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Evaluation

3 Assignments, each worth 20%.
* |Individual Projects, 40%.

Tentative Dates — Check the website for updates!

 Assignment 1: Handed out: Sep 17,
Due: Oct 1.

Assignment 2: Handed out: Oct 1,
Due: Oct 15.

Assignment 3: Handed out: Oct 15,
Due: Oct 29.

Project: Proposal Due Nov 5,
Presentations: Nov 26
Report Due: Dec 3.



Project

* The idea of the final project is to give you some experience trying
to do a piece of original research in machine learning and
coherently writing up your result.

* What is expected: A simple but original idea that you describe
clearly, relate to existing methods, implement and test on a
small scale problem.

* To do this you will need to write some basic code, run it on
some data, make some figures, read a few background papers,
collect some references, and write a few pages describing your
model, algorithm, and results.



Text Books

* Christopher M. Bishop (2006)
Pattern Recognition and Machine Learning, Springer.

* Trevor Hastie, Robert Tibshirani, Jerome Friedman (2009)
The Elements of Statistical Learning

* David MacKay (2003)
Information Theory, Inference, and Learning Algorithms

* Most of the figures and material will come from these books.



Statistical Machine Learning

Statistical machine learning is a very dynamic field that lies at
the intersection of Statistics and computational sciences.

The goal of statistical machine learning is to develop
algorithms that can learn from data by constructing stochastic
models that can be used for making predictions and decisions.



Machine Learning’s Successes

* Biostatistics / Computational Biology.

* Neuroscience.

* Medical Imaging:
— computer-aided diagnosis, image-guided therapy.
— image registration, image fusion.

* Information Retrieval / Natural Language Processing:
— Text, audio, and image retrieval.
— Parsing, machine translation, text analysis.

* Speech processing:
— Speech recognition, voice identification.

* Robotics:
— Autonomous car driving, planning, control.



Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.
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Example: Boltzmann Machine

Latent (hidden)
Model parameters variables

AN

1
P(x,y) = = Zexp [XTW(l)h +y"W®h

N

Input data (e.g. pixel Target variables
intensities of an image, (response) (e.g. class
words from webpages, labels, categories,
speech signal). phonemes).

Markov Random Fields, Undirected Graphical Models.



Boltzmann Machine

Observed Data
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25,000 characters from 50
alphabets around the world.

Simulate a Markov chain
whose stationary distribution
is P(x|y = Sanskrit).




Boltzmann Machine

Pattern Completion: P(image|partial image)




Boltzmann Machine

Pattern Recognition

Optical Character Recognition

Learning Algorithm Error
Logistic regression 22.14%
K-NN 18.92%
Neural Network 14.62%
SVM (Larochelle et.al. 2009) 9.70%
Deep Autoencoder 10.05%
(Bengio et. al. 2007)

Deep Belief Net 9.68%
(Larochelle et. al. 2009)

This model 8.40%




Finding Structure in Data

7

Vector of word counts
on a webpage

CNYIUSD

REUTERS == -

PIMCO: Treasuries reflect The SEC shouldn’t
likelihood of recession push index funds. e

BofA cutting 3,500 jobs this
quarter: memo

804,414 newswire stories

P(x) = %Zexp [XTWh]

Latent variables:
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Matrix Factorization

movielens @ (ﬁ (‘J‘ﬂ @ ﬂ
Collaborative FiItering/ NETELIN helping you find the right movies i Koeve| P y B B e
Matrix Factorization/ amazon i P | sorr]rn] P laan
i Kk P [Aokd|hkk| D
Hierarchical Bayesian Model
Rating value of Latent user feature Latent item
user i for item j (preference) vector feature vector

N\ N 7

rij| Wi, vji, o NN(uz‘TVj702>a
wlo, ~ N(0,021), i=1,...,N.
vilo, ~ N(0,021), j=1,.., M.

Prediction: predict a rating r’jj for user i and query movie j.

Latent variables that
we infer from

observed ratings.

