
Learning a Nonlinear Embedding by Preserving
Class Neighbourhood Structure

Ruslan Salakhutdinov and Geoffrey Hinton
Department of Computer Science

University of Toronto
Toronto, Ontario M5S 3G4

Abstract

We show how to pretrain and fine-tune a mul-
tilayer neural network to learn a nonlinear
transformation from the input space to a low-
dimensional feature space in which K-nearest
neighbour classification performs well. We also
show how the non-linear transformation can be
improved using unlabeled data. Our method
achieves a much lower error rate than Support
Vector Machines or standard backpropagation on
a widely used version of the MNIST handwrit-
ten digit recognition task. If some of the dimen-
sions of the low-dimensional feature space are
not used for nearest neighbor classification, our
method uses these dimensions to explicitly rep-
resent transformations of the digits that do not
affect their identity.

1 Introduction

Learning a similarity measure or distance metric over the
input space

�
is an important task in machine learning. A

good similarity measure can provide insight into how high-
dimensional data is organized and it can significantly im-
prove the performance of algorithms like K-nearest neigh-
bours (KNN) that are based on computing distances [4].

For any given distance metric � (e. g. Euclidean) we can
measure similarity between two input vectors ��� , ����� �
by computing �
	 ���� ��� ����� ���� ��� ����� , where ���� � ��� is a
function �
� �����

mapping the input vectors in
�

into a
feature space

�
and is parameterized by � (see fig. 1).

As noted by [8] learning a similarity measure is closely
related to the problem of feature extraction, since for any
fixed � , any feature extraction algorithm can be thought of
as learning a similarity metric. Previous work studied the
case when � is Euclidean distance and ���� � ��� is a simple
linear projection ���� � ��� �!� � . The Euclidean distance
in the feature space is then the Mahalanobis distance in the
input space:

�
	 ���� � �"� ���� � ���#� ��� � $ � � �&%��'%�� ��� � $ � � � (1)

Linear discriminant analysis (LDA) learns the matrix �
which minimizes the ratio of within-class distances to
between-class distances. Goldberger et.al.[9] learned the
linear transformation that optimized the performance of
KNN in the resulting feature space. This differs from LDA
because it allows two members of the same class to be far
apart in the feature space so long as each member of the
class is close to K other class members. Globerson and
Roweis [8] learned the matrix � such that the input vectors
from the same class mapped to a tight cluster. They showed
that their method approximates the local covariance struc-
ture of the data and is therefore not based on Gaussian as-
sumption as opposed to LDA which uses global covariance
structure. Weinberger et.al.[18] also learned � with the
twin goals of making the K-nearest neighbours belong to
the same class and making examples from different classes
be separated by a large margin. They succeeded in achiev-
ing a test error rate of 1.3% on the MNIST dataset[15].

A linear transformation has a limited number of parameters
and it cannot model higher-order correlations between the
original data dimensions. In this paper, we show that a non-
linear transformation function ���� � ��� with many more
parameters can discover low-dimensional representations
that work much better than existing linear methods pro-
vided the dataset is large enough to allow the parameters
to be estimated.

The idea of using a multilayer neural network to learn a
nonlinear function ���� � ��� that maximizes agreement be-
tween output signals goes back to [2]. They showed that
it is possible to learn to extract depth from stereo images
of smooth, randomly textured surfaces by maximizing the
mutual information between the one-dimensional outputs
of two or more neural networks. Each network looks at a
local patch of both images and tries to extract a number that
has high mutual information with the number extracted by
networks looking at nearby stereo patches. The only prop-
erty that is coherent across space is the depth of the surface
so that is what the networks learn to extract. A similar ap-
proach has been used to extract structure that is coherent
across time [17].

W

W

W

W

W

W

W

W

500

500

500

500

2000

Learning Similarity Metric

30

2000

1

2

3

4

30

1

2

3

4

y

X Xa b

ya b

D[y ,y]a b

Figure 1: After learning a non-linear transformation from images
to 30-dimensional code vectors, the Euclidean distance between
code vectors can be used to measure the similarity between im-
ages.

