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Abstract

Factor Analysis is a statistical method that
seeks to explain linear variations in data by
using unobserved latent variables. Due to its
additive nature, it is not suitable for model-
ing data that is generated by multiple groups
of latent factors which interact multiplica-
tively. In this paper, we introduce Tensor
Analyzers which are a multilinear generaliza-
tion of Factor Analyzers. We describe an effi-
cient way of sampling from the posterior dis-
tribution over factor values and we demon-
strate that these samples can be used in the
EM algorithm for learning interesting mix-
ture models of natural image patches. Ten-
sor Analyzers can also accurately recognize a
face under significant pose and illumination
variations when given only one previous im-
age of that face. We also show that Tensor
Analyzers can be trained in an unsupervised,
semi-supervised, or fully supervised settings.

1. Introduction

Exploratory Factor Analysis is widely used in statistics
to identify underlying linear factors. Mixtures of Fac-
tor Analyzers have been used successfully for unsuper-
vised learning (Yang et al., 1999; Verbeek, 2006). Fac-
tor Analyzers (FAs) model each observation vector as
a weighted linear combination of the unobserved fac-
tor values plus additive uncorrelated noise. For many
types of data, this additive generative process is less
suitable than a generative process that also contains
multiplicative interactions between latent factors.

An example of multiplicative interactions is the set of
face images under varying illuminations. It is known

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

that these images of a particular person approximately
lie on a 3 dimensional linear subspace, making a FA
with 3 factors a good model (Belhumeur & Kriegman,
1996). The linear subspace (and thus the factor load-
ings) will be person-specific due to the way facial struc-
tures interact with the light to create a face image.
As a result of this person-specific property, the factor
loadings need to be a function of the person identity
when modeling face images of multiple people. In-
stead of modeling 100 individuals with 100 separate
FAs, it is desirable to use person-identity variables to
linearly combine a “basis” (a set of) factor loadings to
compactly model all 100 faces, drastically reducing the
number of parameters. This factorial representation,
as shown in Fig. 1, naturally allows for generalization
to new people required for one-shot face recognition.
Fig. 1 provides an illustration and Sec. 5.3 provides
experimental validations.

To this end, we introduce Tensor Analyzers (TAs),
which generalize FAs to the multilinear setting by in-
troducing a factor loading tensor and multiple groups
of latent factors. Utilizing the loading tensor, a
group can change how another group’s factors interact
with the observed variables. This allows latent factor
groups in a TA to learn highly interpretable represen-
tations. In the faces example, one group could repre-
sent lighting direction while the other could represent
the identity.

In the special case of a TA with only one group of
factors, its loading tensor reduces to a loading matrix,
and the model is exactly the same as an ordinary FA.
In a TA, when conditioned on all but one group of
factors, the model effectively becomes a FA where the
factor loadings are a function of the factor values in
the groups we are conditioning on. The posterior dis-
tribution of the factor values in a FA can be computed
analytically, so by cycling through each group of fac-
tors, efficient alternating Gibbs sampling is therefore
possible in the TA. A TA is a proper density model so
the extension to a mixture of TAs (MTA) is straight-
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Figure 1. Illustration of why TA is needed. Three dimen-
sional bases (left) span the pixel space of specific individu-
als. In order to properly generalize to a novel test subject,
tensor interactions of the learned training bases are needed
to form a new basis for modeling a test subject.

forward. When performing inference or learning in a
TA, it is easy to make use of a supervisory signal that
specifies the fact that 2 or more different observations
are generated from the same factor values in some of
the factor groups. This allows for TAs to seamlessly
transition from an unsupervised density model to a
semi and fully supervised model.

2. Related Works

Bilinear models with priors on the latent variables
have been previously studied in the machine learning,
statistics, and computer vision literatures. In (Grimes
& Rao, 2005), sparsity is induced on the codes of
a bilinear model to learn translational invariant rep-
resentation from video. However, their model does
not try to maximize log p(x), but instead finds the
MAP estimate of the code activations, à la sparse cod-
ing. Culpepper et al. (2011) describe an outer-product
factorization of the bilinear model that is trained as a
density model using EM, but expensive Hamiltonian
dynamics are required for sampling from the posterior.
In addition, their model only admits an approximate
M-step and does not make it easy to incorporate la-
bel information. Wang et al. (2007) proposed a multi-
factor GPLVM extension for modeling human motion
(henceforth referred to as GPSC). In their model, the
parameters are integrated out, and factors are kernal-
ized. Optimization is needed to find the latent coordi-
nates. Computationally, as in GPLVM, GPSC scales
cubicly in the size of the training data.

