STA 4273H: Statistical Machine Learning

Russ Salakhutdinov
Department of Statistics
rsalakhu@utstat.toronto.edu
http://www.utstat.utoronto.ca/~rsalakhu/
Sidney Smith Hall, Room 6002

Lecture 5
Mixture Models

• We will look at the mixture models, including Gaussian mixture models and mixture of Bernoulli.

• The key idea is to introduce latent variables, which allows complicated distributions to be formed from simpler distributions.

• We will see that mixture models can be interpreted in terms of having discrete latent variables (in a directed graphical model).

• Later in class, we will also look at the continuous latent variables.
K-Means Clustering

- Let us first look at the following problem: **Identify clusters**, or groups, of data points in a multidimensional space.
- We observe the dataset \(\{x_1, \ldots, x_N\} \) consisting of \(N \) D-dimensional observations.
- We would like to **partition the data into K clusters**, where \(K \) is given.
- We next introduce \(D \)-dimensional vectors, **prototypes**, \(\mu_k, k = 1, \ldots, K \).
- We can think of \(\mu_k \) as representing cluster centers.
- Our goal:
 - Find an **assignment of data points to clusters**.
 - Sum of squared distances of each data point to its closest prototype is **at the minimum**.
K-Means Clustering

• For each data point \(x_n \) we introduce a binary vector \(r_n \) of length K (1-of-K encoding), which indicates which of the K clusters the data point \(x_n \) is assigned to.

• Define objective (distortion measure):

\[
J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2.
\]

• It represents the sum of squares of the distances of each data point to its assigned prototype \(\mu_k \).

• Our goal it find the values of \(r_{nk} \) and the cluster centers \(\mu_k \) so as to minimize the objective \(J \).
Iterative Algorithm

• Define iterative procedure to minimize:

\[J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2. \]

• Given \(\mu_k \), minimize \(J \) with respect to \(r_{nk} \) (E-step):

\[r_{nk} = \begin{cases}
1 & \text{if } k = \arg \min_j ||x_n - \mu_j||^2 \\
0 & \text{otherwise}
\end{cases} \]

which simply says assign \(n^{th} \) data point \(x_n \) to its closest cluster center.

• Given \(r_{nk} \), minimize \(J \) with respect to \(\mu_k \) (M-step):

\[\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}. \]

Set \(\mu_k \) equal to the mean of all the data points assigned to cluster \(k \).

• Guaranteed convergence to local minimum (not global minimum).
Example

• Example of using K-means (K=2) on Old Faithful dataset.
Convergence

- Plot of the cost function after each E-step (blue points) and M-step (red points)

The algorithm has converged after 3 iterations.

- K-means can be generalized by introducing a more general dissimilarity measure:

\[J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} K(x_n, \mu_k). \]
Image Segmentation

• Another application of K-means algorithm.
• **Partition an image into regions** corresponding, for example, to object parts.
• Each pixel in an image is a point in 3-D space, corresponding to R,G,B channels.

![Original image](image.png)

For a given value of K, the algorithm represent an image using K colors.

• Another application is image compression.
Image Compression

• For each data point, we store only the identity k of the assigned cluster.
• We also store the values of the cluster centers μ_k.
• Provided $K \ll N$, we require significantly less data.

The original image has $240 \times 180 = 43,200$ pixels.
• Each pixel contains \{R,G,B\} values, each of which requires 8 bits.

• Requires $43,200 \times 24 = 1,036,800$ bits to transmit directly.
• With K-means, we need to transmit K code-book vectors μ_k -- 24K bits.
• For each pixel we need to transmit $\log_2 K$ bits (as there are K vectors).
• Compressed image requires 43,248 (K=2), 86,472 (K=3), and 173,040 (K=10) bits, which amounts to compression rations of 4.2%, 8.3%, and 16.7%.
Mixture of Gaussians

• We will look at mixture of Gaussians in terms of discrete latent variables.