Generalizing this idea to networks with multi-dimensional,
real-valued outputs is difficult because the true mutual in-
formation depends on the entropy of the output vectors and
this is hard to estimate efficiently for multi-dimensional
outputs. Approximating the entropy by the log determi-
nant of a multidimensional Gaussian works well for learn-
ing linear transformations [7], because a linear transforma-
tion cannot alter how Gaussian a distribution is. But it does
not work well for learning non-linear transformations [21]
because the optimization cheats by making the Gaussian
approximation to the entropy as bad as possible. The mu-
tual information is the difference between the individual en-
tropies and the joint entropy, so it can be made to appear
very large by learning individual output distributions that
resemble a hairball. When approximated by a Gaussian, a
large hairball has a large determinant but its true entropy is
very low because the density is concentrated into the hairs
rather than filling the space.

The structure in an iid set of image pairs can be decom-
posed into the structure in the whole iid set of individual
images, ignoring the pairings, plus the additional struc-
ture in the way they are paired. If we focus on model-
ing only the additional structure in the pairings, we can
finesse the problem of estimating the entropy of a multi-
dimensional distribution. The additional structure can be
modeled by finding a non-linear transformation of each im-
age into a low-dimensional code such that paired images
have codes that are much more similar than images that are
not paired. Adopting a probabilistic approach, we can de-
fine a probability distribution over all possible pairs of im-
ages, ��� � ��� by using the squared distances between their
codes, ���� � ��� ������ � :

� ��� � � � � � � � � ������ � $ ������ � � � ������	� � � ����
�
� $ ����

�
� � � � (2)

We can then learn the non-linear transformation by maxi-
mizing the log probability of the pairs that actually occur in
the training set. The normalizing term in Eq. 2 is quadratic
in the number of training cases rather than exponential in
the number of pixels or the number of code dimensions be-
cause we are only attempting to model the structure in the
pairings, not the structure in the individual images or the
mutual information between the code vectors.

The idea of using Eq. 2 to train a multilayer neural net-
work was originally described in [9]. They showed that
a network would extract a two-dimensional code that ex-
plicitly represented the size and orientation of a face if it
was trained on pairs of face images that had the same size
and orientation but were otherwise very different. Attempts
to extract more elaborate properties were less successful
partly because of the difficulty of training multilayer neu-
ral networks with many hidden layers, and partly because
the amount of information in the pairings of
 images is
less than �����
 bits per pair. This means that a very large
number of pairs is required to train a large number of pa-
rameters.

Chopra et.al. [3] have recently used a non-probabilistic ver-
sion of the same approach to learn a similarity metric for
faces that assigns high similarity to very different images of
the same person and low similarity to quite similar images
of different people. They achieve the same effect as Eq.
2 by using a carefully hand-crafted penalty function that
uses both positive (similar) and negative (dissimilar) exam-
ples. They greatly reduce the number of parameters to be
learned by using a convolutional multilayer neural network
and achieve impressive results on a face verification task.

We have recently discovered a very effective and entirely
unsupervised way of training a multi-layer, non-linear ”en-
coder” network that transforms the input data vector � into
a low-dimensional feature representation ���� � ��� that cap-
tures a lot of the structure in the input data [14]. This un-
supervised algorithm can be used as a pretraining stage to
initialize the parameter vector � that defines the mapping
from input vectors to their low-dimensional representation.
After the initial pretraining, the parameters can be fine-
tuned by performing gradient descent in the Neighbour-
hood Component Analysis (NCA) objective function intro-
duced by [9]. The learning results in a non-linear trans-
formation of the input space which has been optimized to
make KNN perform well in the low-dimensional feature
space. Using this nonlinear NCA algorithm to map MNIST
digits into the 30-dimensional feature space, we achieve an
error rate of 1.08%. Support Vector Machines have a sig-
nificantly higher error rate of 1.4% on the same version of
the MNIST task [5].

