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Linear Models for Classification 
•  So far, we have looked at the linear models for regression that have 
particularly simple analytical and computational properties.   

•  We will now look at analogous class of models for solving 
classification problems.  

•  We will also look at the Bayesian treatment of linear models for 
classification.  



Classification 
•  The goal of classification is to assign an input x into one of K discrete 
classes Ck, where k=1,..,K.  
•  Typically, each input is assigned only to one class.  

•  Example: The input vector x is the set of pixel intensities, and the 
output variable t will represent the presence of cancer, class C1, or 
absence of cancer, class C2.  

 C1: Cancer present 

C2: Cancer absent 

x -- set of pixel intensities 



Linear Classification 
•  The goal of classification is to assign an input x into one of K discrete 
classes Ck, where k=1,..,K.  

•  We will consider linear models for classification. Remember, in the 
simplest linear regression case, the model is linear in parameters: 

adaptive parameters 

•  For classification, we need to predict discrete class labels, or posterior 
probabilities that lie in the range of (0,1), so we use a nonlinear function.  

fixed nonlinear function: 
activation function 

•  The input space is divided into decision regions whose boundaries are 
called decision boundaries or decision surfaces.  



Linear Classification 

•  The decision surfaces correspond to                             so that 
                                and hence the decision surfaces are linear functions 
of x, even if the activation function is nonlinear.     

•  These class of models are called generalized linear models.  

•  Note that these models are no longer linear in parameters, due to the 
presence of nonlinear activation function. 

•  This leads to more complex analytical and computational properties, 
compared to linear regression.   

•  Note that we can make a fixed nonlinear transformation of the input 
variables using a vector of basis functions            as we did for 
regression models.  



Notation 
•  In the case of two-class problems, we can use the binary 
representation for the target value                   such that t=1 represents 
the positive class and t=0 represents the negative class.  

-  We can interpret the value of t as the probability of the positive class, and 
the output of the model can be represented as the probability that the 
model assigns to the positive class.   

•  If there are K classes, we use a 1-of-K encoding scheme, in which t is 
a vector of length K containing a single 1 for the correct class and 0 
elsewhere.  

-  We can interpret a vector t as a vector of class probabilities.  

•  For example, if we have K=5 classes, then an input that belongs to 
class 2 would be given a target vector: 



Three Approaches to Classification 
•  Construct a discriminant function that directly maps each input 
vector to a specific class.    

•  Model the conditional probability distribution                and then 
use this distribution to make optimal decisions.    
•  There are two alternative approaches: 

-   Discriminative Approach: Model                 directly, for example 
by representing them as parametric models, and optimize for 
parameters using the training set (e.g. logistic regression).     

-   Generative Approach: Model class conditional densities                
together with the prior probabilities           for the classes. Infer 
posterior probability using Bayes’ rule:      

We will consider next. 



Probabilistic Generative Models 
•  Model class conditional densities               separately for each class, 
as well as the class priors 
•  Consider the case of two classes. The posterior probability of class 
C1 is given by: 

where we defined: 

which is known as the logit function. It represents the log of the ration of 
probabilities of two classes, also known as the log-odds.  

Logistic sigmoid 
function 



Sigmoid Function 
•  The posterior probability of class C1 is given by: 

Logistic sigmoid 
function 

•  The term sigmoid means S-shaped: it maps the whole real axis 
into (0 1).  

•  It satisfies: 



Softmax Function 
•  For case of K>2 classes, we have the following multi-class generalization: 

•  This normalized exponential is also known as the softmax function, as it 
represents a smoothed version of the max function: 

•  We now look at some specific forms of class conditional distributions.  



Example of Continuous Inputs 
•  Assume that the input vectors for each class are from a Gaussian 
distribution, and all classes share the same covariance matrix: 

•  For the case of two classes, the posterior is logistic function: 

where we have defined: 

•  The quadratic terms in x cancel (due to the assumption of common 
covariance matrices).  
•  This leads to a linear function of x in the argument of logistic sigmoid. 
Hence the decision boundaries are linear in input space.  



Example of Two Gaussian Models 

Class-conditional densities for 
two classes 

The corresponding posterior 
probability              given by the 
sigmoid function of a linear 
function of x.    



Case of K Classes 
•  For the case of K classes, the posterior is a softmax function: 

where, similar to the 2-class case, we have defined: 

•  Again, the decision boundaries are linear in input space.  