• The Gaussian mixture can be written as a linear superposition of Gaussians:

\[p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x | \mu_k, \Sigma_K). \]

• Introduce K-dimensional binary random variable \(z \) having a 1-of-K representation:

\[z_k \in \{0, 1\}, \quad \sum_k z_k = 1. \]

• We will specify the distribution over \(z \) in terms of mixing coefficients:

\[p(z_k = 1) = \pi_k, \quad 0 \leq \pi_k \leq 1, \quad \sum_k \pi_k = 1. \]
Mixture of Gaussians

• Because z uses 1-of-K encoding, we have:

$$p(z) = \prod_{k=1}^{K} \pi_k^{z_k}.$$

• We can now specify the conditional distribution:

$$p(x|z_k = 1) = \mathcal{N}(x|\mu_k, \Sigma_k),$$

or

$$p(x|z) = \prod_{k=1}^{K} \mathcal{N}(x|\mu_k, \Sigma_k)^{z_k}. x$$

• We have therefore specified the joint distribution:

$$p(x, z) = p(x|z)p(z).$$

• The marginal distribution over x is given by:

$$p(x) = \sum_z p(z)p(x|z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k).$$

• The marginal distribution over x is given by a Gaussian mixture.
Mixture of Gaussians

• The marginal distribution:

\[p(x) = \sum_z p(z)p(x|z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k). \]

• If we have several observations \(x_1, \ldots, x_N \), it follows that for every observed data point \(x_n \), there is a corresponding latent variable \(z_n \).

• Let us look at the conditional \(p(z|x) \), responsibilities, which we will need for doing inference:

\[
\gamma(z_k) = p(z_k = 1|x) = \frac{p(z_k = 1)p(x|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(x|z_j = 1)} = \frac{\pi_k \mathcal{N}(x|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x|\mu_j, \Sigma_j)}.
\]

• We will view \(\pi_k \) as prior probability that \(z_k = 1 \), and \(\gamma(z_k) \) is the corresponding posterior once we have observed the data.
• 500 points drawn from a mixture of 3 Gaussians.

Samples from the joint distribution $p(x,z)$.

Samples from the marginal distribution $p(x)$.

Same samples where colors represent the value of responsibilities.
Maximum Likelihood

• Suppose we observe a dataset \{x_1, \ldots, x_N\}, and we model the data using mixture of Gaussians.

• We represent the dataset as an N by D matrix \(X\).

• The corresponding \textbf{latent variables} will be represented and an N by K matrix \(Z\).

• The log-likelihood takes form:

\[
\ln p(X | \pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_k \mathcal{N}(x | \mu_k, \Sigma_k).
\]

Graphical model for a Gaussian mixture model for a set of i.i.d. data point \(\{x_n\}\), and corresponding latent variables \(\{z_n\}\).
Maximum Likelihood

- The log-likelihood:

$$\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k).$$

- Differentiating with respect to μ_k and setting to zero:

$$0 = \sum_{n} \frac{\pi_k N(x_n|\mu_k, \Sigma_k)}{\sum_j \pi_j N(x_n|\mu_j, \Sigma_j)} \Sigma_k^{-1} (x_n - \mu_k).$$

$$\mu_k = \frac{1}{N_k} \sum_{n} \gamma(z_{nk}) x_n, \quad N_k = \sum_{n} \gamma(z_{nk}).$$

- We can interpret N_k as effective number of points assigned to cluster k.

- The mean μ_k is given by the mean of all the data points weighted by the posterior $\gamma(z_{nk})$ that component k was responsible for generating x_n.

[Diagram of a statistical model with nodes and arrows indicating soft assignment and mixture components.]
Maximum Likelihood

- The log-likelihood:

\[
\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k).
\]

- Differentiating with respect to \(\Sigma_k \) and setting to zero:

\[
\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) (x_n - \mu_k)(x_n - \mu_k)^T.
\]

- Note that the data points are weighted by the posterior probabilities.

- Maximizing log-likelihood with respect to mixing proportions:

\[
\pi_k = \frac{N_k}{N}.
\]

- Mixing proportion for the \(k^{th} \) component is given by the average responsibility which that component takes for explaining the data.
Maximum Likelihood

• The log-likelihood:

$$\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k).$$

• Note that the maximum likelihood does not have a closed form solution.

• Parameter updates depend on responsibilities $$\gamma(z_{nk})$$, which themselves depend on those parameters:

$$\gamma(z_{nk}) = p(z_{nk} = 1|x) = \frac{\pi_k N(x_n|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(x_n|\mu_j, \Sigma_j)}.$$

• Iterative Solution:

 E-step: Update responsibilities $$\gamma(z_{nk}).$$
 M-step: Update model parameters $$\pi_k, \mu_k, \Sigma_k$$, for $$k=1,\ldots,K.$$
EM algorithm

• Initialize the means μ_k, covariances Σ_k, and mixing proportions π_k.