In the next section we briefly review Neighborhood Com-
ponents Analysis and generalize it to its nonlinear counter-
part. In section 3, we show how one can efficiently per-

form pretraining to extract useful features from binary or
real-valued data. In section 4 we show that nonlinear NCA
significantly outperforms linear methods on the MNIST
dataset of handwritten digits. In section 5 we show how
nonlinear NCA can be regularized by adding an extra term
to the objective function. The extra term is the error in
reconstructing the data from the code. Using this regular-
izing term, we show how nonlinear NCA can benefit from
additional, unlabeled data. We further demonstrate the su-
periority of regularized nonlinear NCA when only small
fraction of the images are labeled.

2 Learning Nonlinear NCA
We are given a set of
 labeled training cases ����� ��� � � ,� � � ��� �����	� �
 , where � � ��
� , and � � ��� � ��� �����	� ����� .
For each training vector � � , define the probability that point� selects one of its neighbours � (as in [9, 13]) in the trans-
formed feature space as:

� �"� � ����� � $�� �"� ������� � ����� � $�� � � � �
� �"� � � (3)

We focus on the Euclidean distance metric:

� � � �"! ���� � � ��� $ ���� � � ����! �
and ��$# � ��� is a multi-layer neural network parametrized
by the weight vector � (see fig 1). The probability that
point � belongs to class % depends on the relative proximity
of all other data points that belong to class % :

� � � � � % � �'&
�)(*)+ � �

� �"� (4)

The NCA objective (as in [9]) is to maximize the expected
number of correctly classified points on the training data:

,.-0/21 �
-
&
� �43 &�5(*)6 � * +

� �"� (5)

One could alternatively maximize the sum of the log prob-
abilities of correct classification:

,.798 �
-
&
� �:3 ����<; &�5(* 6 � * +

� �"�>= (6)

When ���� � ��� � � � is constrained to be a linear trans-
formation, we get linear NCA. When ���� � ��� is defined
by a multilayer, non-linear neural network, we can explore
a much richer class of transformations by backpropagating
the derivatives of the objective functions in Eq. 5 or 6 with
respect to parameter vector � through the layers of the
encoder network. In our experiments, the NCA objective, -?/41

of Eq. 5 worked slightly better than
, 798

. We sus-
pect that this is because

, -0/21
is more robust to handling

outliers.
, 798

, on the other hand, would strongly penalize
configurations where a point in the feature space does not
lie close to any other member of its class. The derivatives
of Eq. 5 are given in the appendix.

h

W

Binary
Visible Data

Binary
Hidden Features

x

Figure 2: A Restricted Boltzmann Machine. The top layer repre-
sents a vector of stochastic binary features @ and and the bottom
layer represents a vector of stochastic binary “visible” variablesA . When modeling real-valued visible variables, the bottom layer
is composed of linear units with Gaussian noise.

3 Pretraining

In this section we describe an unsupervised way to learn
an adaptive, multi-layer, non-linear ”encoder” network that
transforms the input data vector � into its low-dimensional
feature representation ���� � ��� . This learning is treated as a
pretraining stage that discovers good low-dimensional rep-
resentations. Subsequent fine-tuning of the weight vector
� is carried out using the objective function in Eq. 5

3.1 Modeling Binary Data

We model binary data (e.g. the MNIST digits) using a
Restricted Boltzmann Machine [6, 16, 11] (see fig. 2).
The “visible” stochastic binary input vector � and “hidden”
stochastic binary feature vector B are modeled by products
of conditional Bernoulli distributions:

� �DC�E � � � � � � F �G��E?H &JI � I E�K I � (7)

� �LK I � � � B � � F �G� I H & E �
I EMCNE � (8)

where F �PO � � �MQ � � HSRUT � � is the logistic function, �
I E is

a symmetric interaction term between input V and feature W ,
and � I , ��E are biases. The biases are part of the overall pa-
rameter vector, � . The marginal distribution over visible
vector � is:

� ��� � ��&�X �Y��� � $�Z ��� � B �&���[�\] �Y�N� � $�Z �P^ ��_ � � (9)

where Z ��� � B � is an energy term (i.e. a negative log prob-
ability + an unknown constant offset) given by:

Z ��� � B � � $ & I � I K I $ & E � E C E $ & I \ E K
I C E � I E (10)

The parameter updates required to perform gradient ascent
in the log-likelihood can be obtained from Eq. 9:

