
Supplementary material: One-shot learning by
inverting a compositional causal process

SI-1 Generating images of characters

Hierarchical Bayesian Program Learning (HBPL) is a generative model of characters, and this pseu-
docode goes through the steps of producing new character types and tokens. The first stochastic
program GENERATETYPE samples a high level specification for a new character ψ (Section 2.1),
returning a handle to another stochastic program GENERATETOKEN. This second program can be
run arbitrarily many times, each time producing a different (token) image I(m) of that character type
(Section 2.2).

procedure GENERATETYPE
κ← P (κ) . Sample the number of strokes
for i = 1 ... κ do

zi ← P (zi) . Sample the number and identities of the sub-strokes
for j = 1 ... ni do

xij ← P (xij |zij) . Sample a sub-stroke’s control points
yij ← P (yij |zij) . Sample a sub-stroke’s scale

end for
Ri ← P (Ri|z1, ..., zi−1) . Sample a stroke’s relation to previous strokes

end for
ψ ← {κ,R, z, x, y}
return @GENERATETOKEN(ψ) . Return the handle to a stochastic program

end procedure

procedure GENERATETOKEN(ψ)
for i = 1 ... κ do

R
(m)
i ← Ri . Directly copy the type-level relation

if R(m)
i = ‘along’ then
τ
(m)
i ← P (τ

(m)
i |τi) . Add variability to the attachment along the spline

end if
L
(m)
i ← P (L

(m)
i |R(m)

i , T
(m)
1 , ..., T

(m)
i−1) . Sample stroke’s starting location

for j = 1 ... ni do
x
(m)
ij ← P (x

(m)
ij |xij) . Add variability to the control points

y
(m)
ij ← P (y

(m)
ij |yij) . Add variability to the sub-stroke scale

end for
T

(m)
i ← f(L

(m)
i , x

(m)
i , y

(m)
i) . Compose a stroke’s pen trajectory

end for
A(m) ← P (A(m)) . Sample global image transformation
ε(m) ← P (ε(m)) . Sample the amount of pixel noise
σ
(m)
b ← P (σ

(m)
b) . Sample the amount blur

I(m) ← P (I(m)|T (m), A(m), σ
(m)
b , ε(m)) . Render and sample the binary image

return I(m)

end procedure

1

SI-2 Probabilistic ink model

This section described how trajectories are rendered as an image (Section 2.2). After applying the
transformation A(m) to the trajectories T (m), ink is placed along the trajectories using a grayscale
ink model adapted from [1]. The continuous gray values of the pixels 0 ≤ ρij ≤ 1 are interpreted
as probabilities of turning the pixels on. Each trajectory point contributes up to two “units” of ink
to the four closest pixels using bilinear interpolation, where the ink units decrease linearly from
1 to 0 if two points are less than two pixel units apart. This method creates a thin line of ink,
which is expanded out by convolving the image twice with the filter b[a/12, a/6, a/12; a/6, 1 −
a, a/6; a/12, a/6, a/12] and thresholding values greater than 1. The hyperparameters a = 0.5
and b = 6 were fit with maximum likelihood given a small subset of background image/parse
pairs. The model also allows for variable levels of noise, σ(m)

b ∼ uniform(0.5, 16) and ε(m) ∼
uniform(.0001, 0.5)., which can ease search by encouraging partial solutions. The probability map
is blurred by two convolutions with a Gaussian filter of size 11 with standard deviation σ(m)

b . Finally,
the probability of inking a binary pixel is a Bernoulli with probability P (Iij = 1) = (1−ε(m))ρij +

ε(m)(1− ρij), where ε(m) can be interpreted as the probability of flipping a given pixel.