P(rj;|R) = // P(rfj\ui,vj)ﬁ(ui,Vj\fi)duidvj

Y, .
Posterior over Latent Variables

Infer latent variables and make predictions using Markov chain Monte Carlo.




Finding Structure in Data
movielens ﬂ@ @@@

helping you find the right movies ﬁ v b 4 ey Yo Yo
amazon ﬁ D v hAk| P pan
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Collaborative Filtering/
Matrix Factorization/
Product Recommendation

Learned "‘genre”

Netflix dataset: Fahrgnheit 9/11 ' Independence Day
Bowling for Columbine The Day After Tomorrow
480,189 users :> The People vs. Larry Flynt Con Air
Canadian Bacon Men in Black Il

17,770 movies

_— . La Dolce Vit Men in Black
Over 100 million ratings. a polce Vit

Friday the 13th

The Texas Chainsaw Massacre
Children of the Corn

Child's Play

The Return of Michael Myers

* Part of the wining solution in the Netflix contest (1 million dollar prize).



Tentative List of Topics

* Linear methods for regression/classification

Model assessment and selection

* Graphical models, Bayesian networks, Markov random fields, conditional random
fields

* Approximate variational inference, mean-field inference

* Basic sampling algorithms, Markov chain Monte Carlo, Gibbs sampling, and
Metropolis-Hastings algorithm

* Mixture models and generalized mixture models

* Unsupervised learning, probabilistic PCA, factor analysis

We will also discuss recent advances in machine learning focusing on
* Bayesian nonparametric (BNP) models: Gaussian processes (GP): regression/

classification
* Deep Learning Models



Types of Learning

Consider observing a series of input vectors:
X1y X2, X3, X4y ...

e Supervised Learning: We are also given target outputs (labels, responses):
Y., Y, -, and the goal is to predict correct output given a new input.

e Unsupervised Learning: The goal is to build a statistical model of x, which
can be used for making predictions, decisions.

e Reinforcement Learning: the model (agent) produces a set of actions:
a,, a,,... that affect the state of the world, and received rewards r,, r,...
The goal is to learn actions that maximize the reward (we will not cover
this topic in this course).

e Semi-supervised Learning: We are given only a limited amount of labels,
but lots of unlabeled data.



Supervised Learning

4 '

Classification: target outputs y, are
discrete class labels. The goal is to
correctly classify new inputs.

Regression: target outputs y; are
continuous. The goal is to predict the [ ©
output given new inputs. ° o

0



Handwritten Digit Classification
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Unsupervised Learning

The goal is to construct statistical model
that finds useful representation of data:
e Clustering
 Dimensionality reduction
e Modeling the data density
e Finding hidden causes (useful
explanation) of the data

Unsupervised Learning can be used for:
Structure discovery

Anomaly detection / Outlier detection

e Data compression, Data visualization
Used to aid classification/regression tasks
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DNA Microarray Data

Expression matrix of 6830 genes (rows) and 64
samples (columns) for the human tumor data.

The display is a heat map ranging from bright
green (under expressed) to bright red (over
expressed).

Questions we may ask:
e Which samples are similar to other samples in
terms of their expression levels across genes.

* Which genes are similar to each other in
terms of their expression levels across samples.




Plan

The first third of the course will focus on supervised learning -
linear models for regression/classification.

The rest of the course will focus on unsupervised and semi-
supervised learning.



Linear Least Squares

* Given a vector of d-dimensional inputs x = (21, zs, ..., :cd)T, we want to

predict the target (response) using the linear model:
d

y(xr,w) = wo + wix1 + wakoe + ... + wygrq = wo + ij:cj.
j=1
* The term w,, is the intercept, or often called bias term. It will be convenient to
include the constant variable 1 in x and write:

y(x,w) =x'w.

* Observe a training set consisting of N observations X = (x1, Xa, ..., XN)T
together with corresponding target values t = (¢4, o, ..., tN)T.

* Note that Xisan N x (d + 1) matrix.

?



