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Graphical Models 
•  Probabilistic graphical models provide a powerful framework for 
representing dependency structure between random variables.  

•  Graphical models offer several useful properties: 

-  They provide a simple way to visualize the structure of a probabilistic 
model and can be used to motivate new models. 

-  They provide various insights into the properties of the model, 
including conditional independence.  

-  Complex computations (e.g. inference and learning in sophisticated 
models) can be expressed in terms of graphical manipulations.  



Graphical Models 
•  A graph contains a set of nodes (vertices) connected by links (edges or arcs) 

•  In a probabilistic graphical model, each node 
represents a random variable, and links represent 
probabilistic dependencies  between random variables.  

•  The graph specifies the way in which the joint 
distribution over all random variables decomposes 
into a product of factors, where each factor 
depends on a subset of the variables.    

•  Two types of graphical models: 
-  Bayesian networks, also known as Directed Graphical Models (the 
links have a particular directionality indicated by the arrows) 
-  Markov Random Fields, also known as Undirected Graphical Models 
(the links do not carry arrows and have no directional significance).  

•  Hybrid graphical models that combine directed and undirected graphical 
models, such as Deep Belief Networks.  



Bayesian Networks  

•  Note that at this point, we do not need to specify anything else about 
these variables (e.g. whether they are discrete or continuous).  

•  Let us consider an arbitrary joint distribution                over three 
random variables a,b, and c.   

•  By application of the product rule of probability (twice), we get 

•  This decomposition holds for any choice of the joint distribution.  

•  Directed Graphs are useful for expressing causal relationships between 
random variables.  



Bayesian Networks  
•  By application of the product rule of probability (twice), we get 

•  Represent the joint distribution in terms of a simple graphical model: 

-  Introduce a node for each of the random variables.  
-  Associate each node with the corresponding 
conditional distribution in above equation.  
-  For each conditional distribution we add directed 
links to the graphs from the nodes corresponding 
to the variables on which the distribution is 
conditioned.  

•  Hence for the factor                 there will be links from nodes a and b to 
node c. 
•  For the factor           there will be no incoming links.  



Bayesian Networks  
•  By application of the product rule of probability (twice), we get 

•  If there is a link going from node a to node b, then we say that:  
-  node a is a parent of node b.  
-  node b is a child of node a. 

•  The joint distribution over K variables factorizes:  

•  For the decomposition, we choose a specific 
ordering of the random variables: a,b,c.  
•  If we chose a different ordering, we would get a 
different graphical representation (we will come 
back to that point later).  

•  If each node has incoming links from all lower numbered nodes, then the 
graph is fully connected; there is a link between all pairs of nodes.  



Bayesian Networks  
•  Absence of links conveys certain information about the properties of the 
class of distributions that the graph conveys. 

•  Note that this graph is not fully connected 
(e.g. there is no link from x1 to x2.  

•  Note that according to the graph, x5 will be 
conditioned only on x1 and x3.  

•  The joint distribution over x1,…,x7 can be 
written as a product of a set of conditional 
distributions.  



Factorization Property 
•  The joint distribution defined by the graph is given by the product of a 
conditional distribution for each node conditioned on its parents: 

•  Important restriction: There must be no 
directed cycles! 

where pak denotes a set of parents for the node xk.  

•  This equation expresses a key factorization 
property of the joint distribution for a directed 
graphical model. 

•  Such graphs are also called directed acyclic graphs (DAGs).   



Bayesian Curve Fitting 
•  As an example, remember Bayesian polynomial regression model: 

•  We are given inputs                                     
and target values                              . 

•  Given the prior over parameters, the 
joint distribution is given by: 

Likelihood term Prior term  



Graphical Representation 

•  This distribution can be 
represented as a graphical model. 

Plate	  

•  Same representation using 
plate notation.  

•  Note that w and                                represent random variables.    

•  Compact representation: we introduce a plate that represents N 
nodes of which only a single example tn is shown explicitly.  



Graphical Representation 
•  It will often be useful to make the parameters of the model as well as 
random variables be explicit.  