SI-3 Identifying pauses in the drawing data

In the Omniglot dataset, the intervals of time at which the pen coordinates were sampled depend
on a participant’s web browser. Even within a single participant, the interval is irregular since only
particular mouse events are tracked by the browser with a time stamp. Thus, all pen trajectories
were normalized to have a fixed 50 millisecond sampling interval, which was approximated by
linear interpolation. If the pen moved less than one pixel between two points, it was marked as
a “pause.” Sub-strokes are the segments extracted between pairs of pauses. For the purposes of
learning the primitives, each sub-stroke trajectory was normalized to have zero mean and a range of
105 along its longest dimension. Sub-stroke trajectories with less than 5 time points were removed.

SI-4 Learning high-level knowledge of motor programs

Learning primitives. A library of motor primitives, consisting of scale- and position-invariant
movements terminated by a pause of the pen, was learned by clustering about 80,000 normalized
sub-strokes in the background set (see Section SI-3 for identifying pauses in the drawings). Each
sub-stroke was fit with a spline and re-represented by its control points in R10. A diagonal Gaus-
sian Mixture Model (GMM) was used to partition sub-strokes into 1000 primitive elements, where
the number of primitives was chosen via cross-validation (Figure 4a). Given this partition, the
parameters for each primitive z, µz , Σz , αz and βz , could be fit with maximum likelihood estima-
tion (MLE). The transition probabilities between primitives P (zij |zi(j−1)) were estimated by the
smoothed empirical counts, where the regularization was chosen via cross-validation.

Learning start positions and relations. The distribution of stroke start positions P (Li) (Section
2.1) was estimated by discretizing the image plane and then fitting a separate grid model for a draw-
ing’s first, second, and third stroke (Figure 4c). All additional strokes share a single aggregated grid
model. The probability of each cell was estimated from the empirical frequencies, and the com-
plexity parameters for the grid granularity, smoothing, and aggregation threshold were chosen by
cross-validation. Evidently, position is concentrated in the top-left (Figure 4c), where the concentra-
tion is stronger for earlier strokes. The other relational parameters, including mixing probabilities
for the relation types θR and position noise ΣL, were estimated by modeling start position as a
mixture model over relations an then fitting the parameters with MLE.

Learning token variability. The token-level variability parameters {σx, σy, στ} were less straight-
forward to estimate, since they cannot be directly computed from the motor data. Since these param-
eters control the variability of exemplars that are identical at the type-level, groups of highly-similar
character exemplars were chosen based on shared primitives and stroke order. After global scale
differences and outliers were removed, scale variability σy was estimated from the deviations of
each exemplar’s scales from the mean values of the group. Attachment variability στ was estimated

2

Image

a)
Thinned

b)

Thinned
c)

Raw graph

d)

Cleaned graph
e)

Figure SI-1: Illustration of extracting the character skeleton. a) Original image. b) Thinned im-
age. c) Zoom highlights the imperfect detection of critical points (red pixels). d) Maximum circle
criterion applied to the spurious critical points. e) Character graph after merging.

similarly. The same method estimates a value of shape variability σx that is too large, so it was set
by hand based on the visual appearance of the forward samples.

Learning image parameters. The distribution on global transformations P (A(m)) was also learned
from the background set. For each image, the center of mass and range of the inked pixels was
computed. Second, images were grouped by character, and a transformation (scaling and translation)
was computed for each image so that its mean and range matched the group average. Based on this
large set of approximate transformations, a covariance on transformations ΣA could be estimated.

SI-5 Inference

This section describes the inference algorithm (Section 2.4) in more detail. Probabilistic inference
is very challenging in HBPL, since parsing an image requires searching a large combinatorial space
of different strokes, relations, and sub-strokes. Fortunately, there has been decades of progress
on developing bottom-up methods for analyzing the structure of handwritten characters. We take
advantage of these algorithms, using a fast structural analysis to propose values of the latent variables
in HBPL. This produces a large set of possible motor programs – each approximately fit to the
image of interest. The most promising motor programs are chosen and refined with continuous
optimization and MCMC. Each of these steps is explained in detail below.