Linear Least Squares

One option is to minimize the sum of the squares of the errors between the
predictions y(x,, W) for each data point x_, and the corresponding real-valued
targets t,.

10F| e epata _ Loss function: sum-of-squared error function:
of = curve fit |
o
™ ) Bw) = 5 (xiw—tn)?
! n=1
6? 1
5t = §(Xw—t)T(Xw—t).
4

0o 1 2 3 4 5

Source: Wikipedia



Linear Least Squares

If XTX is nonsingular, then the unique solution is given by:

opﬁmal vector of
weights target values

10:‘ ® @Data /
| = curve fit | /

w* = (XTX)" X"t

\

the design matrix has one
input vector per row

Source: Wikipedia

e At an arbitrary input Xo, the prediction is y(xg, W) = x. w™.

* The entire model is characterized by d+1 parameters w".



Example: Polynomial Curve Fitting

Consider observing a training set consisting of N 1-dimensional observations:
X = (1, T2, ..., CCN)T, together with corresponding real-valued targets:

t = (t1,t, ..., tn)"

* The green plot is the true function sin(27x).
o | e The training data was generated by taking

o ol X,spaced uniformly between [0 1].

0f 1 ¢ The target set (blue circles) was obtained

° o by first computing the corresponding values

all © | of the sin function, and then adding a small

Gaussian noise.

0 _—
Goal: Fit the data using a polynomial function of the form:
M
y(r,w) = wy + wix + wox? + ... + wy M = ij:cj.
j=0
Note: the polynomial function is a nonlinear function of x, but it is a linear
function of the coefficients w — Linear Models.



Example: Polynomial Curve Fitting

* As for the least squares example: we can minimize the sum of the squares of
the errors between the predictions y(z,, w) for each data point x and the
corresponding target values t,.

t

s Loss function: sum-of-squared error
T function:
/ 1 o
" Yan, W) E(w) =3 > W(wn, W) —tn)?

! &
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e Similar to the linear least squares: Minimizing sum-of-squared error
function has a unique solution w”.

e The model is characterized by M+1 parameters w’.

* How do we choose M? — Model Selection.



Some Fits to the Data
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For M=9, we have fitted the training data perfectly.

—



Overfitting

e Consider a separate test set containing 100 new data points generated using
the same procedure that was used to generate the training data.

—©— Training
—O— Test

OF

0l— : : :

e For M=9, the training error is zero — The polynomial contains 10 degrees of
freedom corresponding to 10 parameters w, and so can be fitted exactly to the
10 data points.

* However, the test error has become very large. Why?



Overfitting

M=0 M=1 M=3 M =9
wy | 019  0.82  0.31 0.35
w} 127 7.99 232.37 1t M =9
w -25.43 -5321.83
w 17.37  48568.31 °
w -231639.30 of
w 640042.26
wi -1061800.52
w 1042400.18  _;}
w -557682.99
wy 125201.43 - 1

e As M increases, the magnitude of coefficients gets larger.
e For M=9, the coefficients have become finely tuned to the data.

e Between data points, the function exhibits large oscillations.

More flexible polynomials with larger M tune to the random noise on the
target values.



Varying the Size of the Data

9th order polynomial

 For a given model complexity, the overfitting problem becomes less severe as
the size of the dataset increases.

* However, the number of parameters is not necessarily the most appropriate
measure of model complexity.



OF

Generalization

e The goal is achieve good generalization by making accurate predictions for

new test data that is not known during learning.

e Choosing the values of parameters that minimize the loss function on the

training data may not be the best option.

* We would like to model the true regularities in the data and ignore the noise

in the data:
— It is hard to know which regularities are real and which are accidental

due to the particular training examples we happen to pick.

M

* Intuition: We expect the model to generalize
if it explains the data well given the complexity

of the model.
e If the model has as many degrees of freedom

as the data, it can fit the data perfectly. But this

is not very informative.
e Some theory on how to control model

complexity to optimize generalization.



