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Abstract
We introduce HD (or “Hierarchical-Deep”) models, a new compositional learn-
ing architecture that integrates deep learning models with structured hierarchical
Bayesian models. Specifically we show how we can learn a hierarchical Dirichlet
process (HDP) prior over the activities of the top-level features in a Deep Boltz-
mann Machine (DBM). This compound HDP-DBM model learns to learn novel
concepts from very few training examples, by learning low-level generic features,
high-level features that capture correlations among low-level features, and a cat-
egory hierarchy for sharing priors over the high-level features that are typical of
different kinds of concepts. We present efficient learning and inference algorithms
for the HDP-DBM model and show that it is able to learn new concepts from very
few examples on CIFAR-100 object recognition, handwritten character recogni-
tion, and human motion capture datasets.

1 Introduction
“Learning to learn”, or the ability to learn abstract representations that support transfer to novel
but related tasks, lies at the core of many problems in computer vision, natural language processing,
cognitive science, and machine learning. In typical applications of machine classification algorithms
today, learning curves are measured in tens, hundreds or thousands of training examples. For humans
learners, however, just one or a few examples are often sufficient to grasp a new category and make
meaningful generalizations to novel instances [25, 16]. The architecture we describe here takes a
step towards this “one-shot learning” ability by learning several forms of abstract knowledge that
support transfer of useful representations from previously learned concepts to novel ones.

We call our architectures compound HD models, where “HD” stands for “Hierarchical-Deep”, be-
cause they are derived by composing hierarchical nonparametric Bayesian models with deep net-
works, two influential approaches from the recent unsupervised learning literature with comple-
mentary strengths. Recently introduced deep learning models, including Deep Belief Networks [5],
Deep Boltzmann Machines [14], deep autoencoders [10], and others [12, 11], have been shown to
learn useful distributed feature representations for many high-dimensional datasets. The ability to
automatically learn in multiple layers allows deep models to construct sophisticated domain-specific
features without the need to rely on precise human-crafted input representations, increasingly im-
portant with the proliferation of data sets and application domains.

While the features learned by deep models can enable more rapid and accurate classification learn-
ing, deep networks themselves are not well suited to one-shot learning of novel classes. All units
and parameters at all levels of the network are engaged in representing any given input and are ad-
justed together during learning. In contrast, we argue that one-shot learning of new classes will be
easier in architectures that can explicitly identify only a small number of degrees of freedom (latent
variables and parameters) that are relevant to the new concept being learned, and thereby achieve
more appropriate and flexible transfer of learned representations to new tasks. This ability is the
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hallmark of hierarchical Bayesian (HB) models, recently proposed in computer vision, statistics,
and cognitive science [7, 25, 4, 13] for learning to learn from few examples. Unlike deep networks,
these HB models explicitly represent category hierarchies that admit sharing the appropriate ab-
stract knowledge about the new class’s parameters via a prior abstracted from related classes. HB
approaches, however, have complementary weaknesses relative to deep networks. They typically
rely on domain-specific hand-crafted features [4, 1] (e.g. GIST, SIFT features in computer vision,
MFCC features in speech perception domains). Committing to the a-priori defined feature repre-
sentations, instead of learning them from data, can be detrimental. Moreover, many HB approaches
often assume a fixed hierarchy for sharing parameters [17, 3] instead of learning the hierarchy in an
unsupervised fashion.

In this work we investigate compound HD (hierarchical-deep) architectures that integrate these deep
models with structured hierarchical Bayesian models. In particular, we show how we can learn a hi-
erarchical Dirichlet process (HDP) prior over the activities of the top-level features in a Deep Boltz-
mann Machine (DBM), coming to represent both a layered hierarchy of increasingly abstract fea-
tures, and a tree-structured hierarchy of classes. Our model depends minimally on domain-specific
representations and achieves state-of-the-art one-shot learning performance by unsupervised discov-
ery of three components: (a) low-level features that abstract from the raw high-dimensional sensory
input (e.g. pixels, or 3D joint angles); (b) high-level part-like features that express the distinctive
perceptual structure of a specific class, in terms of class-specific correlations over low-level fea-
tures; and (c) a hierarchy of super-classes for sharing abstract knowledge among related classes. We
evaluate the compound HDP-DBM model on three different perceptual domains. We also illustrate
the advantages of having a full generative model, extending from highly abstract concepts all the
way down to sensory inputs: we can not only generalize class labels but also synthesize new exam-
ples in novel classes that look reasonably natural, and we can significantly improve classification
performance by learning parameters at all levels jointly by maximizing a joint log-probability score.