` � I E � aNb � � � � ��� �b � I E �ca �$d.K I C Efe � ��g�� $ dhK I C E�e�ikj �ml � �

W

W

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W

W

2

1

500

500

500

500

2000

2000

500

500

2000

2000

500

500

2 2

3 3

1 1

4 4

4
T

5

3
T

6

2
T

7

1
T

8

500

500

2000

2000

500

500

2 2

3 3

1 1

4 4

4
T

5

3
T

6

2
T

7

1
T

8

RBM

Pretraining

RBM

3

4

30

RBM
Top

RBM

3030

Fine−tuning

Encoder

Decoder

�
*NCA

����� ���	��

Figure 3: Left panel: Pretraining consists of learning a stack of RBM’s in which the feature activations of one RBM are treated as data
by the next RBM. Right panel: After pretraining, the RBM’s are “unrolled”. Setting

�� �
results in nonlinear NCA, setting

�����
results in a deep multi-layer autoencoder. For

��� � ��� � �
, the NCA objective is combined with autoencoder reconstruction error

to

create regularized nonlinear NCA. The network is fine-tuned by backpropagation.

where a is the learning rate, d # e � ��g�� denotes an expec-
tation with respect to the data distribution and d # e.i0j �ml �
is an expectation with respect to the distribution defined
by the model. To circumvent the difficulty of computingd<# e�ikj �ml � , we use 1-step Contrastive Divergence [11]:` � I E �ca � dhK I C�E e � ��g�� $ dhK I C�E e�� l * j�� � (11)

The expectation d K I C�E e � ��g�� defines the frequency with
which input V and feature W are on together when the fea-
tures are being driven by the observed data from the train-
ing set using Eq. 7. After stochastically activating the fea-
tures, Eq. 8 is used to “reconstruct” binary data. Then Eq.
7 is used again to activate the features and d K I C E e � l * j��
is the corresponding frequency when the features are being
driven by the reconstructed data. The learning rule for the
biases is just a simplified version of Eq. 11.

3.2 Modeling Real-valued Data

Welling et. al. [19] introduced a class of two-layer undi-
rected graphical models that generalize Restricted Boltz-
mann Machines (RBM’s) to exponential family distribu-
tions. This allows them to model images with real-valued
pixels by using visible units that have a Gaussian distribu-
tion whose mean is determined by the hidden units:

� �LK I � K � B � � 3� ������� ����� � $� "! T � � T ���$#&%(' %�) � %�*,+�-� +� � (12)

� �DC�E � � � � � ��F ;G��E H � I � I E ! ��.� = (13)

The marginal distribution over visible units � is given by
Eq. 9. with an energy term:

Z ��� � B � � & I �PK I $ � I � ���F �I $ & E ��E�C�E $ & I \ E CNE0/
I E K IF I (14)

The gradient of the log-likelihood function is:

b ���� � ��� �b � I E � d K IF I CNE e � ��g�� $ d K
I
F I CNE e i0j �ml �

If we set variances F �I � � for all visible units V , the param-
eter updates are the same as defined in Eq. 11.

3.3 Greedy Recursive Pretraining

After learning the first layer of hidden features we have an
undirected model that defines � ��� � B � via a consistent pair
of conditional probabilities, � �DB � � � and � ��� � B � . A differ-
ent way to express what has been learned is � ��� � B � and� �DB � . Unlike a standard directed model, this � �PB � does not
have its own separate parameters. It is a complicated, non-
factorial prior on B that is defined implicitly by the weights.
This peculiar decomposition into � �PB � and � ��� � B � suggests
a recursive algorithm: keep the learned � ��� � B � but replace� �DB � by a better prior over B .