While TAs and the above models take as input i.i.d.
data vectors, there exists a plethora of tensor decom-
position (TD) methods when the data comes in the
form of N-way tensors (Tucker, 1963; Carroll &
Chang, 1970; Lathauwer & Vandewalle, 2004; Wang
& Ahuja, 2003; Sun et al., 2006). The SVD algorithm
was used to learn a bilinear model to separate style

and content (Tenenbaum & Freeman, 2000), which we
will refer to as the S&C model. Tucker decomposi-
tion was applied to a 5-mode array of face images
in (Vasilescu & Terzopoulos, 2002), finding multilin-
ear bases called TensorFaces. Shashua & Hazan (2005)
enforced non-negative constraints to PARAFAC de-
composition. Chu & Ghahramani (2009) introduced
a Bayesian probabilistic version of Tucker decomposi-
tion, while Xu et al. (2012) provided a nonparametric
Bayesian extension. The main disadvantages of the
tensor decomposition methods are that data must be
arranged in a tensor and that inference given a single
new test case is ill-posed and can be ad hoc1.

In contrast, TAs do not have any of the above deficien-
cies. Our main contribution is in the introduction of
standard Gaussian priors on each latent groups, which
allows us to utilize the efficient inference procedure of
Factor Analysis as part of TA’s inference procedure.
We also provide the EM algorithm that allows TAs to
learn directly from data vectors in an entirely unsuper-
vised manner. It can also make use of supervision in
the form of equality constraints that specify that one
group of factors should have the same vector of values
for a subset of the training cases (Sec. 4.4). As an
extension to FA, TA inherits an efficient inference al-
gorithm that is used in each step of alternating Gibbs
sampling and a closed-form M-step during learning.
Unlike bilinear models, it can handle multilinear cases
with 3 or more groups of latent factors. It can also
be easily extended to a mixture model, provided we
are willing to compute approximate densities, as de-
scribed in (Sec. 4.3). In addition, posterior inference
for a single test case is simple and accurate, as demon-
strated by our one-shot face recognition experiments
of Sec. 5.3.

3. Preliminaries

Following (Kolda & Bader, 2009), we refer to the num-
ber of dimensions of the tensor as its order (also known
as modes). We will use bold lowercase letters to denote
vectors (tensors of order one), e.g. x; bold uppercase
letters for matrices (tensors of order two), e.g. W. We
use the notation w(i,:) to denote the i-th row of matrix
W. Higher order tensors are denoted by Euler script
letters, e.g. a third-order tensor with dimensions of I,
J , and K: T ∈ RI×J×K .
Fibers: Fibers are higher-order generalization of
row/column vectors. Elements of a tensor fiber is
found by fixing all but one index. Specifically, t(:,j,k)

1E.g., the asymmetric model in (S&C) requires EM
learning of a separate model during test time. Probabilistic
TD methods require new test cases to come with labels.
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is the mode-1 fiber of the tensor T. Row and column
vectors are the mode-2 and mode-1 fiber of a 2nd-order
tensor, respectively.
Matricization: Matricization is the process of “flat-
tening” a tensor into a matrix, by reordering the ele-
ments of the tensor. It is denoted by T(n), where the
mode-n fibers of T are placed in the columns of the re-
sulting matrix T(n). For example, given T ∈ RI×J×K ,
T(1) ∈ RI×JK .
n-mode vector product: By multiplying a vec-
tor y ∈ RDn with a tensor T ∈ RD1×D2×···×DN

along the mode-n, the n-mode (vector) product is de-
noted by T ×̄n y. The resulting tensor is of size
D1 × · · · ×Dn−1 ×Dn+1 × · · · ×DN .

