itself invariant.  



Gibbs Sampler 
•  Applicability of the Gibbs sampler depends on how easy it is to sample from 
conditional probabilities 

•  For discrete random variables with a few discrete settings: 

where the sum can be performed analytically.  

•  For continuous random variables: 

•  The integral is univariate and is often analytically tractable or amenable to 
standard sampling methods. 



Gibbs Sampler 
•  Gibbs sampler is a particular instance of M-H algorithm with proposals:  

•  Note that                       because these components are unchanged by the 
sampling step.  

•  Let us look at the factor that determines acceptance probability in M-H. 

•  Thus MH steps are always accepted.  

•  Let us look at the behavior of Gibbs.  



Gibbs Sampler 
•  As with MH, we can get some insight into the behavior of Gibbs sampling.  

•  Consider a correlated Gaussian having 
conditional distributions of width l and 
marginal distributions of width L.  

•  Random walk behavior: The typical step 
size is governed by the conditional and will 
be of order l.  

•  The number of steps separating states that 
are approximately independent is of order: 

•  If the Gaussian distribution were uncorrelated, then the Gibbs sampling 
would be optimally efficient.  



Over-Relaxation 
•  One approach to reducing random walk behavior is called over-relaxation: 

•  Consider conditional distributions that are 
Gaussian.  

•  Setting ® = 0, we recover standard Gibbs.   

•  At each step of the Gibbs sampler, the 
conditional distribution for zi is: 

•  In the over-relaxed framework, the value of 
zn is replaced with: 

•  The step leaves the desired distribution invariant because of zn has mean µn 
and standard deviation ¾n, then so does z’n.  
•  This encourages directed motion through the state space when the variables 
are high correlated.  



Graphical Models 
•  For graphical models, the conditional distribution is a function only of the states 
of the nodes in the Markov blanket.   

•  Block Gibbs: Choose blocks of variables (not necessarily disjoint) and then 
sample jointly from the variables in each block in turn, conditioned on the 
remaining variables.   



Bayesian PMF 
•   Consider predicting a rating r*ij for user and query movie j.   

•  Use Monte Carlo approximation: 

•  The samples              are generated by running a Gibbs sampler, whose 
stationary distribution is the posterior distribution of interest. 



Bayesian PMF 
•  Monte Carlo approximation: 

•  The conditional distributions over the user and movie feature vectors are 
Gaussians → easy to sample from:!

•  The conditional distributions over hyperparameters also have closed form 
distributions → easy to sample from. 

•  The Netflix dataset - Bayesian PMF can handle over 100 million ratings.!



Bayesian PMF 
•  Sample from the posterior of a 
movie with 5 ratings: Non-Gaussian.   

•  Variational approximation in this 
case works much worse 
compared to Gibbs.  

•  Assessing  uncertainty in predicted 
values can be crucial.  

•  Predicted ratings for a test movie by 
users A,B,C, and D that have 4, 23, 
319, and 660 observed ratings.  



Auxiliary Variables 
•  The goal of MCMC is to marginalize out variables. 

•  But sometimes it is useful to introduce additional, or auxiliary variables.  

•  We would want to do this if: 

-  Sampling from conditionals p(z | u) and p(u | z) is easy. 

-  It is easier to deal with p(z,u).  

•  Many MCMC algorithms use this idea. 



Slice Sampling 
•  M-H algorithm is sensitive to the step size.  

•  Slice sampling provides an adaptive step size that is automatically adjusted.  

•  We augment z with an additional (auxiliary) variable u and then draw samples 
from the joint (z,u) space.  

•  The marginal distribution over z is: 

which is the target distribution of interest.  

•  The goal is to sample uniformly from the 
area under the distribution: 



Slice Sampling 
•  The goal if sample uniformly from the area under the distribution: 

•  Given u, we sample z uniformly from the 
slice through the distribution defined:  

•  Given z, we sample u uniformly from:  

which is easy.  

•  In practice, sampling directly from a slice might be difficult.  

•  Instead we can define a sampling scheme that leaves the uniform distribution   
               invariant.  



Slice Sampling 
•  The goal if sample uniformly from the area under the distribution: 

•  Suppose the current state is z¿, and we 
have obtained a corresponding sample u.  

•  The next value of z is obtained by 
considering the region: 

•  We can adapt the region. 

•  Start with a region containing z¿ having some width w.  
•  Linearly step out until the end point lies outside the region. 

•  Sample uniformly from the region, shrinking if the sample if off slice.  

•  Satisfies detailed balance.  



Using MCMC in Practice 
•  The samples we obtain from MCMC are not independent. Should we thin, i.e. 
only keep every Kth sample? 

•  We often start MCMC from arbitrary starting points. Should be discard a burn-in 
period?  

•  Should we perform multiple runs as opposed to one long run? 

•  How do we know whether we have run our chain for long enough? 