For any approximating distribution 1 �PB � � � we can write:

���� � ��� ��� & X 1 �PB � � � 	 ���� � �PB � H � � � � ��� � B � �
$ & X 1 �DB � � � ���� 1 �PB � � � (15)

If we set 1 �PB � � � to be the true posterior distribution,� �DB � � � (Eq. 7), the bound becomes tight. By freezing
the parameter vector � at the value �������	��
�� (Eq. 7,8)
we freeze � ��� � B � , and if we continue to use � %�������
�� to
compute the distribution over B given � we also freeze
1 �DB � � � � %�����	��
�� � . When � �PB � is implicitly defined by
�������	��
�� , 1 �DB � � � � %�����	��
�� � is the true posterior, but when
a better distribution is learned for � �PB � , 1 �DB � � � � %��������
�� � is
only an approximation to the true posterior. Nevertheless,
the loss caused by using an approximate posterior is less
than the gain caused by using a better model for � �DB � , pro-
vided this better model is learned by optimizing the vari-
ational bound in Eq. 15. Maximizing this bound with �
frozen at ���������
�� is equivalent to maximizing:

& X 1 �DB � � � �'%�����	��
�� � ���� � �PB �
This amounts to maximizing the probability of a set of B
vectors that are sampled with probability 1 �PB � � � � %��������
�� � ,
i.e. it amounts to treating the hidden activity vectors pro-
duced by applying � %�����	��
�� to the real data as if they were
data for the next stage of learning.1 Provided the number
of features per layer does not decrease, [12] showed that
each extra layer increases the variational lower bound in
Eq. 15 on the log probability of data. This bound does not
apply if the layers get smaller, as they do in an encoder,
but, as shown in [14], the pretraining algorithm still works
very well as a way to initialize a subsequent stage of fine-
tuning. The pretraining finds a point that lies in a good
region of parameter space and the myopic fine-tuning then
performs a local gradient search that finds a nearby point
that is considerably better.

After learning the first layer of features, a second layer is
learned by treating the activation probabilities of the exist-
ing features, when they are being driven by real data, as the
data for the second-level binary RBM (see fig. 3). To sup-
press noise in the learning signal, we use the real-valued
activation probabilities for the visible units of every RBM,
but to prevent each hidden unit from transmitting more than
one bit of information from the data to its reconstruction,
the pretraining always uses stochastic binary values for the
hidden units.

The hidden units of the top RBM are modeled with stochas-
tic real-valued states sampled from a Gaussian whose mean
is determined by the input from that RBM’s logistic visible

1We can initialize the new model of the average conditional
posterior over @ by simply using the existing learned model but
with the roles of the hidden and visible units reversed. This en-
sures that our new model starts with exactly the same � � @ � as our
old one.

units. This allows the low-dimensional codes to make good
use of continuous variables and also facilitates comparisons
with linear NCA. The conditional distributions are given in
Eq. 12,13, with roles of B and � reversed. Throughout all
of our experiments we set variances F �E � � for all hidden
units W , which simplifies learning. The parameter updates
in this case are the same as defined in Eq. 11.

This greedy, layer-by-layer training can be repeated sev-
eral times to learn a deep, hierarchical model in which each
layer of features captures strong high-order correlations be-
tween the activities of features in the layer below.

Recursive Learning of Deep Generative Model:

1. Learn the parameters ��� of a Bernoulli or Gaussian
model.

2. Freeze the parameters of the lower-level model and use
the activation probabilities of the binary features, when
they are being driven by training data, as the data for
training the next layer of binary features.

3. Freeze the parameters ��� that define the 2 ��� layer of
features and use the activation probabilities of those
features as data for training the 3 ��� layer of features.

4. Proceed recursively for as many layers as desired.

3.4 Details of the training

To speed-up the pretraining, we subdivided the MNIST
dataset into small mini-batches, each containing 100 cases,
and updated the weights after each mini-batch. Each layer
was greedily pretrained for 50 passes (epochs) through the
entire training dataset.2 For fine-tuning model parameters
using the NCA objective function we used the method of
conjugate gradients3 on larger mini-batches of 5000 with
three line searches performed for each mini-batch in each
epoch. To determine an adequate number of epochs and
avoid overfitting, we fine-tuned on a fraction of the train-
ing data and tested performance on the remaining valida-
tion data. We then repeated the fine-tuning on the entire
training dataset for 50 epochs.

We also experimented with various values for the learning
rate, momentum, and weight-decay parameters used in the
pretraining. Our results are fairly robust to variations in
these parameters and also to variations in the number of
layers and the number of units in each layer. The precise
weights found by the pretraining do not matter as long as it
finds a good region from which to start the fine-tuning.