3.1. Factor Analyzers

Let x ∈ RD denote the D-dimensional data, let {z ∈
Rd : d ≤ D} denote d-dimensional latent factors. FA
is defined by a prior and likelihood:

p(z) = N (z; 0, I), p(x|z) = N (x; Λz + µ,Ψ), (1)

where I is the d× d identity matrix; Λ ∈ RD×d is the
factor loading matrix, µ is the mean. A diagonal Ψ ∈
RD×D represents the variance of the observation noise.
By integrating out the latent variable z, a FA model
becomes a Gaussian with constrained covariance:

p(x) =

∫
z

p(x|z)p(z)dz = N (x;µ,Γ), (2)

where Γ = ΛΛT + Ψ. For inference, we are interested
in the posterior, which is also a multivariate Gaussian:

p(z|x) = N (z; m,V−1), (3)

where V = I+ΛTΨ−1Λ, and m = V−1ΛTΨ−1(x−µ).
Maximum likelihood estimation of the parameters is
straightforward using the EM algorithm (Rubin &
Thayer, 1982). During the E-step, Eq. 3 is used to
compute the posterior sufficient statistics. During
the M-step, the expected complete-data log-likelihood
Ep(z|x;θold)[log p(x, z; θ)] is maximized with respect to
the model parameters θ = {Λ,µ,Ψ}.

4. Tensor Analyzers

TA replaces FA’s factor loading Λ ∈ RD×d with a
factor “loading” tensor T ∈ RD×d1×···×dJ . In addition,
a TA has J groups of factors: {z1, z2, . . . , zJ}: j =
1, . . . , J , zj ∈ Rdj . The key property of TAs is that the
interactions between a particular factor group and the
data is modified by the factor values in other groups.
Given {z2, . . . , zJ}, Λnew, which is the factor loading
matrix between z1 and x, is given by:

Λnew = (((T ×̄2 z2) ×̄3 z3)×̄ · · · ) ×̄J zJ).

Figure 2. Diagram of TA’s (J = 2) generative process.
Λnew = T ×̄2 z2 gives a new factor loading matrix for z1.
Λnewz1 , T(1)(z2⊗z1) determines the mean of p(x|z1, z2).

We will use the notation TA{D, d1, d2, . . . , dJ} to de-
note the aforementioned TA. By using a (J + 1)-order
tensor T, a TA can model multiplicative interactions
among its latent factors {z1, z2, . . . , zJ}. In contrast,
FAs do not model multiplicative interactions involving
terms such as zizj : i 6= j.

Each group of factors has a standard Normal prior:

p(zj) = N (zj |0, I), j = 1, 2, . . . , J. (4)

For clarity of presentation, we assume J = 3 for the
following equations. The likelihood p(x|z1, z2, z3) is:

N (x|m +

3∑
j

Wjzj + T(1)(z3 ⊗ z2 ⊗ z1),Ψ), (5)

where x ∈ RD, m, and Ψ are same as in FA.
Wj ∈ RD×dj are the “biases” factor loadings, T(1) ∈
RD×(d1d2d3) is the matricization of the tensor T, and
“⊗” is the Kronecker product operator. Multiplicative
interactions are due to the term: z3⊗z2⊗z1, which is
a vector with dimensionality of d1d2d3. We note that

T(1)(z3 ⊗ z2 ⊗ z1) =
∑
i,j,k

t(:,i,j,k)z1(i)z2(j)z3(k),

where z1(i) is the i-th element of vector z1, and t is the
mode-1 fiber of T. T(1)(z3⊗z2⊗z1) is also equivalent
to Λnewz1.

For clarity, we can concatenate the factors and load-
ing matrices: let y ∈ Rd1+d2+d3+1 , [z1; z2; z3; 1];
W ∈ RD×(d1+d2+d3+1) , [W1,W2,W3,m]; and u ∈
Rd1d2d3 = z3 ⊗ z2 ⊗ z1. The joint log-likelihood of the
TA is:

log p(x, z1, z2, z3) =

3∑
j=1

(
− dj

2
log(2π)− 1

2
zTj zj

)
− D

2
log(2π)− 1

2
log |Ψ| − 1

2
(x− e)TΨ−1(x− e),
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where e = Wy + T(1)u. The last term of the above
equation indicates that the TA models contain higher-
order interactions (squared of the outer product of all
factors). In comparison, FAs have only 2nd-order in-
teractions among its latent factors. Fig. 2 displays a
visual diagram of the TA’s generative process.