• **E-step:** Evaluate responsibilities using current parameter values:

$$
\gamma(z_{nk}) = p(z_{nk} = 1 | x) = \frac{\pi_k N(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(x_n | \mu_j, \Sigma_j)}.
$$

• **M-step:** Re-estimate model parameters using the current responsibilities:

$$
\mu_k^{\text{new}} = \frac{1}{N_k} \sum_n \gamma(z_{nk}) x_n, \quad N_k = \sum_n \gamma(z_{nk}),
$$

$$
\Sigma_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(y_{nk})(x_n - \mu_k)(x_n - \mu_k)^T,
$$

$$
\pi_k^{\text{new}} = \frac{N_k}{N}.
$$

• Evaluate the log-likelihood and check for convergence.
Mixture of Gaussians: Example

- Illustration of the EM algorithm (much slower convergence compared to K-means)
An Alternative View of EM

• The goal of EM is to find maximum likelihood solutions for models with latent variables.
• We represent the observed dataset as an N by D matrix \(X \).
• Latent variables will be represented and an N by K matrix \(Z \).
• The set of all model parameters is denoted by \(\theta \).
• The log-likelihood takes form:

\[
\ln p(X|\theta) = \ln \left[\sum_{Z} p(X, Z|\theta) \right].
\]

• Note: even if the joint distribution belongs to exponential family, the marginal typically does not!

• We will call:
 \(\{X, Z\} \) as complete dataset.
 \(\{X\} \) as incomplete dataset.
An Alternative View of EM

• In practice, we are not given a complete dataset \(\{X, Z\} \), but only incomplete dataset \(\{X\} \).
• Our knowledge about the latent variables is given only by the posterior distribution \(p(Z|X, \theta) \).
• Because we cannot use the complete data log-likelihood, we can consider expected complete-data log-likelihood:

\[
Q(\theta, \theta^{old}) = \sum_Z p(Z|X, \theta^{old}) \ln p(X, Z|\theta).
\]

• In the E-step, we use the current parameters \(\theta^{old} \) to compute the posterior over the latent variables \(p(Z|X, \theta^{old}) \).
• We use this posterior to compute expected complete log-likelihood.
• In the M-step, we find the revised parameter estimate \(\theta^{new} \) by maximizing the expected complete log-likelihood:

\[
\theta^{new} = \arg \max_{\theta} Q(\theta, \theta^{old}).
\]
The General EM algorithm

- Given a joint distribution \(p(\mathbf{Z}, \mathbf{X}|\theta) \) over observed and latent variables governed by parameters \(\theta \), the goal is to maximize the likelihood function \(p(\mathbf{X}|\theta) \) with respect to \(\theta \).
- Initialize parameters \(\theta^{old} \).
- E-step: Compute posterior over latent variables: \(p(\mathbf{Z}|\mathbf{X}, \theta^{old}) \).
- M-step: Find the new estimate of parameters \(\theta^{new} \):

\[
\theta^{new} = \arg \max_\theta Q(\theta, \theta^{old}).
\]

where

\[
Q(\theta, \theta^{old}) = \sum_\mathbf{Z} p(\mathbf{Z}|\mathbf{X}, \theta^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\theta).
\]

- Check for convergence of either log-likelihood or the parameter values. Otherwise:

\[
\theta^{new} \leftarrow \theta^{old}, \quad \text{and iterate.}
\]

- We will next show that each step of EM algorithm maximizes the log-likelihood function.
Variational Bound

• Given a joint distribution \(p(Z, X|\theta) \) over observed and latent variables governed by parameters \(\theta \), the goal is to maximize the likelihood function \(p(X|\theta) \) with respect to \(\theta \):

\[
p(X|\theta) = \sum_Z p(X, Z|\theta).
\]

• We will assume that \(Z \) is discrete, although derivations are identical if \(Z \) contains continuous, or a combination of discrete and continuous variables.