SI-5.1 Extracting the character skeleton

Search begins by applying a thinning algorithm to the raw image (Figure SI-1a) that reduces the
line width to one pixel [2] (Figure SI-1b). This thinned image is used to produce candidate parses,
although these parses are ultimately scored on the original image. The thinned image can provide
an approximate structural analysis in the form of an undirected graph (as in Figure SI-1e), where
edges (green) trace the ink and nodes (red) are placed at the terminal and fork (decision) points.
While these decision points can be detected with simple algorithms [4], this process is imperfect
and produces too many fork points (red pixels in Figure SI-1b and c). Many of these inaccuracies
can be fixed by removing spurious branches and duplicate fork points with the “maximum circle
criterion” [3]. This algorithm places the largest possible circle on each critical point, such that
the circle resides within the original ink (gray regions in Figure SI-1d). All critical points with
connecting circles are then merged (Figure SI-1e).

SI-5.2 Generating random parses

A candidate parse is generated by a taking a random walk on the character skeleton with a “pen,”
visiting nodes until each edge has been traversed at least once. For many characters in the dataset,
the graphs are sufficiently large that unbiased random walks do not explore the interesting parts of
the parse space, which grows exponentially in the number of edges. Instead of an unbiased walk, the
random walker stochastically prefers actions A that minimize the local angle of the stroke trajectory
around the decision point

P (A) ∝ exp(−λθA), (SI-2)

3

28.2 0.391

47.2

a)

28.2 0.391

47.2

b)

28.2 0.391

47.2

c)

Figure SI-2: Illustration of the random walk choosing between three potential moves, after drawing
the topmost vertical edge (in the direction of the black arrow) and reaching a new decision point.
The three potential trajectories are fit with the smoothest spline that stays within the image ink and
does not deviate more than 3 pixels in any direction from the original trajectory (thick yellow line).
Given these smoothed trajectory options, move a) has a local angle of 0 degrees (computed between
the blue and purple vectors), move b) is 28 degrees, and move c) is 47 degrees.

where θA is the angle associated with action (Figure SI-2) and λ is a constant. Two other possible
actions, picking up the pen and re-tracing a trajectory, pay a cost of 45 and 90 degrees respectively.
If the pen is in lifted position, the random walk must pick a node to put the pen down on to start the
next stroke. To bias the random walk towards completing the drawing efficiently, the start node is
chosen in proportion to 1/bγ , where b is the number of new (unvisited) edges branching from that
node.

This random walk process is repeated many times to generate a range of candidate parses. Random
walks are generated until 150 parses or 100 unique strokes, shared across all of the parses, have been
sampled. Limiting the number of unique strokes is a natural criterion, since sub-parsing these strokes
is a computational bottleneck, as described in the next section. Larger values of the constants λ and
γ are better for parsing complex characters, since low stochasticity is critical for finding smooth
parses in a tremendous search space. But smaller values of λ and γ are better for simple characters,
where the algorithm has the computational resources to more exhaustively explore the parse space.
To get the best of both, different values of λ and γ are sampled before starting each random walk,
producing both low and high entropy random walks as candidates.

SI-5.3 Searching for sub-strokes

Before any candidate parse can be scored as a complete motor programs (Eq. 5), the strokes must
be sub-divided into sub-strokes. To do so, the strokes in each random walk are smoothed while
enforcing that the trajectories stay within the original ink (as in Figure SI-2), in order to correct for
spurious curves that arise from thinning algorithms (see Figure SI-2a for an example). The smoothed
strokes are then parsed into sub-strokes by running a simple greedy search for each stroke trajectory.
During search, operators add, remove, perturb, or replace pauses along the trajectory to form sub-
strokes. To score the quality of the decomposition, the sub-strokes are fit with splines, classified as
primitives zi, and scored by the generative model for strokes

P (x
(m)
i , y

(m)
i , zi) = P (zi)

ni∏
j=1

P (y
(m)
ij |yij)P (yij |zij)

∫
P (x

(m)
ij |xij)P (xij |zij) dxij , (SI-2)

where yi is approximated by setting it equal to y(m)
i . There is also a hard constraint that the spline

approximation to the original trajectory can miss its target by no more than 3 pixels.