A Simple Way to Penalize Complexity

One technique for controlling over-fitting phenomenon is regularization,
which amounts to adding a penalty term to the error function.

penalized error target value regularization

function \ \ / parameter
Z {y(zn, w) — tn} T _HWH

T 2 L
where ||[w|| = w'w = w] + w3 + ... + w3 called the regularization term.

Note that we do not penalize the bias term w,

e The idea is to “shrink” estimated parameters
toward zero (or towards the mean of some other
weights).

e Shrinking to zero: penalize coefficients based on
their size.

e For a penalty function which is the sum of the

1 squares of the parameters, this is known as “weight
decay”, or “ridge regression”.



Regularization

: . . i ) InA=-00 InA=-18 InA=0
Training wg 0.35 0.35 0.13

Test w} 232.37 474 -0.05

w3 -5321.83 -0.77  -0.06

. w3 48568.31 -31.97  -0.05
205} 1 wi| -231639.30 -3.89 -0.03
h / wi | 640042.26 55.28 -0.02
/ wg | -1061800.52 4132 -0.01

wi | 1042400.18 -45.95  -0.00

Nl _ ‘ ‘ wi | -557682.99 -91.53 0.00

35 30, 25 S0 ws | 125201.43 72.68 0.01

Graph of the root-mean-squared training and test errors vs. In\ for the
M=9 polynomial.

How to choose \?



Cross Validation

If the data is plentiful, we can divide the dataset into three subsets:

* Training Data: used to fitting/learning the parameters of the model.

* Validation Data: not used for learning but for selecting the model,
or choose the amount of regularization that works best.

e Test Data: used to get performance of the final model.

For many applications, the supply of data for training and testing is limited.
To build good models, we may want to use as much training data as possible.
If the validation set is small, we get noisy estimate of the predictive performance.

S fold cross-validation * The data is partitioned into S groups.

run 1  ® Then S-1 of the groups are used for training

the model, which is evaluated on the

run 2

remaining group.

run 3 *® Repeat procedure for all S possible choices

of the held-out group.

run 4

e Performance from the S runs are averaged.




Probabilistic Perspective

e So far we saw that polynomial curve fitting can be expressed in terms of
error minimization. We now view it from probabilistic perspective.

e Suppose that our model arose from a statistical model:

t=y(x,w) +e,

where € is a random error having Gaussian distribution with zero mean,
and is independent of x.

2 Thus we have:

p(tlx, w, ) = N(tly(x,w), 7),

L

where [ is a precision parameter,
corresponding to the inverse variance.

yY(xo, w)

| will use probability distribution and
> probability density interchangeably. It
should be obvious from the context.

To Fr>



Sampling Assumption

e Assume that the training examples are drawn independently from the
set of all possible examples, or from the same underlying distribution p(x,t).

e We also assume that the training examples are identically
distributed — i.i.d assumption.

e Assume that the test samples are drawn in exactly the same way --i.i.d

from the same distribution as the test data.

e These assumptions make it unlikely that some strong regularity in the
training data will be absent in the test data.



Maximum Likelihood

If the data are assumed to be independently and identically distributed
(i.i.d assumption), the likelihood function takes form:

p(tx,w,B) = HN Y (Xn, W), 5_1>°

It is often convenient to maximize the log of the likelihood function:

Inp(tfx, w. ) = - S (g w) — £a)? + Mg - S i),
U=l J
Y
BE(w)

e Maximizing log-likelihood with respect to w (under the assumption of a
Gaussian noise) is equivalent to minimizing the sum-of-squared error function.

e Determine w1, by maximizing log-likelihood. Then maximizing w.r.t. 3:

— = = 3, Warz) — t)?

n

Bumr



Predictive Distribution

Once we determined the parameters w and 3, we can make prediction for
new values of x:

p(t[x, Warr, Barr) = N (t|y(x, war), By )-

WA

e (@)
0OFr

©

0 l

Later we will consider Bayesian linear regression.