2 Deep Boltzmann Machines (DBMs)
A Deep Boltzmann Machine is a network of symmetrically coupled stochastic binary units. It con-
tains a set of visible units v ∈ {0, 1}D, and a sequence of layers of hidden units h1 ∈ {0, 1}F1 ,
h2 ∈ {0, 1}F2 ,..., hL ∈ {0, 1}FL . There are connections only between hidden units in adjacent
layers, as well as between visible and hidden units in the first hidden layer. Consider a DBM with
three hidden layers1 (i.e. L = 3). The probability of a visible input v is:
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where h = {h1,h2,h3} are the set of hidden units, and ψ = {W(1),W(2),W(3)} are the model
parameters, representing visible-to-hidden and hidden-to-hidden symmetric interaction terms.

Approximate Learning: Exact maximum likelihood learning in this model is intractable, but effi-
cient approximate learning of DBMs can be carried out by using a mean-field inference to estimate
data-dependent expectations, and an MCMC based stochastic approximation procedure to approx-
imate the model’s expected sufficient statistics [14]. In particular, consider approximating the true
posterior P (h|v;ψ) with a fully factorized approximating distribution over the three sets of hidden
units: Q(h|v;µ) =

∏F1

j=1

∏F2

k=1

∏F3

m=1 q(h
1
j |v)q(h2k|v)q(h3m|v) where µ = {µ1, µ2, µ3} are the

mean-field parameters with q(hli = 1) = µli for l = 1, 2, 3. In this case, we can write down the
variational lower bound on the log-probability of the data, which takes a particularly simple form:

logP (v;ψ) ≥ v>W(1)µ1 + µ1>W(2)µ2 + µ2>W(3)µ2 − logZ(ψ) +H(Q), (2)
where H(·) is the entropy functional. Learning proceeds by finding the value of µ that maximizes
this lower bound for the current value of model parameters ψ, which results in a set of the mean-field
fixed-point equations. Given the variational parameters µ, the model parameters ψ are then updated
to maximize the variational bound using stochastic approximation (for details see [14, 22, 26]).

Multinomial DBMs: To allow DBMs to express more information and introduce more structured
hierarchical priors, we will use a conditional multinomial distribution to model activities of the top-
level units. Specifically, we will use M softmax units, each with “1-of-K” encoding (so that each

1For clarity, we use three hidden layers. Extensions to models with more than three layers is trivial.
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Figure 1: Left: Multinomial DBM model: the top layer represents M softmax hidden units h3, which share the
same set of weights. Middle: A different interpretation: M softmax units are replaced by a single multinomial
unit which is sampled M times. Right: Hierarchical Dirichlet Process prior over the states of h3.

unit contains a set of K weights). All M separate softmax units will share the same set of weights,
connecting them to binary hidden units at the lower-level (Fig. 1). A key observation is that M
separate copies of softmax units that all share the same set of weights can be viewed as a single
multinomial unit that is samples M times [15, 19]. A pleasing property of using softmax units is that
the mathematics underlying the learning algorithm for binary-binary DBMs remains the same.

3 Compound HDP-DBM model
After a DBM model has been learned, we have an undirected model that defines the joint dis-
tribution P (v,h1,h2,h3). One way to express what has been learned is the conditional model
P (v,h1,h2|h3) and a prior term P (h3). We can therefore rewrite the variational bound as:

logP (v) ≥
∑

h1,h2,h3

Q(h|v;µ) logP (v,h1,h2|h3) +H(Q) +
∑
h3

Q(h3|v;µ) logP (h3). (3)

This particular decomposition lies at the core of the greedy recursive pretraining algorithm: we keep
the learned conditional model P (v,h1,h2|h3), but maximize the variational lower-bound of Eq. 3
with respect to the last term [5]. Instead of adding an additional undirected layer, (e.g. a restricted
Boltzmann machine), to model P (h3), we can place a hierarchical Dirichlet process prior over
h3, that will allow us to learn category hierarchies, and more importantly, useful representations
of classes that contain few training examples. The part we keep, P (v,h1,h2|h3), represents a
conditional DBM model, which can be viewed as a two-layer DBM but with bias terms given by the
states of h3:
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3.1 A Hierarchical Bayesian Topic Prior

In a typical hierarchical topic model, we observe a set of N documents, each of which is modeled
as a mixture over topics, that are shared among documents. Let there be K words in the vocabulary.
A topic t is a discrete distribution over K words with probability vector φt. Each document n has
its own distribution over topics given by probabilities θn.