•  If we allow each class-conditional density to have its own covariance, 
we will obtain quadratic functions of x.   

•  This leads to a quadratic discriminant.  



Quadratic Discriminant 
The decision boundary is linear when the covariance matrices are the 
same and quadratic when they are not. 

Class-conditional densities for 
three classes 

The corresponding posterior 
probabilities for three classes. 



Maximum Likelihood Solution 
•  Consider the case of two classes, each having a Gaussian class-
conditional density with shared covariance matrix. 

•  We observe a dataset                                
-  Here tn=1 denotes class C1, and tn=0 denotes class C2. 
-  Also denote                   and  

•  The likelihood function takes form:  

Data points 
from class C1. 

Data points 
from class C2. 

•  As usual, we will maximize the log of the likelihood function.  



Maximum Likelihood Solution 

•  Maximizing the respect to ¼, we look at the terms of the log-likelihood 
functions that depend on ¼: 

Differentiating, we get: 

•  Maximizing the respect to µ1, we look at the terms of the log-likelihood 
functions that depend on µ1: 

Differentiating, we get: And similarly: 



Maximum Likelihood Solution 

•  Maximizing the respect to §: 

•  Here we defined: 
•  Using standard results for a 
Gaussian distribution we have: 

•  Maximum likelihood solution 
represents a weighted average of 
the covariance matrices associated 
with each of the two classes.  



Example 

decision 
boundary 

What happens to the 
decision boundary if we 
add a new red point here? 

new Gaussian 

•  For generative fitting, the red mean moves rightwards but the decision 
boundary moves leftwards! If you believe the data is Gaussian, this is 
reasonable. 

•  How can we fix this? 



Three Approaches to Classification 
•  Construct a discriminant function that directly maps each input 
vector to a specific class.    

•  Model the conditional probability distribution                and then 
use this distribution to make optimal decisions.    
•  There are two approaches: 

-   Discriminative Approach: Model                 directly, for example 
by representing them as parametric models, and optimize for 
parameters using the training set (e.g. logistic regression).     

-   Generative Approach: Model class conditional densities                
together with the prior probabilities           for the classes. Infer 
posterior probability using Bayes’ rule:      

We will consider next. 



Fixed Basis Functions 
•  So far, we have considered classification models that work directly in 
the input space.  

•  All considered algorithms are equally applicable if we first make a 
fixed nonlinear transformation of the input space using  vector of 
basis functions 

•  Decision boundaries will be linear in the feature space      but would 
correspond to nonlinear boundaries in the original input space x.   

•  Classes that are linearly separable in the feature space         need 
not be linearly separable in the original input space.  



Linear Basis Function Models 

•  We define two Gaussian basis functions with centers shown by green the 
crosses, and with contours shown by the green circles.   

Original input space Corresponding feature space using 
two Gaussian basis functions 

•  Linear decision boundary (right) is obtained using logistic regression, and 
corresponds to nonlinear decision boundary in the input space (left, black curve).   



Logistic Regression 
•  Consider the problem of two-class classification. 
•  We have seen that the posterior probability of class C1 can be written 
as a logistic sigmoid function: 

where                                        and we omit the bias term for clarity.   

•  This model is known as logistic regression (although this is a 
model for classification rather than regression).  

logistic sigmoid function 
Note that for generative models, we would 
first determine the class conditional 
densities and class-specific priors, and then 
use Bayes’ rule to obtain the posterior 
probabilities.  

Here we model               directly.  



ML for Logistic Regression 
•  We observed a training dataset  
•  Maximize the probability of getting the label right, so the likelihood 
function takes form: 

•  Taking the negative log of the likelihood, we can define cross-entropy 
error function (that we want to minimize): 

•  Differentiating and using the chain rule: 

•  Note that the factor involving the derivative of the logistic function cancelled.  



ML for Logistic Regression 
•  We therefore obtain: 

•  This takes exactly the same form as the gradient of the sum-of-
squares error function for the linear regression model.  

target prediction 

•  Unlike in linear regression, there is no closed form solution, due 
to nonlinearity of the logistic sigmoid function.  

•  The error function is convex and can be optimized using standard 
gradient-based (or more advanced) optimization techniques.  

•  Easy to adapt to the online learning setting.  