•  Random variables will be denoted by open circles and deterministic 
parameters will be denoted by smaller solid circles.  



Graphical Representation 
•  When we apply a graphical model for a problem in machine learning, 
we will set some of the variables to specific observed values (e.g. 
condition on the data).  

•  For example, having observed 
the values of the targets {tn} on 
the training data, we wish to infer 
the posterior distribution over 
parameters w. 

•  In this example, we conditioned on 
observed data 
by shadowing the corresponding 
nodes.    



Predictive Distribution 
•  We may also be interested in making predictions for a new input value     

where the the joint distribution of all of the 
random variables is given by: 

•  Here we are setting the random 
variables in t to the specific values 
observed in the data. 



Ancestral Sampling  
•  Consider a joint distribution over K random variables                              
that factorizes as: 

•  Our goal is draw a sample from this distribution. 

•  Start at the top sample in order. 

•  For sample, we sample: 
The parent 
variables are set to 
their sampled 
values 

•  To obtain a sample from the marginal distribution, e.g.                  we sample 
from the full joint distribution, retain             and discard the remaining values.  



Generative Models 
•  Higher-level nodes will typically represent latent (hidden) random variables.  
•  The primary role of the latent variables is to allow a complicated distribution 
over observed variables to be constructed from simpler (typically exponential 
family) conditional distributions.  

Generative Model of an Image •  Object identity, position, and orientation 
have independent prior probabilities.  

•   The image has a probability distribution 
that depends on the object identity, 
position, and orientation (likelihood 
function).  

•  The graphical model captures the causal process, by which the observed 
data was generated (hence the name generative models).  



Discrete Variables 
•  We now examine the discrete random variables.   
•  Assume that we have two discrete random variables x1 and x2, each of 
which has K states.  

•  Using 1-of-K encoding, we denote the probability of observing both x1k=1, 
x2l=1 by the parameter µkl, where x1k denotes the kth component of x1 
(similarly for x2).   

•  This distribution is governed by K2 - 1 parameters.  

•  The total number of parameters that must be specified for an arbitrary 
joint distribution over M random variables is KM-1 (corresponds to a fully 
connected graph). 

•  Grows exponentially in the number of variables M!  



Discrete Variables 
•  General joint distribution: K2-1 parameters. 

•  Independent joint distribution: 2(K-1) parameters. 

•  We dropped the link between the nodes, so each variables is described 
by a separate multinomial distribution.  



Discrete Variables 
•  In general:  

-  Fully connected graphs have completely general distributions and 
have exponential KM-1 number of parameters (too complex).  

-  If there are no links, the joint distribution fully factorizes into the 
product of the marginals, and have M(K-1) parameters (too simple).  

-  Graphs that have an intermediate level of connectivity allow for 
more general distributions compared to the fully factorized one, 
while requiring fewer parameters than the general joint distribution.  

•  Let us look at the example of the chain graph. 



Chain Graph 
•  Consider an M-node Markov chain: 

•  The marginal distribution           requires K-1 parameters. 

•  The remaining conditional distributions                                       
require K(K-1) parameters.   

•  Total number of parameters: K-1 + (M-1)(K-1)K, which is quadratic 
in K and linear in the length M of the chain.   

•  This graphical model forms the basis of a simple Hidden Markov 
Model.   



Adding Priors 
•  We can turn a graph over discrete random variables into a Bayesian 
model by introducing Dirichlet priors for the parameters  
•  From a graphical point of view, each node acquires an additional parent 
representing the Dirichlet distribution over parameters.   



Shared Prior 
•  We can further share the common prior over the parameters governing 
the conditional distributions. 

Shared	  prior	  



Parameterized Models 
•  We can use parameterized models to control exponential growth in the 
number of parameters. 

If	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  are	  discrete,	  	  K-‐state	  
variables,	  	  
in	  general	  has	  O(K M) parameters.	  

•  We can obtain a more parsimonious form of the 
conditional distribution by using a logistic function 
acting on a linear combination of the parent 
variables:  

•  This is a more restricted form of conditional distribution, but it requires 
only M+1 parameters (linear growth in the number of parameters).  