In our compound HDP-DBM model, we will use a hierarchical topic model as a prior over the
activities of the DBM’s top-level features. Specifically, the term “document” will refer to the top-
level multinomial unit h3, and M “words” in the document will represent the M samples, or active
DBM’s top-level features, generated by this multinomial unit. Words in each document are drawn
by choosing a topic t with probability θnt, and then choosing a word w with probability φtw. We
will often refer to topics as our learned higher-level features, each of which defines a topic specific
distribution over DBM’s h3 features. Let h3in be the ith word in document n, and xin be its topic:

θn|π ∼ Dir(απ), φt|τ ∼ Dir(βτ), xin|θn ∼ Mult(θn), h3in|xin, φxin
∼ Mult(φxin

), (5)

where π is the global distribution over topics, τ is the global distribution over K words, and α and
β are concentration parameters.
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Let us further assume that we are presented with a fixed two-level category hierarchy. Suppose that
N documents, or objects, are partitioned into C basic level categories (e.g. cow, sheep, car). We
represent such partition by a vector zb of length N , each entry of which is zbn ∈ {1, ..., C}. We
also assume that our C basic-level categories are partitioned into S super-categories (e.g. animal,
vehicle), represented by by a vector zs of length C, with zsc ∈ {1, ..., S}. These partitions define a
fixed two-level tree hierarchy (see Fig. 1). We will relax this assumption later.

The hierarchical topic model can be readily extended to modeling the above hierarchy. For each
document n that belong to the basic category c, we place a common Dirichlet prior over θn with
parameters π(1)

c . The Dirichlet parameters π(1) are themselves drawn from a Dirichlet prior with
parameters π(2), and so on (see Fig. 1). Specifically, we define the following prior over h3:

π(2)
s |π(3)

g ∼ Dir(α(3)π3
g), for each super-category s=1,..,S (6)

π(1)
c |π

(2)
zsc

∼ Dir(α(2)π
(2)
zsc

), for each basic-category c = 1, .., C

θn|π(1)

zbn
∼ Dir(α(1)π

(1)

zbn
), for each document n = 1, .., N

xin|θn ∼ Mult(θn), for each word i = 1, ..,M

φt|τ ∼ Dir(βτ), h3in|xin, φxin
∼ Mult(φxin

),

where π(3)
g is the global distribution over topics, π(2)

s is the super-category specific and π(1)
c is the

class specific distribution over topics, or higher-level features. These high-level features, in turn,
define topic-specific distribution over h3 features, or “words” in a DBM model.

For a fixed number of topics T , the above model represents a hierarchical extension of LDA. We
typically do not know the number of topics a-priori. It is therefore natural to consider a nonparamet-
ric extension based on the HDP model [21], which allows for a countably infinite number of topics.
In the standard hierarchical Dirichlet process notation, we have

G(3)
g ∼ DP(γ,Dir(βτ)), G(2)

s ∼ DP(α(3), G(3)
g ), G(1)

c ∼ DP(α(2), G
(2)
zsc

), (7)

Gn ∼ DP(α(1), G
(1)

zbn
), φ∗in|Gn ∼ Gn, h3in|φ∗in ∼ Mult(φ∗in),

where Dir(βτ) is the base-distribution, and each φ∗ is a factor associated with a single observa-
tion h3in. Making use of topic index variables xin, we denote φ∗in = φxin (see Eq. 6). Using a
stick-breaking representation we can write: G(3)

g (φ) =
∑∞
t=1 π

(3)
gt δφt

, G(2)
s (φ) =

∑∞
t=1 π

(2)
st δφt

,

G
(3)
c (φ) =

∑∞
t=1 π

(1)
ct δφt

, and Gn(φ) =
∑∞
t=1 θntδφt

that represent sums of point masses. We also
place Gamma priors over concentration parameters as in [21].