Statistical Decision Theory

* We now develop a small amount of theory that provides a framework
for developing many of the models we consider.

e Suppose we have a real-valued input vector x and a corresponding

target (output) value t with joint probability distribution: p(x, t).

e Qur goal is predict target t given a new value for x:
- for regression: t is a real-valued continuous target.
- for classification: t a categorical variable representing class labels.

The joint probability distribution p(x, t) provides a complete summary of
uncertainties associated with these random variables.

Determining p(x,t) from training data is known as the inference problem.



Example: Classification

Medical diagnosis: Based on the X-ray image, we would like determine
whether the patient has cancer or not.

e The input vector x is the set of pixel intensities, and the output variable t will
represent the presence of cancer, class C,, or absence of cancer, class C,.

L

8

|

/ C,: Cancer present
\ C,: Cancer absent

X -- set of pixel intensities

* Choose t to be binary: t=0 correspond to class C,, and t=1 corresponds to C,.

Inference Problem: Determine the joint distribution p(x,Cx) or equivalently
p(x,t). However, in the end, we must make a decision of whether to give

treatment to the patient or not.



Example: Classification

Informally: Given a new X-ray image, our goal is to decide which of the two
classes that image should be assigned to.

e We could compute conditional probabilities of the two classes, given the input
image:

posterior probability of probability of observed  prior probability
C, given observed data. data given C, for class C,
p(x, Cg p(x|Cr)p(Cy
PR = ZK( ( >c ) ( |p<>><>( o
k=1 DP\% Tk Bayes’ Rule

e If our goal to minimize the probability of assigning x to the wrong class, then
we should choose the class having the highest posterior probability.



Minimizing Misclassification Rate

z

Goal: Make as few misclassifications as
possible. We need a rule that assigns each
value of x to one of the available classes.

p(.T,Cg)

Divide the input space into regions R ;
(decision regions), such that all points in
R j are assigned to class C; .

>
>
R4 R
red+green regions: input blue region: input belongs
belongs to class C,, but is to class C,, but is assigned
assigned to C, \ to G, /
p(mistake) = p(x € Rq1,C2) + p(x € Ra,Cq)

- / p(x,Co) dx + / p(x,Cy) dx.
R1

Ro



Minimizing Misclassification Rate

z

p(macl)

p($,62)




Minimizing Misclassification Rate

8
=)

p(macl)

p($,62)




Minimizing Misclassification Rate

A

p('TaCQ)
- R > R >
p(mistake) = p(x € R1,C2) + p(x € Ra,C1) = / p(x,Co)dx + / p(x,Cq)dx
Rl RQ

if p(x,C1) > p(x,C2) then we should assign x to class Cj.

Using p(x,Ck) = p(Cr|x)p(X) : To minimize the probability of making mistake, we
assign each x to the class for which the posterior probability p(Cr|x) is largest.



Expected Loss

e Introduce loss function: overall measure incurred in taking any available
decisions.

* Suppose that for x, the true class is C,, but we assign x to class j
— incur loss of Ly; (k,j element of a loss matrix).

Consider medical diagnosis example: example of a loss matrix:

Decision
cancer normal

cancer ( 0 1000 >

normal 1 0

Truth

Expected Loss:

Liip(x,Ck) dx
k J R

Goal is to choose regions R ; as to minimize expected loss.



Reject Option

t p(cif2)

1.0

0.0

reject region



Regression

Let x € RY denote a real-valued input vector, and t € R denote a real-
valued random target (output) variable with joint distribution p(x, t).
e The decision step consists of finding an estimate y(x) of t for each input x.

e Similar to classification case, to quantify what it means to do well or
poorly on a task, we need to define a loss (error) function: L(¢,y(x)).

e The average, or expected, loss is given by:

// (¢, y(x))p(x, t)dxdt. ,1.

e |f we use squared loss, we obtain: of

// (t—y Xt)dxdt O} Q

0



Squared Loss Function

e If we use squared loss, we obtain:

y(zo)

E[L] = / / (t — y(x)) p(x, £)dxdt.

e Qur goal is to choose y(x) so as minimize expected squared loss.