Linear Gaussian Models 
•  So far we worked with joint probability distributions over a set of discrete 
random variables (expressed as nodes in directed acyclic graphs). 

•  We now show how a multivariate Gaussian distribution can be 
expressed as a directed graph corresponding to a linear Gaussian model.  

•  Consider an arbitrary acyclic graph over D random variables, in which 
each node represent a single continuous Gaussian distribution with its 
mean given by the linear function of the parents: 

where wij and bi are parameters governing the mean, and vi is the variance.   



Linear Gaussian Models 
•  The log of the joint distribution takes form: 

where ‘const’ denotes terms independent of x.   

•  This is a quadratic function of x, and hence the joint distribution p(x) is a 
multivariate Gaussian. 

•  For example, consider a directed graph over three Gaussian variables 
with one missing link:  



Computing the Mean 
•  We can determine the mean and covariance of the joint distribution. 
Remember: 

hence 

so its expected value: 

•  Hence we can find components:                                         by doing 
ancestral pass: start at the top and proceed in order (see example): 



Computing the Covariance 
•  We can obtain the i,j element of the covariance matrix in the form of a 
recursion relation: 

•  Consider two cases: 

-  There are no links in the graph (graph is fully factorized), so that wij’s are zero. 
In this case:                                   and the covariance is diagonal                 
The joint distribution represents D independent univariate Gaussian 
distributions.    

-  The graph is fully connected. The total number of parameters is D + D(D-1)/2. 
The covariance corresponds to a general symmetric covariance matrix.   



Bilinear Gaussian Model 
•  Consider the following model: 

Gaussian terms 

•  The mean is given by the product of two Gaussians. 



Hierarchical Models 

Data 

Prior 

Hyper-prior 

Data 

Prior 

Hyper 
Prior 

Hyper-
hyper Prior 



Conditional Independence 
•  We now look at the concept of conditional independence. 
•  a is independent of b given c: 

•  Equivalently: 

•  We will use the notation: 

•  An important feature of graphical models is that conditional independence 
properties of the joint distribution can be read directly from the graph 
without performing any analytical manipulations 

•  The general framework for achieving this is called d-separation, where d 
stands for  ‘directed’ (Pearl 1988).  



•  The joint distribution over three variables can be written: 

•  If none of the variables are observed, 
we can examine whether a and b are 
independent:  

•  In general, this does not factorize into 
the product 

•  a and b have a common cause.  

Example 1: Tail-to-Tail Node 

•  The node c is said to be tail-to-tail node with respect to this path (the 
node is connected to the tails of the two arrows).  



•  Suppose we condition on the variable c: 

•  We obtain conditional independence 
property: 

•  Once c has been observed, a and b can no longer have any effect on 
each other. They become independent. 

Example 1: Tail-to-Tail Node 



Example 2: Head-to-Tail Node 
•  The joint distribution over three variables can be written: 

•  If none of the variables are observed, we can examine whether a and b 
are independent:  

•  The node c is said to be head-to-tail node with respect to the path from 
node a to node b.  

•  If c is not observed, a can influence c, and c can influence b. 



Example 2: Head-to-Tail Node 

•  We obtain conditional independence 
property: 

•  If c is observed, the value of a can no longer influence b.  

•  Suppose we condition on the variable c: 



Example 3: Head-to-Head Node 
•  The joint distribution over three variables can be written: 

•  If none of the variables are observed, 
we can examine whether a and b are 
independent:  

•  An unobserved descendant has no effect. 

•  The node c is said to be head-to-head node with respect to the path 
from a to b (because it connects to the heads of two arrows).  

•  Opposite to Example 1. 



Example 3: Head-to-Head Node 

•  If the descendant (or any of its descendants) is observed, its value has 
implications for both a and b, 

•  Opposite to Example 1. 

•  Suppose we condition on the variable c: 

•  In general, this does not factorize into 
the product. 