After the search process is run for each stroke trajectory, each candidate motor program with vari-
ables ψ and θ(m) is fully-specified and tracks the image structure relatively closely. Thus, the prior
score P (θ(m)|ψ)P (ψ) is used to select the K best candidates to progress to the next stage of search,
which fine-tunes the motor programs.

4

SI-5.4 Optimization and fine-tuning

Holding the discrete variables fixed, the set of continuous variables (including
L(m), τ (m), x(m), y(m), ε(m), σ

(m)
b) are optimized to fit the pixel image with Matlab’s “active-set”

constrained optimization algorithm, using the full generative score as the objective function (Eq. 5).
There are two simplifications to reduce the number of variables: the affine warp A(m) is disabled
and the relations Ri are left unspecified and re-optimized during each evaluation of the objective
function. After optimization finds a local maximum, the optimal joint setting of stroke directions
and stroke order are chosen using exhaustive enumeration for characters with five strokes or less,
while considering random subsets for more complex characters. Finally, the best scoring relations
are chosen, and a greedy search to split strokes (at any sub-stroke transition) and merge strokes
(at places where a stroke begins at the end of the previous stroke) proceeds until the score can no
longer be improved.

SI-5.5 MCMC to estimate local variance

At this step, the algorithm has K high-probability parses ψ[1], θ(m)[1], ..., ψ[K], θ(m)[K] which have
been fine-tuned to the images. Each parse spawns a separate run of MCMC to estimate the local
variance around the type-level by sampling from P (ψ|θ(m)[i]). This is inexpensive since it does not
require evaluating the likelihood of the image. Metropolis Hastings moves with simple Gaussian
proposals are used for the shapes x, scales y, global positions L, and attachments τ . The sub-stroke
ids z are updated with Gibbs sampling. Each chain is run for 200 iterations over variables, and
N = 10 linearly spaced samples across the chain are stored to form the Q(·) approximation to the
posterior in Eq. 6.

SI-6 The characters in each one-shot classification task

One-shot classification was tested on 10 within-alphabet classification tasks, where the alphabets
were chosen from the evaluation set (Section 3.1). Each task’s images were produced by four rela-
tively typical drawers, and the set of 20 characters was picked to maximize diversity when alphabets
had more than 20 characters. The four drawers were randomly paired to form two groups, and one
drawer in each group provided the test examples for 20 trials while the other drawer provided the 20
training examples for each of these trials.

SI-7 One-shot classification

One-shot classification involves computing the posterior predictive distribution of P (I(T)|I(c)) for
a test image I(T) given a training image I(c). This section shows the derivation of the approximation
that we use to compute the score (see Eq. 8 and Eq. 9 in Section 3.1)

P (I(T)|I(c)) =
∫
P (I(T), θ(T), θ(c), ψ|I(c)) d(ψ, θ(c), θ(T))

=
∫
P (I(T)|θ(T))P (θ(T), θ(c), ψ|I(c)) d(ψ, θ(c), θ(T))

=
∫
P (I(T)|θ(T))[

∫
P (θ(T)|ψ)P (θ(c), ψ|I(c)) d(ψ, θ(c))] dθ(T)

≈
∫
P (I(T)|θ(T))[

∫
P (θ(T)|ψ)Q(θ(c), ψ, I(c)) d(ψ, θ(c))] dθ(T)

=
∫
P (I(T)|θ(T))[

∑K
i=1

wi

N

∑N
j=1 P (θ(T)|ψ[ij])] dθ(T)

=
∑K
i=1 wi

∫
P (I(T)|θ(T)) 1

N

∑N
j=1 P (θ(T)|ψ[ij]) dθ(T)

≈
∑K
i=1 wi max

θ(T)
P (I(T)|θ(T)) 1

N

∑N
j=1 P (θ(T)|ψ[ij]).