4 Experimental Results
In this section we present experimental results for the
MNIST handwritten digit dataset. The MNIST dataset [15]

2The weights were updated using a learning rate of 0.1, mo-
mentum of 0.9, and a weight decay of

��� �.����� �
weight

�
learning

rate. The weights were initialized with small random values sam-
pled from a zero-mean normal distribution with variance 0.01.

3Code is available at
http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/

 1 3 5 7

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Number of Nearest Neighbours

T
es

t
E

rr
o

r
(%

)

Nonlinear NCA 30D
Linear NCA 30D
Autoencoder 30D
PCA 30D

1

2
3

4

5
6

7

8
9

0

Linear NCA LDA PCA

Figure 4: The top left panel shows KNN results on the MNIST test set. The top right panel shows the 2-dimensional codes produced
by nonlinear NCA on the test data using a 784-500-500-2000-2 encoder. The bottom panels show the 2-dimensional codes produced by
linear NCA, Linear Discriminant Analysis, and PCA.

contains 60,000 training and 10,000 test images of ����� ���
handwritten digits. Out of 60,000 training images, 10,000
were used for validation. The original pixel intensities were
normalized to lie in the interval 	 ��� � � and had a preponder-
ance of extreme values.

We used a 28 � 28 $ 500 $ 500 $ 2000 $ 30 architecture as
shown as fig. 3, similar to one used in [12]. The 30 code
units were linear and the remaining hidden units were lo-
gistic. Figure 4 shows that Nonlinear NCA, after 50 epochs
of training, achieves an error rate of 1.08%, 1.00%, 1.03%,
and 1.01% using 1,3,5, and 7 nearest neighbours. This
is compared to the best reported error rates (without us-
ing any domain-specific knowledge) of 1.6% for randomly
initialized backpropagation and 1.4% for Support Vector
Machines [5]. Linear methods such as linear NCA or
PCA are much worse than nonlinear NCA. Figure 4 (right
panel) shows the 2-dimensional codes produced by non-
linear NCA compared to linear NCA, Linear Discriminant
Analysis, and PCA.

5 Regularized Nonlinear NCA
In many application domains, a large supply of unlabeled
data is readily available but the amount of labeled data,

which can be expensive to obtain, is very limited so non-
linear NCA may suffer from overfitting.

After the pretraining stage, the individual RBM’s at each
level can be “unrolled” as shown in figure 3 to create a
deep autoencoder. If the stochastic activities of the binary
features are replaced by deterministic, real-valued proba-
bilities, we can then backpropagate through the entire net-
work to fine-tune the weights for optimal reconstruction of
the data. Training such deep autoencoders, which does not
require any labeled data, produces low-dimensional codes
that are good at reconstructing the input data vectors, and
tend to preserve class neighbourhood structure [14].

The NCA objective, that encourages codes to lie close to
other codes belonging to the same class, can be combined
with the autoencoder objective function (see fig. 3) to max-
imize: �'��� , -0/21 H � � $ � � � $ E � (16)

where
, -0/41

is defined in Eq. 5, Z is the reconstruction
error, and � is a trade-off parameter. When the derivative
of the reconstruction error Z is backpropagated through
the autoencoder, it is combined, at the code level, with the
derivatives of

,.-0/21
.

 1 3 5 7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

Number of Nearest Neighbours

T
es

t
E

rr
o

r
(%

)

Regularized NCA (λ=0.99)
Nonlinear NCA 30D (λ=1)
Linear NCA 30D
Autoencoder 30D (λ=0)
KNN in pixel space

 1 3 5 7
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Number of Nearest Neighbours

T
es

t
E

rr
o

r
(%

)

Regularized NCA (λ=0.99)
Nonlinear NCA 30D (λ=1)
Linear NCA 30D
Autoencoder 30D (λ=0)
KNN in pixel space

 1 3 5 7
2

2.5

3

3.5

4

4.5

5

5.5

6

Number of Nearest Neighbours

T
es

t
E

rr
o

r
(%

)

Regularized NCA (λ=0.999)
Nonlinear NCA 30D (λ=1)
Linear NCA 30D
Autoencoder 30D (λ=0)
KNN in pixel space

1% labels 5% labels 10% labels

Figure 5: KNN on the MNIST test set when only a small fraction of class labels is available. Linear NCA and KNN in pixel space do
not take advantage of the unlabeled data.