• For any distribution \(q(Z) \) over latent variables we can derive the following variational lower bound:

\[
\ln p(X|\theta) = \ln \sum_Z p(X, Z|\theta) = \ln \sum_Z q(Z) \frac{p(X, Z|\theta)}{q(Z)} \\
\geq \sum_Z q(Z) \ln \frac{p(X, Z|\theta)}{q(Z)} = \mathcal{L}(q, \theta).
\]
Variational Bound

- Variational lower-bound:

\[
\ln p(X | \theta) = \ln \sum_Z p(X, Z | \theta) = \ln \sum_Z q(Z) \frac{p(X, Z | \theta)}{q(Z)} \\
\geq \sum_Z q(Z) \ln \frac{p(X, Z | \theta)}{q(Z)} \\
= \sum_Z q(Z) \ln p(X, Z | \theta) + \sum_Z q(Z) \ln \frac{1}{q(Z)} \\
= \mathbb{E}_{q(Z)} \left[\ln p(X, Z | \theta) \right] + \mathcal{H}(q(Z)) = \mathcal{L}(q, \theta).
\]
Entropy

- For a discrete random variable X, where $P(X=x_i) = p(x_i)$, the entropy of a random variable is:
 \[H(p) = - \sum_{i} p(x_i) \log p(x_i). \]

- Distributions that are sharply picked around a few values will have a relatively low entropy, whereas those that are spread more evenly across many values will have higher entropy.

- Histograms of two probability distributions over 30 bins.

- The largest entropy will arise from a uniform distribution $H = -\ln(1/30) = 3.40$.

- For a density defined over a continuous random variable, the differential entropy is given by:
 \[H(p) = - \int p(x) \log p(x) dx. \]
Variational Bound

• We saw:
 \[\ln p(\mathbf{X}|\theta) \geq \mathbb{E}_{q(\mathbf{Z})} \left[\ln p(\mathbf{X}, \mathbf{Z}|\theta) \right] + \mathcal{H}(q(\mathbf{Z})) = \mathcal{L}(q, \theta). \]

• We also note that the following decomposition also holds:
 \[\ln p(\mathbf{X}|\theta) = \mathcal{L}(q, \theta) + \text{KL}(q||p), \]
 where
 \[\mathcal{L}(q, \theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{q(\mathbf{Z})}, \]
 \[\text{KL}(q||p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{Z}|\mathbf{X}, \theta)}{q(\mathbf{Z})}. \]

• KL divergence is not symmetric.
• KL(q||p) \geq 0 with equality iff p(x) = q(x).
• Intuitively, it measures the "distance" between the two distributions.
Variational Bound

• Let us derive that:

$$\log p(X|\theta) = \mathcal{L}(q, \theta) + KL(q||p),$$

• We can write:

$$\ln p(X, Z|\theta) = \ln p(Z|X, \theta) + \ln p(X|\theta),$$

and plugging into the definition of $\mathcal{L}(q, \theta)$, gives the desired result.

• Note that variational bound becomes tight iff $q(Z) = p(Z | X, \theta)$.

• In other words the distribution $q(Z)$ is equal to the true posterior distribution over the latent variables, so that $KL(q||p) = 0$.

• As $KL(q||p) \geq 0$, it immediately follows that:

$$\ln p(X|\theta) \geq \mathcal{L}(q, \theta),$$

which also showed using Jensen’s inequality.
Decomposition

- Illustration of the decomposition which holds for any distribution \(q(\mathbf{Z}) \).

\[
\ln p(\mathbf{X}|\theta) = \mathcal{L}(q, \theta) + \text{KL}(q||p),
\]
Alternative View of EM

- We can use our decomposition to define the EM algorithm and show that it maximizes the log-likelihood function.

\[
\ln p(X|\theta) = \mathcal{L}(q, \theta) + \text{KL}(q||p),
\]

- Summary:
 - In the E-step, the lower bound \(\mathcal{L}(q, \theta) \) is maximized with respect to distribution \(q \) while holding parameters \(\theta \) fixed.
 - In the M-step, the lower bound \(\mathcal{L}(q, \theta) \) is maximized with respect to parameters \(\theta \) while holding the distribution \(q \) fixed.