Multiclass Logistic Regression 
•  For the multiclass case, we represent posterior probabilities by a 
softmax transformation of linear functions of input variables : 

•  Unlike in generative models, here we will use maximum likelihood to 
determine parameters of this discriminative model directly.  

•  As usual, we observed a dataset                                       where 
we use 1-of-K encoding for the target vector tn.  

•  So if xn belongs to class Ck, then t is a binary vector of length K 
containing a single 1 for element k (the correct class) and 0 elsewhere.  

•  For example, if we have K=5 classes, then an input that belongs to 
class 2 would be given a target vector: 



Multiclass Logistic Regression 
•  We can write down the likelihood function: 

N £ K binary matrix of 
target variables. 

Only one term corresponding 
to correct class contributes. 

•  Taking the negative logarithm gives the cross-entropy entropy function 
for multi-class classification problem: 

where  

•  Taking the gradient: 



 Special Case of Softmax 
•  If we consider a softmax function for two classes: 

•  So the logistic sigmoid is just a special case of the softmax function that 
avoids using redundant parameters: 

-  Adding the same constant to both a1 and a2 has no effect.   
-  The over-parameterization of the softmax is because probabilities 

must add up to one.  



Recap 
•  Generative approach:  Determine 
the class conditional densities and 
class-specific priors, and then use 
Bayes’ rule to obtain the posterior 
probabilities.  

–  Different models can be trained 
separately on different 
machines. 

–  It is easy to add a new class 
without retraining all the other 
classes. 

•  Discriminative approach: Train 
all of the model parameters to 
maximize the probability of 
getting the labels right. 

Model                directly. 



Bayesian Logistic Regression 
•  We next look at the Bayesian treatment of logistic regression. 
•  For the two-class problem, the likelihood takes form: 

•  Similar to Bayesian linear regression, we could start with a 
Gaussian prior: 

•  However, the posterior distribution 

is no longer Gaussian, and we cannot analytically integrate over model 
parameters w.  

•  We need to introduce some approximations.  



Pictorial illustration 
•  Consider a simple distribution: 

•  The plot shows the normalized 
distribution (in yellow), which is 
not Gaussian.  

•  The red curve displays the 
corresponding Gaussian 
approximation.  



Recap: Computational Challenge of 
Bayesian Framework 

Remember: the big challenge is computing the posterior distribution. 
There are several main approaches:  

•  Analytical integration: If we use “conjugate” priors, the posterior distribution 
can be computed analytically (we saw this for Bayesian linear regression).  

•  Gaussian (Laplace) approximation: Approximate the posterior distribution 
with a Gaussian. Works well when there is a lot of data compared to the 
model complexity (as posterior is close to Gaussian).  

•  Monte Carlo integration: The dominant current approach is Markov Chain 
Monte Carlo (MCMC) -- simulate a Markov chain that converges to the 
posterior distribution. It can be applied to a wide variety of problems.  

•  Variational approximation: A cleverer way to approximate the posterior. It 
often works much faster, but not as general as MCMC.  

We will consider Laplace approximation next. 



Laplace Approximation 
•  We will use the following notation:  

•  Goal: Find a Gaussian approximation q(z) which is centered on a 
mode of the distribution p(z).  

•  We can evaluate         point-wise 
but cannot evaluate 

•  For example 



Laplace Approximation 
•  We will use the following notation:  

•  Consider a Taylor approximation    
             around 

•  At the stationary point       the 
gradient              vanishes. 

where A is a Hessian matrix: 

•  Exponentiating both sides: 



Laplace Approximation 

•   Using Taylor approximation, we get: 

•  We will use the following notation:  

where      is the mode of          and A is the Hessian:  

•  Hence a Gaussian approximation for          is:  



Laplace Approximation 

•  Bayesian inference: 

•  The posterior is approximately Gaussian around the MAP estimate: 

•  Identify: 

•   Using Taylor approximation, we get: 

•  We will use the following notation:  



Laplace Approximation 

•  We can approximate Model Evidence: 
 using Laplace approximation: 

Occam factor: penalize model complexity Data fit 

•   Using Taylor approximation, we get: 

•  We will use the following notation:  



Bayesian Information Criterion 
•  BIC can be obtained from the Laplace approximation:  

by taking the large sample limit (N ! 1) where N is the number of 
data points.  