e The optimal solution (if we assume a completely flexible function) is the

conditional average:
yx) = [ tp(tix)t =Bl

The regression function y(x) that

y(z) minimizes the expected squared loss is
given by the mean of the conditional
distribution p(¢|x).

p(t|zo)

o X



Squared Loss Function

e If we use squared loss, we obtain:

(y(x) —t)* = (y(x) — E[t|x] + E[t|x] — ¢)°
= (y(x) — E[t|x])” + 2(y(x) — Et|x)) (E[t]x] — ¢) + (E[t|x] —t)°.

e Plugging into expected loss:

/ {y(x) — Eltx}2p(x) dx + / var [¢}x] p(x) dx

J (\ J
Y
expected loss is m|n|m|zed intrinsic variability of the
when y(x) = E[t|x]. target values.

Because it is independent noise, it
represents an irreducible minimum
value of expected loss.



Other Loss Function

e Simple generalization of the squared loss, called the Minkowski loss:

// (t—y “p(x, t)dxdt.

* The minimum of [E[L]is given by:

- the conditional mean for g=2,
- the conditional median when g=1, and
- the conditional mode for g — 0.



Discriminative vs. Generative

e Generative Approach:

Model the joint density: p(x,t) = p(x|t)p(?),
or joint distribution: p(x,Cr) = p(x|Ci)p(Ck).

Infer conditional p(x|t)p(t)
density: p(tx) = p(x)

e Discriminative Approach:

Model conditional density p(t|x) directly.



Linear Basis Function Models

e Remember, the simplest linear model for regression:
d

Y(X, W) = wo + w121 + wako + ... + WqTqg = wo + g W;T;,
j=1
where x = (21, T2, ..., azd)Ta d-dimensional input vector (covariates).

Key property: linear function of the parameters wo, w1, ..., wq .

e However, it is also a linear function of input variables.
Instead consider: M1

y(x, W) = wopo(X) + w1¢1(X) + ... + wrpr—10nm-1(X) = w;$;(x),

.
|
-

where ¢;(x) are known as basis functions.

e Typically ¢o(x) = 1 so that w, acts as a bias (or intercept).

* In the simplest case, we use linear bases functions: ¢;(x) = ;.

e Using nonlinear basis allows the functions y(x, w) to be nonlinear functions of
the input space.



Linear Basis Function Models

Polynomial basis functions: Gaussian basis functions:
1
0.75 .'
0.5 ¢t
0.25¢
L 0 ! 0 1

Basis functions are global: small Basis functions are local: small changes in x
changes in x affect all basis functions.  only affect nearby basis functions.
p;and s control location and scale (width).



Linear Basis Function Models

Sigmoidal basis functions

) , where 7(a) = — o (—a)

Basis functions are local: small changes
in X only affect nearby basis functions.
p;and s control location and scale
(slope).

075}/
0.5

0.25

* Decision boundaries will be linear in the feature space ¢, but would
correspond to nonlinear boundaries in the original input space x.

* Classes that are linearly separable in the feature space ¢(x) need not
be linearly separable in the original input space.



Linear Basis Function Models

Corresponding feature space using

Original input space
g put sp two Gaussian basis functions

\%{{"\*\! ®% L
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» We define two Gaussian basis functions with centers shown by green the crosses,
and with contours shown by the green circles.

* Linear decision boundary (right) is obtained using logistic regression, and
corresponds to nonlinear decision boundary in the input space (left, black curve).



Maximum Likelihood

* As before, assume observations from deterministic function with additive
Gaussian noise:

t =y(x,w) +e,

which we can write as:

p(tlx, w,B) = N(tly(x, w), 57).

e Given observed inputs X = {x1, X2, ..., X}, and corresponding target
values t = [tq, 1o, ..., tN]T under i.i.d assumption, we can write down the
likelihood function:

N

p(t|X,W,5> — HN(tn|WT¢(Xn>75)7

=1

where qb(X) — (gbO(X)? P1 <X>7 e ¢M—1<X>>T°



Maximum Likelihood
Taking the logarithm, we obtain°

Inp(t| X, w, ) = Zln]\/ tn|W! P(xp), )

(tn — WTqb(Xn)) + glnﬁ — %IH(QW).