- These steps will increase the corresponding log-likelihood.
E-step

- Suppose that the current value of the parameter vector is θ^{old}.
- In the E-step, we maximize the lower bound with respect to q while holding parameters θ^{old} fixed.

$$
\mathcal{L}(q, \theta^{old}) = \ln p(X|\theta^{old}) - KL(q||p).
$$

- The lower-bound is maximized when KL term turns to zero.
- In other words, when $q(Z)$ is equal to the true posterior:

$$
q(Z) = p(Z|X, \theta^{old}).
$$

- The lower bound will become equal to the log-likelihood.
M-step

• In the M-step, the lower bound is maximized with respect to parameters \(\theta \) while holding the distribution \(q \) fixed.

\[
\mathcal{L}(q, \theta) = \sum_z p(Z|X, \theta^{old}) \ln p(X, Z|\theta) + \sum_z p(Z|X, \theta^{old}) \ln \frac{1}{p(Z|X, \theta^{old})}.
\]

\[
\mathcal{L}(q, \theta) = Q(\theta, \theta^{old}) + \text{const}.
\]

• Hence the M-step amounts to maximizing the expected complete log-likelihood.

\[
\theta^{new} = \arg \max_\theta Q(\theta, \theta^{old}).
\]

• Because KL divergence is non-negative, this causes the log-likelihood \(\log p(X | \theta) \) to increase by at least as much as the lower bound does.
Bound Optimization

- The EM algorithm belongs to the general class of bound optimization methods:

 - E-step: a lower bound on the log-likelihood function for the current parameter values. The bound is concave with unique global optimum.
 - M-step: maximize the lower-bound to obtain the new parameter values.
Extensions

• For some complex problems, it maybe the case that either E-step or M-step, or both remain intractable.

• This leads to two possible extensions.

• The Generalized EM deals with intractability of the M-step.

• Instead of maximizing the lower-bound in the M-step, we instead seek to change parameters so as to increase its value (e.g. using nonlinear optimization, conjugate gradient, etc.).

• We can also generalize the E-step by performing a partial, rather than complete, optimization of the lower-bound with respect to q.

• For example, we can use an incremental form of EM, in which at each EM step only one data point is processed at a time.

• In the E-step, instead of recomputing the responsibilities for all the data points, we just re-evaluate the responsibilities for one data point, and proceed with the M-step.
Maximizing the Posterior

• We can also use EM to maximize the posterior $p(\theta \mid X)$ for models in which we have introduced the prior $p(\theta)$.

• To see this, note that:

$$\ln p(\theta \mid X) = \ln p(X \mid \theta) + \ln p(\theta) - \ln p(X).$$

• Decomposing the log-likelihood into lower-bound and KL terms, we have:

$$\ln p(X \mid \theta) = \mathcal{L}(q, \theta) + \text{KL}(q\|p),$$

• Hence

$$\ln p(\theta \mid X) = \mathcal{L}(q, \theta) + \text{KL}(q\|p) + \ln p(\theta) - \ln p(X).$$

where $\ln p(X)$ is a constant.

• Optimizing with respect to q gives rise to the same E-step as for the standard EM algorithm.

• The M-step equations are modified through introduction of the prior term, which typically amounts to only a small modification to the standard ML M-step equations.
Gaussian Mixtures Revisited

• We now consider the application of the latent variable view of EM the case of Gaussian mixture model.

• Recall:

\[
\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k).
\]

\[
\{X\} \quad \text{-- incomplete dataset.} \quad \{X, Z\} \quad \text{-- complete dataset.}
\]
Maximizing Complete Data

• Consider the problem of maximizing the likelihood for the complete data:

\[p(X, Z | \pi, \mu, \Sigma) = \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \right]^{z_{nk}}. \]

\[\ln p(X, Z | \pi, \mu, \Sigma) = \sum_{k=1}^{K} \sum_{n=1}^{N} z_{nk} \ln \pi_k + z_{nk} \ln \mathcal{N}(x|\mu_k, \Sigma_k). \]

Sum of K independent contributions, one for each mixture component.

• Maximizing with respect to mixing proportions yields:

\[\pi_k = \frac{1}{N} \sum_{n=1}^{N} z_{nk}. \]

• And similarly for the means and covariances.

\{X, Z\} -- complete dataset.
Posterior Over Latent Variables

• Remember:

\[p(x|z) = \prod_{k=1}^{K} \mathcal{N}(x|\mu_k, \Sigma_k)^{z_k}, \quad p(z) = \prod_{k=1}^{K} \pi_k^{z_k}. \]

• The posterior over latent variables takes form:

\[p(Z|X, \pi, \mu, \Sigma) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \right]^{z_k}. \]

• Note that the posterior factorizes over \(n \) points, so that under the posterior distribution \(\{z_n\} \) are independent.