30 20 30 20

.......

.......

.......

....... �
*NCA

����� ���	��

Figure 6: Left panel: The NCA objective function is only applied to the first 30
code units, but all 50 units are used for image reconstruction. Right panel: The
top row shows the reconstructed images as we vary the activation of code unit
25 from 1 to -23 with a stepsize of 4. The bottom row shows the reconstructed
images as we vary code unit 42 from 1 to -23.

This setting is particularly useful for semi-supervised
learning tasks. Consider having a set of
 � labeled train-
ing data ���

�
��� � � , where as before �

�
�
 � , and � � �� � �>���Y�	��� �>��� , and a set of
�� unlabeled training data � � .

Let
 �
 � H
�� . The overall objective to maximize can
be written as:, � � �
 �

- �& � �43 &� � * � � *)+
� � � H � � $ � �

�

-
&� �43 $�Z � (17)

where Z � is the reconstruction error for the input data vec-
tor K � . For the MNIST dataset we use the cross-entropy
error:

Z�� � $ & I K �I ������K �I $ & I � � $ K �I � ���� � � $ �K �I � (18)

where K �I � 	 � � � � is the intensity of pixel V for the training
example � , and �K �I is the intensity of its reconstruction.

When the number of labeled example is small, regular-
ized nonlinear NCA performs better than nonlinear NCA
(� � �), which uses the unlabeled data for pretraining but
ignores it during the fine-tuning. It also performs better
than an autoencoder (� � �), which ignores the labeled
set. To test the effect of the regularization when most of
the data is unlabeled, we randomly sampled 1%, 5% and
10% of the handwritten digits in each class and treated
them as labeled data. The remaining digits were treated

as unlabeled data. Figure 5 reveals that regularized non-
linear NCA(� � � � �	�)4 outperforms both nonlinear NCA
(� � �) and an autoencoder (� � �). Even when the en-
tire training set is labeled, regularized NCA still performs
slightly better.

5.1 Splitting codes into class-relevant and
class-irrelevant parts

To allow accurate reconstruction of a digit image, the code
must contain information about aspects of the image such
as its orientation, slant, size and stroke thickness that are
not relevant to its classification. These irrelevant aspects in-
evitably contribute to the Euclidean distance between codes
and harm classification. To diminish this unwanted effect,
we used 50-dimensional codes but only used the first 30
dimensions in the NCA objective function. The remaining
20 dimensions were free to code all those aspects of an im-
age that do not affect its class label but are important for
reconstruction.

Figure 6 shows how the reconstruction is affected by
changing the activity level of a single code unit. Chang-
ing a unit among the first 30 changes the class; changing a
unit among the last 20 does not. With � � �J� �
� the split
codes achieve an error rate of 1.00% 0.97% 0.98% 0.97%

4The parameter
�

was selected, using cross-validation, from
among the values � ��� ����� � ������ ������� ���� .

using 1,3,5, and 7 nearest neighbours. We also computed
the 3NN error rate on the test set using only the last 20 code
units. It was 4.3%, clearly indicating that the class-relevant
information is concentrated in the first 30 units.

6 Conclusions
We have shown how to pretrain and fine-tune a deep non-
linear encoder network to learn a similarity metric over the
input space that facilitates nearest-neighbor classification.
Using the reconstruction error as a regularizer and split
codes to suppress the influence of class-irrelevant aspect
of the image, our method achieved the best reported error
rate of 1.00% on a widely used version of the MNIST hand-
written digit recognition task that does not use any domain-
specific knowledge. The regularized version of our method
can make good use of large amounts of unlabeled data, so
the classification accuracy is high even when the amount of
labeled training data is very limited. Comparison to other
recent methods for learning similarity measures [1, 10, 20]
remains to be done.

Acknowledgments
We thank Sam Roweis for many helpful discussions. This
research was supported by NSERC, CFI and OTI. GEH is
a fellow of CIAR and holds a CRC chair.