5

SI-8 One-shot generation of new examples

This section describes how each model generates new examples, given a single reference image.

HBPL. HBPL is tasked with generating a new example image I(2) given another image I(1), and
thus, it is desirable to produce samples from P (I(2), θ(2)|I(1)). Utilizing the same discrete approxi-
mation Q(·) as with classification (Eq. 6), we derive a distribution that is straightforward to sample
from:

P (I(2), θ(2)|I(1)) =
∫
P (I(2), θ(2)|θ(1), ψ)P (θ(1), ψ|I(1)) d(ψ, θ(1))

=
∫
P (I(2)|θ(2))P (θ(2)|ψ)P (θ(1), ψ|I(1)) d(ψ, θ(1))

≈
∫
P (I(2)|θ(2))P (θ(2)|ψ)Q(θ(1), ψ, I(1)) d(ψ, θ(1))

=
∑K
i=1

∑N
j=1

wi

N P (I(2)|θ(2))P (θ(2)|ψ[ij]).

The HBPL inference algorithm was run to collect K = 10 parses of the image I(1). When using the
above formulation directly, the model would repeatedly sample just the best-scoring parse in most
cases, since even small differences in the parses can lead to massive differences in weights wi due
to the high-dimensional raw data. To avoid dramatically underestimating the variety of parses in the
posterior, the weights wi were set to be inversely proportional to their rank order 1/σ(i), where σ(·)
is the permutation function, or rank of the ith parse when sorted from highest to lowest score. The
new sampling distribution is then

I(2), θ(2)|I(1) ∼ 1∑K
i=1 i

−1

K∑
i=1

1

σ(i)

N∑
j=1

1

N
P (I(2)|θ(2))P (θ(2)|ψ[ij]).

To minimize superficial differences between the model’s samples and people’s drawings, in terms
of scale or low-level image differences, stroke trajectories in both cases were plotted using the same
deterministic renderer. Also, rather than sampling an image transformation A(2), it was manually
set to match a human drawing of the same character.

Affine model. All of the above steps for HBPL were followed, except that none of the token-level
variables are resampled, meaning that P (θ(2)|ψ[ij]) = δ(θ(2) − θ(1)[i]).

HD. Given a single example of a new character, the model quickly approximately infers which
super-class the new character belongs to. Given the super-class parameters, the model samples the
states of the top-level DBM’s features from the HDP prior, followed by computing grayscale pixel
values for the bottom layer of the DBM.

References
[1] G. E. Hinton and V. Nair. Inferring motor programs from images of handwritten digits. In Advances in

Neural Information Processing Systems 19, 2006.
[2] L. Lam, S.-W. Lee, and C. Y. Suen. Thinning Methodologies - A Comprehensive Survey. IEEE Transac-

tions of Pattern Analysis and Machine Intelligence, 14(9):869–885, 1992.
[3] C.-W. Liao and J. S. Huang. Stroke segmentation by bernstein-bezier curve fitting. Pattern Recognition,

23(5):475–484, 1990.
[4] K. Liu, Y. S. Huang, and C. Y. Suen. Identification of Fork Points on the Skeletons of Handwritten Chinese

Characters. IEEE Transactions of Pattern Analysis and Machine Intelligence, 21(10):1095–1100, 1999.

6

	Generating images of characters
	Probabilistic ink model
	Identifying pauses in the drawing data
	Learning high-level knowledge of motor programs
	Inference
	Extracting the character skeleton
	Generating random parses
	Searching for sub-strokes
	Optimization and fine-tuning
	MCMC to estimate local variance

	The characters in each one-shot classification task
	One-shot classification
	One-shot generation of new examples