J

4 MI
s

Y
sum-of-squares error function

Differentiating and setting to zero yields:

N
Vwlnp(tlw,3) =73 Z {th — W' o(xn)} d(x)" =0
n=1



Maximum Likelihood

Differentiating and setting to zero yields:

N
Ve np(tw, 8) = 85 {tn — wTé(xn)} $(x)" = 0.
n=1

Solving for w, we get:

' l | The Moore-
T\"1 o Penrose pseudo-
WML = <(I) (I)) Pt inverse, 1 .
where ® is known as the design matrix:
[ do(x1) d1(x1) -+ dm-1(x1) \
Po(x2)  P1(x2) -+ Odm—1(x2)

\qﬁo(;KN) ¢1(;<N) C,bM—l.(XN)/



Geometry of Least Squares

e Consider an N-dimensional space, so
that t = [t1,ts,...,tn]" isavectorin
that space.

e Each basis function ¢;(x,,), evaluated
at the N data points, can be represented
as a vector in the same space.

e [f M is less than N, the the M basis
function ¢;(xy,), will span a linear
subspace S of dimensionality M.

e Define: y = ®wmr..

. o(x1) | ¢1(x1) -+ Om—1(x1)
e The sum-of-squares error is equal to do(xa) | d1(x2) - Sar_1(x2)
the squared Euclidean distance &=\ . | . |
between y and t (up to a factor of 1/2). o o S
y P $o(xn) | o1(xn) - dm—1(Xn)

The solution corresponds to the orthogonal projection of t onto the subspace S.



Sequential Learning

e The training data examples are presented one at a time, and the model
parameter are updated after each such presentation (online learning):

wt) —w® _ o B

/ Vs ™

weights after learning vector of derivativgs of the squared
seeing training rate error w.r.t. the weights on t‘he
case t+1 training case presented at time ¢.

e For the case of sum-of-squares error function, we obtain:
T
witt) = w®) _p (tn _w® ¢(Xn)> b(xn).

e Stochastic gradient descent: if the training examples are picked at random
(dominant technique when learning with very large datasets).

e Care must be taken when choosing learning rate to ensure convergence.



Regularized Least Squares

e Let us consider the following error function:
A is called the

Ep(w) + AEw (w) regularization

coefficient.

Data term + Regularization term

e Using sum-of-squares error function with a quadratic penalization
term, we obtain:

AT

| N
T 9
5;{tn—w o (x,)} —|—§W \" %

Ridge

which is minimized by setting: regression

/
w = ()\I + <I>T<I>) Tt

The solution adds a positive constant to the diagonal of ®T & . This makes the
problem nonsingular, even if ®T® is not of full rank (e.g. when the number
of training examples is less than the number of basis functions).



Effect of Regularization

* The overall error function is the sum
of two parabolic bowls. W2

* The combined minimum lies on the
line between the minimum of the

squared error and the origin. @
e The regularizer shrinks model

parameters to zero.

£
. 2




Other Regularizers

Using a more general regularizer, we get:

1 & pyg
5 D At = WTo(xa)}* + 5 D
n=1 7=1
| | |
| | |
q=1 q =2 q=14
Lasso Quadratic



The Lasso

e Penalize the absolute value of the weights:

1 > A
w!° — aremin [5 Z (tn — W d(xn))” + 5 Z |w]|}

W

n=1 j=1

e For sufficiently large A, some of the coefficients will be driven to
exactly zero, leading to a sparse model.

* The above formulation is equivalent to:

N M—1
1
wlasso — argvinin 5 E (tn — WTqb(xn))Q, subject to g lw;| < 7.
n=1 7j=1
- /)
Y

unregularized sum-of-squares error

* The two approaches are related using Lagrange multiplies.

* The Lasso solution is a quadratic programming problem: can be
solved efficiently.