Conditioned on any two of the three groups of factors,
e.g. z2 and z3, the log-likelihood of x and z1 becomes:

log p(x, z1|z2, z3) = −1

2

(
(d1 +D) log(2π) + zT1 z1

+ log |Ψ|+ (x− e)TΨ−1(x− e)
)
. (6)

Here, e can be re-written as (m + W2z2 + W3z3) +
(W1 + T ×̄3 z3 ×̄2 z2)z1. We can see that condi-
tioned on z2 and z3, we have a FA with parameters
(c.f. Eq. 1):

µ = m + W2z2 + W3z3,

Λ = W1 + T ×̄3 z3 ×̄2 z2. (7)

The marginal probability density function is a Gaus-
sian: p(x|z2, z3) = N (x|µ,ΛΛT + Ψ).

4.1. Inference

Higher order interaction in the TA means that in-
ference is more complicated, since the joint posterior
p(z1, z2, . . . , z3|x) has no closed-form solution. We re-
sort to alternating Gibbs sampling by cycling through
p(z1|x, z2, z3); p(z2|x, z1, z3); p(z3|x, z1, z2).

Conditioned on two groups of factors, the posterior of
the third is simple as the model reduces to a FA:

p(z1|x, z2, z3) = N (z1|V−1ΛTΨ−1(x− µ),V−1), (8)

where V = I + ΛTΨ−1Λ. µ, Λ are defined by Eq. 7.

Although inference involves a matrix inverse, it only
has cost of O(d3), where d << D, is the dimension of a
latent factor group. d can be small since the data is as-
sumed to be explained by a low dimensional manifold.
We provide detailed timing evaluations in Sec. 5.5.

4.2. Learning

Maximum likelihood learning of a TA is similar to
FA and is straightforward using a stochastic variant
of the EM algorithm (Levine & Casella, 2001). Dur-
ing the E-step, MCMC samples are drawn from the
posterior distribution using alternating Gibbs sam-
pling. In the M-step, the samples are used to ap-
proximate the sufficient statistics involving u and y,
followed by closed-form updates of the model param-
eters, θ = {W,T(1),Ψ}.

Algorithm 1 EM Learning for TA

1: Given training data with N samples: X ∈ RD×N

2: Initialize θ: {W,T(1)} ∼ N (0, .012), Ψ← 10 ∗ std(X).
repeat

//Approximate E-step:
for n = 1 to N do

3: Sample {z(n)
1 , z

(n)
2 , z

(n)
3 } from p(z1, z2, z3|x(n))

using Eq. 8, and alternating between z1, z2,& z3.
end for

//M-step:

4: Concatenate samples {z(n)
1 , z

(n)
2 , z

(n)
3 } into {yn,un}

5: Approximate posterior expectations using samples:
E[yn] ' yn, E[unyn

T] ' unynT, etc.
6: Update {W,T(1),Ψ} using Eqs. 9, 10, and 11.

until convergence

The expected joint log-likelihood function is:

Q = E
[

log
N∏
i

(2π)−
D
2 |Ψ|−

1
2 exp{−1

2
(xi−ei)

TΨ−1(xi−ei)}
]

Setting ∂Q
∂θ = 0, we have update equations (see Supp.

Materials for the derivation):

W =
( N∑

i

xiE[yT
i ]−T(1)

N∑
i

E[uiy
T
i ]
)( N∑

i

E[yiy
T
i ]
)−1

,

(9)

T(1) =
( N∑

i

xiE[uT
i ]−W

N∑
i

E[yiu
T
i ]
)( N∑

i

E[uiu
T
i ]
)−1

,

(10)

Ψ =
1

N
diag

{
N∑
i

(
xix

T
i − 2T(1)

(
E[ui]x

T
i − E[uiy

T
i ]WT

− 1

2
E[uuT]TT

(1)

)
− 2W

(
E[yi]x

T
i −

1

2
E[yiy

T
i ]WT))}.