References

[1] Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and
Daphna Weinshall. Learning distance functions using equiv-
alence relations. In ICML, pages 11–18. AAAI Press, 2003.

[2] S. Becker and G. E. Hinton. A self-organizing neural net-
work that discovers surfaces in random-dot stereograms.
Nature, 355(6356):161–163, 1992.

[3] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similar-
ity metric discriminatively, with application to face verifica-
tion. In IEEE Computer Vision and Pattern Recognition or
CVPR, pages I: 539–546, 2005.

[4] T. M. Cover and P. E. Hart. Nearest neighbor pattern clas-
sification. IEEE Transactions on Information Theory, IT-
13(1):21–7, January 1967.

[5] D. Decoste and B. Schölkopf. Training invariant support
vector machines. Machine Learning, 46(1/3):161, 2002.

[6] Y. Freund and D. Haussler. Unsupervised learning of distri-
butions on binary vectors using two layer networks. In Ad-
vances in Neural Information Processing Systems 4, pages
912–919, San Mateo, CA., 1992. Morgan Kaufmann.

[7] K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensional-
ity reduction for supervised learning with reproducing ker-
nel hilbert spaces. Journal of Machine Learning Research,
5:73–99, 2004.

[8] A. Globerson and S. T. Roweis. Metric learning by collaps-
ing classes. In NIPS, 2005.

[9] J. Goldberger, S. T. Roweis, G. E. Hinton, and Ruslan
Salakhutdinov. Neighbourhood components analysis. In
NIPS, 2004.

[10] Tomer Hertz, Aharon Bar-Hillel, and Daphna Weinshall.
Boosting margin based distance functions for clustering. In
ICML, 2004.

[11] G. E. Hinton. Training products of experts by minimizing
contrastive divergence. Neural Computation, 14(8):1711–
1800, 2002.

[12] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learn-
ing algorithm for deep belief nets. Neural Computation, 18,
2006.

[13] G. E. Hinton and S. T. Roweis. Stochastic neighbor embed-
ding. In NIPS, pages 833–840. MIT Press, 2002.

[14] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, July 2006.

[15] The MNIST dataset is available at
http://yann.lecun.com/exdb/mnist/index.html.

[16] P. Smolensky. Information processing in dynamical sys-
tems: Foundations of harmony theory. In Parallel Dis-
tributed Processing: Volume 1: Foundations, pages 194–
281. MIT Press, Cambridge, 1986.

[17] J. V. Stone and N. Harper. Temporal constraints on visual
learing: a computational model. Perception, 28:1089–1104,
2002.

[18] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric
learning for large margin nearest neighbor classification. In
NIPS, 2005.

[19] M. Welling, M. Rosen-Zvi, and G. E. Hinton. Exponen-
tial family harmoniums with an application to information
retrieval. In NIPS 17, pages 1481–1488, Cambridge, MA,
2005. MIT Press.

[20] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart J.
Russell. Distance metric learning with application to clus-
tering with side-information. In NIPS, pages 505–512. MIT
Press, 2002.

[21] R. S. Zemel and G. E. Hinton. Discovering and using the
single viewpoint constraint. In NIPS 3, San Mateo, CA,
1991.

Appendix
We have ������� objective function of Eq. 5:

� ����� � �	
�� �
	�� � 6 � � +

����� �������	� A
�� � � ���	� A � � � � � ����! �"
 ����� ���#�$�	� A
 � � � �%�	� A � � � � � � �
Denote &
 � �	� A
 � � � �'�	� A � � �

, then the derivatives of� ����� with respect to parameter vector � for the (*),+ training
case are - � �����-

�
�

- � �����- �	� A
 � � �
- �	� A
�� � �-

�
where- � �����- �	� A
 � � � � � ��. 	�� � 6 � � + �

 &
 � 	/� � 6 � � + �

10 	�! ��
 �
 � &
 ��24365

��. 	78� � � � � 6 �
7
 & 7
 � 	 7 �"
 0 	9 � � � � �/: � 7 9 2 � 7
 & 7
 3

and ;=<=> ? 6A@ BDC; B is computed using standard backpropagation.