Fuel Example  
•  Consider the following example over three binary random variables: 

B = 	  Ba?ery	  (0=dead,	  1=fully	  charged)	  
F 	  = 	  Fuel	  Tank	  (0=empty,	  1=full)	  
G = 	  Fuel	  Gauge	  Reading	  
	   	  (0=empty,	  1=full)	  

and	  hence	  



Fuel Example  

•  Probability of an empty tank increased 
by observing G = 0.  

B  = 	  Ba?ery	  (0=dead,	  1=fully	  charged)	  
F 	  = 	  Fuel	  Tank	  (0=empty,	  1=full)	  
G = 	  Fuel	  Gauge	  Reading	  
	   	  (0=empty,	  1=full)	  

•  Suppose that we observe that the Fuel Gauge Reading is empty G = 0.  



Explaining Away 
•  If we observe that the Fuel Gauge Reading is empty G = 0 and that the 
battery is dead B=0.   

•  If we observe that the fuel gauge 
reading is empty, you assume that one 
of the causes happen (either the battery 
is dead or the fuel tank is empty). 
•  One cause removes `explains away’ 
the need for the other cause. 

B  = 	  Ba?ery	  (0=dead,	  1=fully	  charged)	  
F 	  = 	  Fuel	  Tank	  (0=empty,	  1=full)	  
G = 	  Fuel	  Gauge	  Reading	  
	   	  (0=empty,	  1=full)	  

•  Probability of an empty tank F=0 is 
reduced by observing that the battery 
is dead B = 0.   



D-separation 
•  a is independent of b if and only if all 
paths connecting a and b are blocked. 

cba |||

fba |||

•  head-to-tail and tail-to-tail nodes are 
blocked when observed. 

•  For example (on top), the path from a to 
b is not blocked by f because it is tail-to-tail 
node and it is unobserved.  

•  head-to-head nodes are blocked when 
the node and all its descendants are 
unobserved.  

•  But conditioned on f, a and b become 
independent.  



D-separation and i.i.d data 
•  Another example of conditional 
independence and d-separation is 
provided by the concept of independent 
and identically distributed data.  

•  Consider the problem of finding the 
posterior distribution over mean µ in 
Bayesian linear regression model.  

•  Suppose that we condition on the µ and 
consider the joint over observed variables. 

•  Using d-separation, note that there is 
unique path from xi to any other xj, and this 
path is head-to-head  with respect to µ.  

•  If we integrate out µ, the observations 
are no longer independent.  



Markov Blanket in Directed Models 
•   The Markov blanket of a node is the minimal set of nodes that must be 
observed to make this node independent of all other nodes 

Factors independent of xi cancel 
between numerator and	  denominator.	  

•  In a directed model, the Markov blanket includes parents, children and 
co-parents (i.e. all the parents of the node’s children) due to explaining 
away.  



Directed Graphs as Distribution Filters 
•   We can view the graphical model as a filter.  

•  The joint probability distribution p(x) is allowed through the filter if and 
only if it satisfies the factorization property.  

•  Note: The fully connected graph exhibits no conditional 
independence properties at all. 

•  The fully disconnected graph (no links) corresponds to joint 
distributions that factorize into the product of marginal distributions. 



Popular Models 

π

θ
z

w

Pr(topic	  |	  doc)	  

Pr(word	  |	  topic)	  

α

• 	  One	  of	  the	  popular	  models	  for	  
modeling	  word	  count	  vectors.	  	  
We	  will	  see	  this	  model	  later.	  	  

Latent	  Dirichlet	  AllocaOon	  

• 	  One	  of	  the	  popular	  models	  for	  
collaboraOve	  filtering	  applicaOons.	  

Bayesian	  ProbabilisOc	  Matrix	  FactorizaOon	  



Undirected Graphical Models  
Directed graphs are useful for expressing causal relationships between 
random variables, whereas undirected graphs are useful for expression 
soft constraints between random variables 

•  The joint distribution defined by the graph is given by 
the product of non-negative potential functions over 
the maximal cliques (connected subset of nodes). 

•  For example, the joint distribution factorizes: 

where the normalizing constant      is called a partition 
function. 

•  Let us look at the definition of cliques.  



Cliques 
•  The subsets that are used to define the potential functions are 
represented by maximal cliques in the undirected graph. 