Lasso vs. Quadratic Penalty

Lasso tends to generate sparser solutions compared to a quadratic
regualrizer (sometimes called L; and L, regularizers).




Bias-Variance Decomposition

e Introducing regularization term can control overfitting, but how can
we determine a suitable value of the regularization coefficient.

e Let us examine expected squared loss function. Remember:

BIL) = [ {u(x) ~ (Y s dx+ [ [ {hGx) — 11, t) axat

g J
for which the optimal prediction is given Y
by the conditional expectation: intrinsic variability of the target
values: The minimum achievable
h(x) = E[t|x] = /tp(t|x) dt. value of expected loss

* If we model h(x)using a parametric function y(x, w), then from a
Bayesian perspective, the uncertainly in our model is expressed
through the posterior distribution over parameters w.

* We first look at the frequentist perspective.



Bias-Variance Decomposition

* From a frequentist perspective: we make a point estimate of w” based
on the data set D.

* We next interpret the uncertainly of this estimate through the
following thought experiment:

- Suppose we had a large number of datasets, each of size N,
where each dataset is drawn independently from p(x,t).

- For each dataset D, we can obtain a prediction function y(x; D).
- Different data sets will give different prediction functions.

- The performance of a particular learning algorithm is then
assessed by taking the average over the ensemble of data sets.

* Let us consider the expression:

{y(x; D) — h(x)}".

* Note that this quantity depends on a particular dataset D.



Bias-Variance Decomposition

e Consider:
{y(x;D) — h(x)}*.

* Adding and subtracting the term Ep[y(x; D)|, we obtain

{y(x; D) — h(x)}
= {y(x;D) — Eply(x; D)] + Eply(x; D)] — h(x)}*
= {y(x;D) —Eply(x; D)]}* + {Eply(x; D)] — h(x)}”
+2{y(x; D) — Epy(x; D) H{Ep[y(x; D)] — h(x)}.

» Taking the expectation overD, the last term vanishes, so we get:

Ep [{y(x; D) — h(x)}?]
= {Ep[y(x;D)] — h(x)}* +Ep [{y(x; D) —~ Eply(x; D)}}’] .

J/

"~

(bias)? variance



Bias-Variance Trade-off

expected loss = (bias)? + variance + noise

e T ™~

Average predictions over all Solutions for individual datasets Intrinsic variability
datasets differ from the vary around their averages -- how  f the target
optimal regression function. sensitive is the function to the values.
particular choice of the dataset.
ins)? = [ {Eply(ox D) - h())*p(x) dx
variance = /ED {y(x; D) — Ep[y(x; D)]}?] p(x) dx

noise = / {h(x) — t}°p(x, t) dx dt

* Trade-off between bias and variance with very flexible models (high
complexity) having low bias and high variance, and relative rigid models (low
complexity) having high bias and low variance.

* The model with the optimal predictive capabilities has to balance between bias
and variance.



Bias-Variance Trade-off

e Consider the sinusoidal dataset. We generate 100 datasets, each containing
N=25 points, drawn independently from h(x) = sin 27z.

High variance Low variance

Low bias High bias



Bias-Variance Trade-off

0.15
(bias)*
0.12 variance
(bias)2 + variance
0.09 | test error /
0.06 |
0.03 -
0
-3 -2 —1 0 1 2

In A

From these plots note that over-regularized model (large \) has high bias, and
under-regularized model (low A) has high variance.



Beating the Bias-Variance Trade-off

e We can reduce the variance by averaging over many models trained on
different datasets:

- In practice, we only have a single observed dataset. If we had many
independent training set, we would be better off combining them into
one large training dataset. With more data, we have less variance.

e Given a standard training set D of size N, we could generates new training
sets, N, by sampling examples from D uniformly and with replacement.

- This is called bagging and work quite well in practice.

e Given enough computation, we would be better off resorting to the
Bayesian framework (which we will discuss next):

- Combine the predictions of many models using the posterior
probability of each parameter vector as the combination weight.