(11)

During learning, we have found that the Gibbs sam-
pler mixes very fast and that a relatively small number
(20 to 100) are needed to achieve good performance. It
is important to stress that Gibbs sampling is efficient
in TAs because the posterior for each group is exact
when conditioned on all other groups. It also mixes
quickly because even though the variables of the pos-
terior are dependent, the posterior itself is likely to be
unimodal: an image of the face is explained by 1 light-
ing code and 1 subject code (See Sec. 5.3). We provide
trace plots of the latent variables to demonstrate the
fast converegnce property in the Supp. Materials.

4.3. Likelihood Computation

For model comparison, we are interested in evaluat-
ing the data log-likelihood log p(x|θ). As noted in
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Sec. 4, a TA with J groups of factors reduces to a
FA when conditioned on J−1 factor groups. Utilizing
the fact that log p(x|θ) can be easily computed (Eq. 2),
a Monte Carlo estimation of data log-likelihood in TA
can be performed by sampling from the prior of the
J − 1 groups of factors. For example, in a model
TA{D, d1, d2}, J = 2:

log p(x) = log

∫
z2

p(x|z2)p(z2)dz2

' log
1

K

K∑
k=1

p(x|z(k)2 ), z
(k)
2 ∼ N (0, I). (12)

This simple estimator is asymptotically unbiased but
has high variance unless the dimensionality of z2, or d2,
is very small. Since z1 can be analytically integrated
out, the Monte Carlo technique can be accurate when
only one factor group has large dimensionality.

For large dj , however, simple Monte Carlo estimation
is very inefficient, giving an estimator with large vari-
ance. In this situation, Annealed Importance Sam-
pling (Neal, 2001) is a much better alternative. We
can treat the problem of estimating log p(x) as cal-
culating the partition function of unnormalized poste-
rior distribution p∗(z|x) , p(x, z), where p∗(·) denotes
an unnormalized distribution. The basic Importance
Sampling gives:

p(x) =

∫
z

dz
p∗(z|x)

q(z)
q(z) ' 1

M

M∑
i

w(i),

w(i) = p∗(z(i)|x)/q(z(i)), z(i) ∼ q(z). (13)

AIS provides a better estimate by first sampling from a
tractable base distribution q(z). Subsequent MCMC
steps are taken in a set of intermediate distribution,
annealing to the distribution of interest: p(z|x). An-
nealing allows for a much better estimate of w(i). For
TAs, we assume the base distribution is the prior over
the factors: q(z1, z2, z3) =

∏3
j p(zj). An intermediate

distribution is defined as:

pβ({zj}) ∝ q({zj})1−βp∗({zj}|x)β = p({zj})pβ(x|{zj}),

where β is a scalar which varies from 0.0 to 1.0, as
we anneal from the prior to the posterior. Derivations
and experiments with the AIS estimator is provided in
Supp. Materials.

4.4. Equality Constraints

An equality constraint indicates that a subset
{x(k)}Kk=1 of the training data have the same factor
values for the j-th factor group zj . For example, if
group j = 1 represents the identity of a person and

group j = 2 represents lighting directions, an equal-
ity constraint on group 1 indicates that all images of
the subset are from the same person, while an equal-
ity constraint on group 2 indicates that images of this
subset are from the same lighting conditions.

During learning, the availability of equality constraints
will only change the inference step. Assuming we have
constraints for the factor group j = 1, the posterior
for zj (Eq. 8) will be modified as follows:

p(z1|{x(k)}, {z(k)2 }, {z
(k)
3 }) =

N (z1|Ṽ−1
K∑
k=1

{Λ(k)TΨ−1(x(k) − µ(k))}, Ṽ−1), (14)

where Ṽ = I +
∑K
k=1 Λ(k)TΨ−1Λ(k); Λ(k) = W1 +

T ×̄3 z
(k)
3 ×̄2 z

(k)
2 ; and µ(k) = m + W2z

(k)
2 + W3z

(k)
3 .

The M-step is not affected by the presence of equality
constraints, so TAs can learn when equality constraints
are provided for arbitrary subsets of the data.