•  Clique: a subset of nodes such that 
there exists a link between all pairs of 
nodes in a subset. 

•  Maximal Clique: a clique such that it is 
not possible to include any other nodes in 
the set without it ceasing to be a clique.  

•  This graph has 5 cliques: 

•  Two maximal cliques: 



Using Cliques to Represent Subsets 
•  If the potential functions only involve two nodes, an undirected graph 
has a nice representation. 

•  If the potential functions involve more 
than two nodes, using a different factor 
graph representation is much more 
useful.  

•  For now, let us consider only 
potential functions that are defined 
over two nodes.  



Markov Random Fields (MRFs) 

•  Each potential function is a mapping from joint 
configurations of random variables in a clique to 
non-negative real numbers. 

•  The choice of potential functions is not restricted 
to having specific probabilistic interpretations. 

where E(x) is called an energy function.  

Potential functions are often represented as exponentials: 

Boltzmann distribution 



MRFs with Hidden Variables 
For many interesting real-world problems, we need to introduce 
hidden or latent variables.  

•  Our random variables will contain both 
visible and hidden variables x=(v,h).  

•  In general computing both partition function 
and summation over hidden variables will be 
intractable, except for special cases.  

•  Parameter learning becomes a very 
challenging task. 



Conditional Independence 
•  Conditional Independence is easier compared to directed models: 

•  Observation blocks a node. 
•  Two sets of nodes are conditionally independent if the observations 
block all paths between them.   



Markov Blanket 

Markov	  Blanket	  

•  The Markov blanket of a node is simply all of the directly connected 
nodes. 

•  This is simpler than in directed models, 
since there is no explaining away.  

•   The conditional distribution of xi conditioned 
on all the variables in the graph is dependent 
only on the variables in the Markov blanket.  



Conditional Independence and 
Factorization 

•  Consider two sets of distributions: 
–  The set of distributions consistent with the conditional 

independence relationships defined by the undirected graph. 
–  The set of distributions consistent with the factorization defined by 

potential functions on maximal cliques of the graph. 

•  The Hammersley-Clifford theorem states that these two sets of 
distributions are the same. 



Interpreting Potentials 
•  In contrast to directed graphs, the potential functions do not have a 
specific probabilistic interpretation. 

•  This gives us greater flexibility in choosing 
the potential functions. 

•  We can view the potential function as expressing which configuration of the 
local variables are preferred to others.   

•  Global configurations with relatively high probabilities are those that find a 
good balance in satisfying the (possibly conflicting) influences of the clique 
potentials.  

•  So far we did not specify the nature of random variables, discrete or 
continuous. 



Discrete MRFs 
•  MRFs with all discrete variables are widely used in many applications.  

•  MRFs with binary variables are sometimes called Ising models in the 
statistical mechanics, and Boltzmann machines in the machine learning 
literature.  

•  Denoting the binary valued variable at node j  
by                    the Ising model for the joint 
probabilities is given by: 

•  The conditional distribution is given by logistic:  

where x-i denotes all 
nodes except for i.  

Hence the parameter θij measures the dependence of xi  on xj, conditional 
on the other nodes.  



Example: Image Denoising 
•  Let us look at the example of noise removal from a binary image.  

•  Let the observed noisy image be described by an array of binary 
pixel values:                           i=1,…,D.  

•  We take a noise-free image                    
and randomly flip the sign of pixels with 
some small probability. 

Neighboring pixels 
are likely to have  the 
same sign 

Noisy and clean 
pixels are likely to 
have the same sign 

Bias term 



Iterated Conditional Modes 
•  Iterated conditional modes: coordinate-wise gradient descent. 

Original	  Image	   Noisy	  Image	   ICM	  

•  Visit the unobserved nodes sequentially and set each x to whichever of 
its two values has the lowest energy.  

–  This only requires us to look at the Markov blanket, i.e. the 
connected nodes. 

–  Markov blanket of a node is simply all of the directly connected 
nodes. 



Gaussian MRFs 
•  We assume that the observations have a multivariate Gaussian 
distribution with mean µ and covariance matrix §.  