• This can be verified by inspection of directed graph and making use of the d-separation property.
Expected Complete Log-Likelihood

- The expected value of indicator variable z_{nk} under the posterior distribution is:

$$
\mathbb{E}[z_{nk}] = \frac{\sum z_n z_{nk} \prod_j [\pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)]^{z_{nj}}}{\sum z_n \prod_j [\pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)]^{z_{nj}}}
= \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)} = \gamma(z_{nk}).
$$

- This represent the responsibility of component k for data point x_n.

- The complete-data log-likelihood:

$$
\ln p(X, Z | \pi, \mu, \Sigma) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left[\ln \pi_k + \ln \mathcal{N}(x_n | \mu_k, \Sigma_k) \right].
$$

- The expected complete data log-likelihood is:

$$
\mathbb{E}_{Z} \left[\ln p(X, Z | \pi, \mu, \Sigma) \right] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left[\ln \pi_k + \ln \mathcal{N}(x_n | \mu_k, \Sigma_k) \right].
$$
Expected Complete Log-Likelihood

- The expected complete data log-likelihood is:

$$\mathbb{E}_Z \left[\ln p(X, Z | \pi, \mu, \Sigma) \right] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left[\ln \pi_k + \ln \mathcal{N}(x_n | \mu_k, \Sigma_k) \right].$$

- Maximizing the respect to model parameters we obtain:

$$\mu_k^{new} = \frac{1}{N_k} \sum_n \gamma(z_{nk}) x_n, \quad N_k = \sum_n \gamma(z_{nk}),$$

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(y_{nk})(x_n - \mu_k)(x_n - \mu_k)^T,$$

$$\pi_k^{new} = \frac{N_k}{N}.$$
Relationship to K-Means

• Consider a Gaussian mixture model in which covariances are shared and are given by ϵI.

$$p(x|\mu_k, \Sigma_k) = \frac{1}{(2\pi\epsilon)^{D/2}} \exp \left[-\frac{1}{2\epsilon} ||x - \mu_k||^2 \right].$$

• Consider EM algorithm for a mixture of K Gaussians, in which we treat ϵ as a fixed constant. The posterior responsibilities take form:

$$\gamma(z_{nk}) = \frac{\pi_k \exp(-||x_n - \mu_k||^2/2\epsilon)}{\sum_{j=1}^{K} \pi_j \exp(-||x_n - \mu_j||^2/2\epsilon)}.$$

• Consider the limit $\epsilon \to 0$.
• In the denominator, the term for which $||x_n - \mu_j||^2$ is smallest will go to zero most slowly. Hence $\gamma(z_{nk}) \to r_{nk}$, where

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg \min_j ||x_n - \mu_j||^2 \\ 0 & \text{otherwise} \end{cases}.$$
Relationship to K-Means

• Consider EM algorithm for a mixture of K Gaussians, in which we treat \(\epsilon \) as a fixed constant. The posterior responsibilities take form:

\[
\gamma(z_{nk}) = \frac{\pi_k \exp(-||x_n - \mu_k||^2/2\epsilon)}{\sum_{j=1}^{K} \pi_j \exp(-||x_n - \mu_j||^2/2\epsilon)}.
\]

• Finally, in the limit \(\epsilon \to 0 \), the expected complete log-likelihood becomes:

\[
\mathbb{E}_Z[\ln p(X, Z|\pi, \mu, \Sigma)] \to -\frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2 + \text{const}.
\]

• Hence in the limit, maximizing the expected complete log-likelihood is equivalent to minimizing the distortion measure \(J \) for the K-means algorithm.
Bernoulli Distribution

• So far we focused on distributions over continuous variables.

• We will now look at mixture of discrete binary variables described by Bernoulli distributions.