4.5. Mixture of Tensor Analyzers

Extending TAs to Mixture of Tensor Analyzers
(MTAs) is straightforward, as Sec. 4.3 showed how
p(x|c) can be efficiently approximated. Each com-
ponent c will have its own parameters θc =
{Wc,T(1),c,Ψc}. Posterior distribution over the
factors and components can be decomposed as:
p({zj}, c|x) = p({zj}|x, c)p(c|x), where p({zj}|x, c)
can be sampled using Eq. 8.

MTAs should be used instead of TAs when modeling
highly multimodal data with multiplicative interac-
tions such as multiple types of objects under varying
illumination.

For our experiments with MTAs, p(c|x) is approxi-
mated with Eq. 12 using 1000 samples per mixture
component. For our natural images experiment, it
means only 180 ms per mixture components is re-
quired, see sec 5.2.

5. Experiments

5.1. Synthetic Data

As a proof of concept, we compared TA to FA on two
synthetic datasets (Fig. 3 A & B). Data A is highly
structured and is generated using a TA with random
parameters. Data B has high kurtosis, with density
concentrated at the origin. For both datasets, we
learned using a TA{D = 2, d1 = 2, d2 = 2} and a
FA with the same number of parameters as the TA.
The TAs performed model recovery nicely. The left
panel of Fig. 3(a) displays training points. The data
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Data (-2.58 nats) TA (-2.62 nats) FA (-2.85 nats)

(a) Data A

High Kurtosis

Data (-1.97 nats) TA (-2.04 nats) FA (-2.48 nats)

(b) Data B
Figure 3. TA vs. FA on 2D synthetic datasets. TAs can better model complex densities.

(a) Training Patches

(b) Samples from MTA

(c) Filters of MTA

Indp. Pixel ICA GRBM DBN Fac. Bilinear
78.3 135.7±1.2 137.8±1.0 144.4±1.1 145.9±2.7

Single FA MFA Deep MFA GMM MTA
130.1±0.6 166.5±1.8 169.3±1.5 167.2 158.2±3.3

(d) Average test log-probability (measured in nats)

Figure 4. Natural image patches. (a) Training data. (b)
Samples from MTA. (c) Each row contains filters from a
different MTA component. (d) Average test log-probability
comparisons. ICA: Independent Component Analysis.
GRBM: Gaussian Restricted Boltzmann Machine (Hinton
& Salakhutdinov, 2006). DBN: Deep Belief Nets (Hinton
et al., 2006). Fac. Bilinear: (Culpepper et al., 2011).

log-likelihood of the true model is -2.58. The mid-
dle panel plots the samples of a TA, which achieved
the log-probability of -2.62 on the training data. The
right panel plots samples drawn from a FA. Like-
wise in Fig. 3(b), TA is a significantly better model
than the FA: −2.04 ± 0.05 to −2.48 ± 0.09. We also
tested mixtures of TAs vs mixtures of FA (MFA) on
data generated by randomly initialized MFA models.
The performance of MTA and MFA were very similar,
demonstrating that (M)TAs can also efficiently emu-
late (M)FAs when necessary.

5.2. Natural Images

Learning a good density model of natural images is
useful for image denoising and inpainting. Follow-
ing (Zoran & Weiss, 2011), we compared MTAs to
MFAs and other models on modeling image patches.
Two million 8 × 8 patches were extracted from

the training set of the Berkeley Natural Images
database (Martin et al., 2001) for training, while
50,000 patches from the test set were extracted for
testing. The DC component of each image patches
were set to 0 by subtracting the patch mean form ev-
ery pixel. For MTAs and MFAs2, we used 200 compo-
nents and selected the number of latent factors based
on cross validation. For MTAs, 64 factors were used
while each component of the MTA is a TA{64, 64, 5}.
For the Factorized Bilinear model, we used code from
the authors3. Indp. Pixel and GMM results are from
(Zoran & Weiss, 2011), while the Deep MFA result is
from (Tang et al., 2012).