•  Since the Gaussian distribution represents at most second-order 
relationships, it automatically encodes a pairwise MRF. We rewrite: 

where 

•  The positive definite matrix J is known as the 
information matrix and is sparse with respect to the 
given graph:  

•  The information matrix is sparse, but the covariance matrix is not sparse.  



Restricted Boltzmann Machines 
•  For many real-world problems, we need to introduce hidden variables.  

•  Our random variables will contain visible and hidden variables x=(v,h).  

The energy of the joint configuration:  

model parameters. 

Probability of the joint configuration is given by the Boltzmann distribution: 

are connected to stochastic binary 
hidden variables          .  

Stochastic binary visible variables 

Image  visible variables 

  hidden variables 

Bipartite  
Structure 

parOOon	  funcOon	   potenOal	  funcOons	  



Restricted Boltzmann Machines 

Restricted:	  	  	  No	  interacOon	  between	  
	   	   	  	  hidden	  variables	  

Inferring	  the	  distribuOon	  over	  the	  
hidden	  variables	  is	  easy:	  

Factorizes:	  Easy	  to	  compute	  

Image	  	  	  	  	  	  visible	  variables	  

	  	  hidden	  variables	  

BiparOte	  	  
Structure	  

Similarly:	  

Markov	  random	  fields,	  Boltzmann	  machines,	  log-‐linear	  models.	  



Restricted Boltzmann Machines 
Learned	  W:	  	  “edges”	  
Subset	  of	  1000	  features	  

=	   ….	  

New	  Image:	  

LogisOc	  FuncOon:	  Suitable	  for	  
modeling	  binary	  images	  

Most	  hidden	  	  
variables	  are	  off	  

Observed	  	  Data	  	  
Subset	  of	  25,000	  characters	  

Represent:	   as	  



Gaussian-Bernoulli RBMs 
Gaussian-‐Bernoulli	  RBM:	  	  

Gaussian	  

Bernoulli	  

Image	  	  	  	  	  	  visible	  variables	  

Define	  energy	  funcOons	  for	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  various	  data	  modaliOes:	  



Gaussian-Bernoulli RBMs 

Learned	  features	  (out	  of	  10,000)	  
4	  million	  unlabelled	  images	  

Images:	  Gaussian-‐Bernoulli	  RBM	  

Learned	  features:	  ``topics’’	  

russian	  
russia	  
moscow	  
yeltsin	  
soviet	  

clinton	  
house	  
president	  
bill	  
congress	  

computer	  
system	  
product	  
soaware	  
develop	  

trade	  
country	  
import	  
world	  
economy	  

stock	  
wall	  
street	  
point	  
dow	  

Reuters	  dataset:	  
804,414	  unlabeled	  
newswire	  stories	  
Bag-‐of-‐Words	  	  

Text:	  MulOnomial-‐Bernoulli	  RBM	  



Relation to Directed Graphs 
•  Let us try to convert directed graph into an undirected graph:  



Directed vs. Undirected 
•  Directed Graphs can be more precise about independencies than 
undirected graphs. 

•  All the parents of x4 can interact to 
determine the distribution over x4.  
•  The directed graph represents 
independencies that the undirected 
graph cannot model. 

•  To represent the high-order interaction 
in the directed graph, the undirected 
graph needs a fourth-order clique. 
•  This fully connected graph exhibits no 
conditional  independence properties 

Moralize: Marry the parents 

need 4th 
order clique 



Undirected vs. Directed 
•  Undirected Graphs can be more precise about independencies than 
directed graphs 

•  There is no directed graph over four 
variables that represents the same set of 
conditional independence properties.  



Directed vs. Undirected 
•  If every conditional independence property of the distribution is reflected 
in the graph and vice versa, then the graph is a perfect map for that 
distribution.  

•  Venn diagram: 

-  The set of all distributions P over a 
given set of random variables. 
-  The set of distributions D that can be 
represented as a perfect map using 
directed graph. 

-  The set of distributions U that can be 
represented as a perfect map using 
undirected graph. 

•  We can extend the framework to graphs that include both directed and 
undirected graphs.  