• Consider a set of binary random variables x_i, i=1,…,D, each of which is governed by a Bernoulli distribution with μ_i.

$$p(x|\mu) = \prod_{i=1}^{D} \mu_i^{x_i} (1 - \mu_i)^{1-x_i}.$$

• The mean and covariance of this distribution are:

$$E[x] = \mu, \quad \text{cov}[x] = \text{diag}(\mu_i(1 - \mu_i)).$$
Mixture of Bernoulli Distributions

• Consider a finite mixture of Bernoulli distributions:

\[
p(\mathbf{x}|\pi, \mu) = \sum_{k=1}^{K} \pi_k p(\mathbf{x}|\mu_k),
\]

\[
p(\mathbf{x}|\mu_k) = \prod_{i=1}^{D} \mu_{ki}^{x_i} (1 - \mu_{ki})^{1-x_i}.
\]

• The mean and covariance of this mixture distribution are:

\[
\mathbb{E}[\mathbf{x}] = \sum_{k=1}^{K} \pi_k \mu_k, \quad \text{cov}[\mathbf{x}] = \sum_{k=1}^{K} \pi_k (\Sigma_k + \mu_k \mu_k^T) - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{x}]^T,
\]

where \(\Sigma_k = \text{diag}(\mu_{ki}(1 - \mu_{ki})) \).

• The covariance matrix is no longer diagonal, so the mixture distribution can capture correlations between the variables, unlike a single Bernoulli distribution.
Maximum Likelihood

• Given a dataset $X = \{x_1, \ldots, x_N\}$, the log-likelihood takes form:

$$\ln p(X|\pi, \mu) = \sum_{n=1}^{N} \ln \left[\sum_{k=1}^{K} \pi_k p(x|\mu_k) \right].$$

• Again, we see the sum inside the log, so the maximum likelihood solution no longer has a closed form solution.

• We will now derive EM for maximizing this likelihood function.

\{X\} -- incomplete dataset. \quad \{X, Z\} -- complete dataset.
Complete Log-Likelihood

- By introducing latent discrete random variables, we have:

\[p(z | \pi) = \prod_{k=1}^{K} \pi_k^{z_{nk}}, \quad p(x | z, \mu) = \prod_{k=1}^{K} p(x | \mu_k)^{z_k}. \]

- We can write down the complete log-likelihood

\[
\ln p(X, Z | \pi, \mu) = \sum_{i=1}^{N} \sum_{k=1}^{K} z_{nk} \ln \pi_k + \sum_{i=1}^{D} [x_{ni} \ln \mu_{ki} + (1-x_{ni}) \ln (1-\mu_{ki})].
\]

- The expected complete-data log-likelihood:

\[
\mathbb{E}_Z \left[\ln p(X, Z | \pi, \mu) \right] = \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left[\ln \pi_k + \sum_{i=1}^{D} [x_{ni} \ln \mu_{ki} + (1-x_{ni}) \ln (1-\mu_{ki})] \right],
\]

where \(\mathbb{E}[z_{nk}] = \gamma(z_{nk}). \)
E-step

• Similar to the mixture of Gaussians, in the E-step, we evaluate responsibilities using Bayes’ rule:

$$
E[z_{nk}] = \frac{\sum_{z_n} z_{nk} \prod_k \left[\pi_{k'} p(x_n | \mu_{k'}) \right] z_{nk'}}{\sum_{z_n} \prod_j \left[\pi_j p(x_n | \mu_j) \right] z_{nj}}
$$

$$
= \frac{\pi_k p(x_n | \mu_k)}{\sum_{j=1}^K \pi_j p(x_n | \mu_j)} = \gamma(z_{nk}).
$$
M-step

• The expected complete-data log-likelihood:

\[\mathbb{E}_Z \left[\ln p(X, Z | \pi, \mu) \right] = \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left[\ln \pi_k + \sum_{i=1}^{D} x_{ni} \ln \mu_{ki} + (1 - x_{ni}) \ln (1 - \mu_{ki}) \right] , \]

• Maximizing the expected complete-data log-likelihood:

\[\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) x_n, \quad \pi_k = \frac{N_k}{N}, \quad N_k = \sum_{n=1}^{N} \gamma(z_{nk}), \]

where \(N_k \) is the effective number of data points associated with component \(k \).

• Note that the mean of component \(k \) is equal to the weighted mean of the data, with weights given by the responsibilities that component \(k \) takes for explaining the data points.
Example

• Illustration of the Bernoulli mixture model

Training data

![Training data images](image)

Learned μ_k for the first three components.

A single multinomial Bernoulli distribution fit to the full data.