The overall generative model is shown in Fig. 1. To generate a sample we first draw M words, or
activations of the top-level features, from the HDP prior over h3 given by Eq. 7. Conditioned on h3,
we sample the states of v from the conditional DBM model given by Eq. 4.

3.2 Modeling the number of super-categories

So far we have assumed that our model is presented with a two-level partition z = {zs, zb}. If,
however, we are not given any level-1 or level-2 category labels, we need to infer the distribution
over the possible category structures. We place a nonparametric two-level nested Chinese Restaurant
Prior (CRP) [2] over z, which defines a prior over tree structures and is flexible enough to learn
arbitrary hierarchies. The main building block of the nested CRP is the Chinese restaurant process,
a distribution on partition of integers. Imagine a process by which customers enter a restaurant with
an unbounded number of tables, where the nth customer occupies a table k drawn from:

P (zn = k|z1, ..., zn−1) = { nk

n− 1 + η
, if nk > 0;

η

n− 1 + η
, if k is new}, (8)

where nk is the number of previous customers at table k and η is the concentration parameter. The
nested CRP, nCRP(η), extends CRP to nested sequence of partitions, one for each level of the tree.
In this case each observation n is first assigned to the super-category zsn using Eq. 8. Its assignment
to the basic-level category zbn, that is placed under a super-category zsn, is again recursively drawn
from Eq. 8. We also place a Gamma prior Γ(1, 1) over η. The proposed model allows for both: a
nonparametric prior over potentially unbounded number of global topics, or higher-level features,
as well as a nonparametric prior that allow learning an arbitrary tree taxonomy.
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4 Inference
Inferences about model parameters at all levels of hierarchy can be performed by MCMC. When the
tree structure z of the model is not given, the inference process will alternate between fixing z while
sampling the space of model parameters, and vice versa.

Sampling HDP parameters: Given category assignment vectors z, and the states of the top-level
DBM features h3, we use posterior representation sampler of [20]. In particular, the HDP sampler
maintains the stick-breaking weights {θ}Nn=1, and {π(1)

c , π
(2)
s , π

(3)
g }; and topic indicator variables x

(parameters φ can be integrated out). The sampler alternatives between: (a) sampling cluster indices
xin using Gibbs updates in the Chinese restaurant franchise (CRF) representation of the HDP; (b)
sampling the weights at all three levels conditioned on x using the usual posterior of a DP2.

Sampling category assignments z: Given current instantiation of the stick-breaking weights, using
a defining property of a DP, for each input n, we have:

(θ1,n, ..., θT,n, θnew,n) ∼ Dir(α(1)π
(1)
zn,1

, ..., α(1)π
(1)
zn,T

, α(1)π(1)
zn,new) (9)

Combining the above likelihood term with the CRP prior (Eq. 8), the posterior over the category
assignment can be calculated as follows:

p(zn|θn, z−n, π(1)) ∝ p(θn|π(1), zn)p(zn|z−n), (10)

where z−n denotes variables z for all observations other than n. When computing the probability of
placing θn under a newly created category, its parameters are sampled from the prior.

Sampling DBM’s hidden units: Given the states of the DBM’s top-level multinomial unit h3, con-
ditional samples from P (h1

n,h
2
n|h3

n,vn) can be obtained by running a Gibbs sampler that alternates
between sampling the states of h1

n independently given h2
n, and vice versa. Conditioned on topic

assignments xin and h2
n, the states of the multinomial unit h3

n for each input n are sampled using
Gibbs conditionals:

P (h3
in|h2

n,h
3
−in,xn) ∝ P (h2

n|h3
n)P (h3

in|xin), (11)

where the first term is given by the product of logistic functions (see Eq. 4):

P (h2|h3) =
∏
l

P (h2l |h3), with P (h2l = 1|h3) =
1

1 + exp
(
−
∑
mW

(3)
lmh

3
m

) , (12)

and the second term P (h3
in) is given by the multinomial: Mult(φxin

) (see Eq. 7, in our conjugate
setting, parameters φ can be further integrated out).