•  Quick and easy, does not depend on the prior.  
•  Can use maximum likelihood estimate instead of the MAP estimate. 
•  D denotes the number of well-determined parameters. 
•  Danger: Counting parameters can be tricky (e.g. infinite models).  



Bayesian Logistic Regression 
•  Remember the likelihood: 

•  And the prior: 

•  The log of the posterior takes form: 
Log-prior term 

Log-likelihood 
term 

•  We first maximize the log-posterior to get the MAP estimate:  
•  The inverse of covariance is given by the matrix of second derivatives: 

•  The Gaussian approximation to the posterior distribution is given by: 



Predictive Distribution 
•  The predictive distribution for class C1, given a new input x* is 
given by marginalizing with respect to posterior distribution                  
which is itself approximated by a Gaussian distribution:  

with the corresponding probability for class C2 given by:  

Still not 
tractable. 

•  The convolution of Gaussian with logistic sigmoid cannot be evaluated 
analytically.  



Predictive Distribution 

•  Note that the logistic function depends on w only through its projection 
onto x*. Denoting                    we have: 

where ± is the Dirac delta function. Hence 

•  The delta function imposes a linear constraint on w. It forms a marginal 
distribution from the joint q(w) by marginalizing out  all directions 
orthogonal to x*.  

•  Since q(w) is Gaussian, the marginal is also Gaussian.  

•  Let us characterize p(a).  
1-dimensional 
integral. 



Predictive Distribution 

•  We can evaluate the mean and variance of the marginal p(a).  

•  Hence we obtain approximate predictive: 

Same form as the 
predictive 
distribution for the 
Bayesian linear 
regression model.  

•  The integral is 1-dimensional and can further be approximated via:   



Graphical Models 
•  Probabilistic graphical models provide a powerful framework for 
representing dependency structure between random variables.  

•  Graphical models offer several useful properties: 

-  They provide a simple way to visualize the structure of a probabilistic 
model and can be used to motivate new models. 

-  They provide various insights into the properties of the model, 
including conditional independence.  

-  Complex computations (e.g. inference and learning in sophisticated 
models) can be expressed in terms of graphical manipulations.  



Graphical Models 
•  A graph contains a set of nodes (vertices) connected by links (edges or arcs) 

•  In a probabilistic graphical model, each node 
represents a random variable, and links represent 
probabilistic dependencies  between random variables.  

•  The graph specifies the way in which the joint 
distribution over all random variables decomposes 
into a product of factors, where each factor 
depends on a subset of the variables.    

•  Two types of graphical models: 
-  Bayesian networks, also known as Directed Graphical Models (the 
links have a particular directionality indicated by the arrows) 
-  Markov Random Fields, also known as Undirected Graphical Models 
(the links do not carry arrows and have no directional significance).  

•  Hybrid graphical models that combine directed and undirected graphical 
models, such as Deep Belief Networks.  



Bayesian Networks  

•  Note that at this point, we do not need to specify anything else about 
these variables (e.g. whether they are discrete or continuous).  

•  Let us consider an arbitrary joint distribution                over three 
random variables a,b, and c.   

•  By application of the product rule of probability (twice), we get 

•  This decomposition holds for any choice of the joint distribution.  

•  Directed Graphs are useful for expressing causal relationships between 
random variables.  



Bayesian Networks  
•  By application of the product rule of probability (twice), we get 

•  Represent the joint distribution in terms of a simple graphical model: 

-  Introduce a node for each of the random variables.  
-  Associate each node with the corresponding 
conditional distribution in above equation.  
-  For each conditional distribution we add directed 
links to the graphs from the nodes corresponding 
to the variables on which the distribution is 
conditioned.  

•  Hence for the factor                 there will be links from nodes a and b to 
node c. 
•  For the factor           there will be no incoming links.  



Bayesian Networks  
•  By application of the product rule of probability (twice), we get 

•  If there is a link going from node a to node b, then we say that:  
-  node a is a parent of node b.  
-  node b is a child of node a. 

•  The joint distribution over K variables factorizes:  

•  For the decomposition, we choose a specific 
ordering of the random variables: a,b,c.  
•  If we chose a different ordering, we would get a 
different graphical representation (we will come 
back to that point later).  

•  If each node has incoming links from all lower numbered nodes, then the 
graph is fully connected; there is a link between all pairs of nodes.  