After training, Fig. 4(b) shows that samples of a MTA
matches closely to the training patches in Fig. 4(a).
Each row of Fig. 4(c) shows filters (fibers of the ten-
sor) of one of the MTA components. Components of
MTA specialize to model patches of different spatial
frequencies and orientations. Fig. 4(d) lists quanti-
tative evaluations of the different models. Although
MTAs achieve good results, they do not outperform
MFAs or GMMs with 200 mixture components4.

We also compared the performance of MFAs vs. MTAs
when the number of mixture components is smaller.
Fig. 5 shows the average log-likelihoods on the test
set. Due to the fact that MTAs can model higher-
order interaction, it is able to outperform MFAs with
50 or less mixture components. However, as the num-
ber of components increases, the advantage of MTAs
disappears.

5.3. Face Recognition with equality constraints

In a one-shot learning setting, classifiers must be
trained from only one example per class. For face

2MFA code (Verbeek, 2006) is downloaded from
http://lear.inrialpes.fr/∼verbeek/software.php

3https://github.com/jackculpepper/dir-linear.
4The gap (less than 10 nats) in performance can be at-

tributed to the fact that the E-step in MTA is not exact
and requires sampling, while MFA has a closed-form pos-
terior. Sampling introduces noise which adversely affects
the M-step updates.
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(a) Test (b) Fixing Identity (c) Fixing Lighting

Tasks Human NN XCORR SVM FA DLN CP NTF Tucker pTucker S&C GPSC TA
One-shot recognition

9.3 51.1 33.6 35.5 19.6 19
N/A N/A N/A N/A 24.0 N/A

6.4
Using lighting labels 18.3 20.4 37.3 23.6 21.7 14.5

(d) Recognition Error in %

Figure 6. Tensor Analyzer is able to simultaneously decompose a test image into separate identity and lighting factors. (a)
4 test images with frontal, left, right and top light sources. (b) Random samples with identity factor fixed to the inferred
values from the test faces in (a). (c) Random samples with lighting factor fixed to the inferred values. (d) Comparison to
other methods. Tensor decomposition methods require additional labels of lighting direction during the test phase.

Figure 5. Performance of MTA vs. MFA with different
number of mixture components.

recognition, only one example per test subject is used
for training. We use the Yale B database and its Ex-
tended version (Lee et al., 2005). The database con-
tains 38 subjects under 45 different lighting conditions.
We use 28 subjects for training and test on the 10
subjects from the original Yale B database. The im-
ages are first downsampled to 24× 24, and we used a
TA{576, 80, 4}, which contains 2 groups of factors.

The learned TA allows for strong generalization to new
people under new lighting conditions. It achieves an
average test log-probability of 836± 7 on the images
of the 10 held-out subjects. As a comparison, the best
MFA model achieved only 791 ± 10. The number of
components and factors of the MFA are selected us-
ing grid search. The gain of 45 nats demonstrates a
significant win for the TA.

Qualitatively, to see how well the TA is able to fac-
tor out identity from lighting, we first sample from
the posterior distribution conditioned on a single test
image using step 3 of Alg. 1. We then fix a factor
group’s sampled values and sample the factors of the
other group using its Normal prior. Results are shown
in Fig. 6. A row in panel (b) shows the same person
under different sampled lighting conditions. A row in
panel (c) shows sampled people, but under the same
lighting condition. We emphasize that only a single
test image from novel subjects is used for inference
(panel (a)).

The one-shot recognition task consists of using a single
image of each of the 10 test subjects for training dur-
ing the testing phase. The rest of the images of the
test subjects are then classified into 1 of 10 classes.
Labels indicating lighting directions of the test images
can be optionally provided. TAs can operate with or
without the labels, while tensor decomposition meth-
ods require these labels. We first use the 28 training
subjects to learn the parameters for the TA{576,80,4}
in the training phase. Equality constraints specifying
which images have the same identity or lighting type
are used during training. During the testing phase, a
single image for each of the 10 test subjects is used to
compute the mean of the posterior p(zidentity, zlight|x),
using 200 Gibbs steps. For each one of the 10 sampled
zidentity, TA{576,80,4} is transformed into a person-
specific FA using Eqs. 6, 7. The resulting 10 FAs define
the class-conditionals of a generative classifier, which
we use to classify test images of the 10 test subjects.

We compared TA to standard classifiers and tensor de-
composition methods. Human error is the average of
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testing several human subjects on the same one-shot
recognition task. NN is the nearest neighbour classi-
fier, and XCORR represents the normalized Cross Cor-
relation. Multiclass linear SVM from the LIBLINEAR
package (Fan et al., 2008) is used, where the hyperpa-
rameter C was chosen using validation. Factor analyz-
ers method requires the transfer of the factor loadings
from the training phase. We first learned 28 FAs, one
for each training subject. During the testing phase,
each one of the 10 training images of the test subject
is matched with the FA which gives it the largest like-
lihood. A new FA is created, centered at the training
image. The rest of the parameters are transferred from
the matched FA. In essence, the transferred loadings
model the lighting variations of the training subjects
(1 of 28), which is most similar to the test phase train-
ing image. After the creation of these 10 new FAs,
classification is same as in the TA method.

We also compared TA to various Tensor De-
composition methods, including CP: CANDE-
COMP/PARAFAC (Carroll & Chang, 1970); NTF:
Nonnegative Tensor Factorization (Shashua &
Hazan, 2005); Tucker (Tucker, 1963); and Proba-
bilistic Tucker decomposition (Chu & Ghahramani,
2009). For CP, Tucker, and NTF, we used the N-way
toolbox (Bro, 1998). For the S&C bilinear method,
we implemented the exact algorithm as stated in
Sec. 3.2 of (Tenenbaum & Freeman, 2000). The
style and content codes are adapted for new test
images during one-shot learning. For GPSC, the code
provided by the authors was used. In all experiments,
hyper-parameters were selected by cross-validation.
Recognition errors are shown in Fig. 6(d). Observe
that the TA not only outperforms these methods by
a significant margin, but it even achieves better than
human performance.

5.4. Learning with incomplete equality
constraints

We now demonstrate the advantage of the TA
in a semi-supervised setting on the UMIST face
database (Graham & Allinson, 1998). It contains 20
subjects with 20 to 40 training images per subject.
The variation consists of in-depth head rotations. We
compared the TA to S&C model and NN on the one-
shot face recognition task. Out of the 20 subjects, 15
were used for training and 5 for testing. The split was
randomized over 10 different trials. The images are
downsampled to the resolution of 24× 24. We experi-
mented with equality constraints, using 3, 4, or 5 im-
ages per training subject. During the training phase,
a TA{576,3,5} model was trained using 30 EM itera-
tions. The algorithms for classification are exactly the

same as in Sec. 5.3. Fig. 7 plots recognition errors as

Figure 7. UMIST Recognition errors.

a function of the number of images per subject used
during the training phase. For the case where 5 im-
ages per training subjects are available, TA achieves
significantly lower errors at 12.4% compared to 24.9%
for S&C. If we add an equal number of images with-
out equality constraints during training, the error is
further reduced to 10.9%. (An additional experiment
on concept learning from colorful shapes is presented
in the Supp. Materials).

5.5. Computation Time
Our experiments used Matlab on a standard multicore
workstation, we report the computation time required
for inference and learning. MTA on face images in
Sec. 5.3: inference per image per Gibbs update takes
14 ms (milliseconds), while learning took a total of 587
secs. MFA learning took around 108 secs. In practice,
matrix inversion is not very expensive in our model.
For the face recognition model TA{576,80,4}, while
having the same number of parameters as a FA with
320 latent factors (which requires inverting 320x320
matrix), only require inversion of 80x80 and 4x4 ma-
trices, which takes 0.4 ms. MTA on natural images:
inference per image per Gibbs update takes 47 ms,
while the entire learning algorithm took 33 hours. In
comparison, inference per image in Mixture of Factor
Analyzers (MFA) takes 18 ms, while learning took 9.5
hours.

6. Conclusions

We have introduced a new density model which ex-
tends Factor Analysis to modeling multilinear inter-
actions. Using efficient alternating sampling and the
EM algorithm, we have shown that (M)TAs can learn
more complex densities and separate factors of varia-
tion, leading to the learning of simple concepts. More-
over, at the important task of one-shot face recogni-
tion, TAs outperform a variety of other models.
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