Bayesian Networks  
•  Absence of links conveys certain information about the properties of the 
class of distributions that the graph conveys. 

•  Note that this graph is not fully connected 
(e.g. there is no link from x1 to x2.  

•  Note that according to the graph, x5 will be 
conditioned only on x1 and x3.  

•  The joint distribution over x1,…,x7 can be 
written as a product of a set of conditional 
distributions.  



Factorization Property 
•  The joint distribution defined by the graph is given by the product of a 
conditional distribution for each node conditioned on its parents: 

•  Important restriction: There must be no 
directed cycles! 

where pak denotes a set of parents for the node xk.  

•  This equation expresses a key factorization 
property of the joint distribution for a directed 
graphical model. 

•  Such graphs are also called directed acyclic graphs (DAGs).   



Discrete Variables 
•  General joint distribution: K2-1 parameters. 

•  Independent joint distribution: 2(K-1) parameters. 

•  We dropped the link between the nodes, so each variables is described 
by a separate multinomial distribution.  



Discrete Variables 
•  In general:  

-  Fully connected graphs have completely general distributions and 
have exponential KM-1 number of parameters (too complex).  

-  If there are no links, the joint distribution fully factorizes into the 
product of the marginals, and have M(K-1) parameters (too simple).  

-  Graphs that have an intermediate level of connectivity allow for 
more general distributions compared to the fully factorized one, 
while requiring fewer parameters than the general joint distribution.  

•  Let us look at the example of the chain graph. 



Chain Graph 
•  Consider an M-node Markov chain: 

•  The marginal distribution           requires K-1 parameters. 

•  The remaining conditional distributions                                       
require K(K-1) parameters.   

•  Total number of parameters: K-1 + (M-1)(K-1)K, which is quadratic 
in K and linear in the length M of the chain.   

•  This graphical model forms the basis of a simple Hidden Markov 
Model.   



Adding Priors 
•  We can turn a graph over discrete random variables into a Bayesian 
model by introducing Dirichlet priors for the parameters  
•  From a graphical point of view, each node acquires an additional parent 
representing the Dirichlet distribution over parameters.   



Shared Prior 
•  We can further share the common prior over the parameters governing 
the conditional distributions. 

Shared	
  prior	
  



Parameterized Models 
•  We can use parameterized models to control exponential growth in the 
number of parameters. 
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•  We can obtain a more parsimonious form of the 
conditional distribution by using a logistic function 
acting on a linear combination of the parent 
variables:  

•  This is a more restricted form of conditional distribution, but it requires 
only M+1 parameters (linear growth in the number of parameters).  



Linear Gaussian Models 
•  So far we worked with joint probability distributions over a set of discrete 
random variables (expressed as nodes in directed acyclic graphs). 

•  We now show how a multivariate Gaussian distribution can be 
expressed as a directed graph corresponding to a linear Gaussian model.  

•  Consider an arbitrary acyclic graph over D random variables, in which 
each node represent a single continuous Gaussian distribution with its 
mean given by the linear function of the parents: 

where wij and bi are parameters governing the mean, and vi is the variance.   



Linear Gaussian Models 
•  The log of the joint distribution takes form: 

where ‘const’ denotes terms independent of x.   

•  This is a quadratic function of x, and hence the joint distribution p(x) is a 
multivariate Gaussian. 

•  For example, consider a directed graph over three Gaussian variables 
with one missing link:  



Computing the Mean 
•  We can determine the mean and covariance of the joint distribution. 
Remember: 

hence 

so its expected value: 

•  Hence we can find components:                                         by doing 
ancestral pass: start at the top and proceed in order (see example): 



Computing the Covariance 
•  We can obtain the i,j element of the covariance matrix in the form of a 
recursion relation: 

•  Consider two cases: 

-  There are no links in the graph (graph is fully factorized), so that wij’s are zero. 
In this case:                                   and the covariance is diagonal                 
The joint distribution represents D independent univariate Gaussian 
distributions.    

-  The graph is fully connected. The total number of parameters is D + D(D-1)/2. 
The covariance corresponds to a general symmetric covariance matrix.   



Bilinear Gaussian Model 
•  Consider the following model: 

Gaussian terms 

•  The mean is given by the product of two Gaussians. 



Hierarchical Models 

Data 

Prior 

Hyper-prior 

Data 

Prior 

Hyper 
Prior 

Hyper-
hyper Prior 