Fine-tuning DBM: More importantly, conditioned on h3, we can further fine-tune low-level DBM
parameters ψ = {W(1),W(2),W(3)} by applying approximate maximum likelihood learning (see
section 2) to the conditional DBM model of Eq. 4. For the stochastic approximation algorithm, as
the partition function depends on the states of h3, we maintain one “persistent” Markov chain per
data point (for details see [22, 14]).

Making predictions: Given a test input vt, we can quickly infer the approximate posterior over h3
t

using the mean-field of Eq. 2, followed by running the full Gibbs sampler to get approximate samples
from the posterior over the category assignments. In practice, for faster inference, we fix learned
topics φt and approximate the marginal likelihood that h3

t belongs to category zt by assuming that
document specific DP can be well approximated by the class-specific DP3 Gt ≈ G(1)

zt (see Fig. 1):

P (h3
t |zt, G(1), φ) =

∫
Gt

P (h3
t |φ,Gt)P (Gt|G(1)

zt
)dGt ≈ P (h3

t |φ,G(1)
zt

), (13)

Combining this likelihood term with nCRP prior P (zt|z−t) (Eq. 8) allows us to efficiently infer
approximate posterior over category assignments4.

2Conditioned on the draw of the super-class DP G(2)
s and the state of the CRF, the posteriors over G(1)

c

become independent. We can easily speed up inference by sampling from these conditionals in parallel.
3We note that G(1)

zt = E[Gt|G(1)
zt ]

4In all of our experimental results, computing this approximate posterior takes a fraction of a second.
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DBM features
1st layer 2nd layer HDP high-level features

Figure 2: A random subset of the 1st, 2nd layer DBM features,
and higher-level class-sensitive HDP features/topics.

1. bed, chair, clock, couch, dinosaur, lawn mower, table,
telephone, television, wardrobe

2. bus, house, pickup truck, streetcar, tank, tractor, train
3. crocodile, kangaroo, lizard, snake, spider, squirrel
4. hamster, mouse, rabbit, raccoon, possum, bear
5. apple, orange, pear, sunflower, sweet pepper
6. baby, boy, girl, man, woman
7. dolphin, ray, shark, turtle, whale
8. otter, porcupine, shrew, skunk
9. beaver, camel, cattle, chimpanzee, elephant
10. fox, leopard, lion, tiger, wolf
11. maple tree, oak tree, pine tree, willow tree
12 flatfish, seal, trout, worm
13 butterfly, caterpillar, snail
14 bee, crab, lobster
15 bridge, castle, road, skyscraper
16 bicycle, keyboard, motorcycle, orchid, palm tree
17 bottle, bowl, can, cup, lamp
18 cloud, plate, rocket 19. mountain, plain, sea
20 poppy, rose, tulip 21. aquarium fish, mushroom
22 beetle, cockroach 23. forest

Figure 3: A typical partition of the 100
basic-level categories

5 Experiments
We present experimental results on the CIFAR-100 [8], handwritten character [9], and human motion
capture recognition datasets. For all datasets, we first pretrain a DBM model in unsupervised fashion
on raw sensory input (e.g. pixels, or 3D joint angles), followed by fitting an HDP prior, which is run
for 200 Gibbs sweeps. We further run 200 additional Gibbs steps in order to fine-tune parameters of
the entire compound HDP-DBM model. This was sufficient to reach convergence and obtain good
performance. Across all datasets, we also assume that the basic-level category labels are given,
but no super-category labels are available. The training set includes many examples of familiar
categories but only a few examples of a novel class. Our goal is to generalize well on a novel class.

In all experiments we compare performance of HDP-DBM to the following alternative models:
stand-alone Deep Boltzmann Machines, Deep Belief Networks [5], “Flat HDP-DBM” model, that
always uses a single super-category, SVMs, and k-NN. The Flat HDP-DBM approach could po-
tentially identify a set of useful high-level features common to all categories. Finally, to evaluate
performance of DBMs (and DBNs), we follow [14]. Note that using HDPs on top of raw sensory in-
put (i.e. pixels, or even image-specific GIST features) performs far worse compared to HDP-DBM.

5.1 CIFAR-100 dataset

The CIFAR-100 image dataset [8] contains 50,000 training and 10,000 test images of 100 object
categories (100 per class), with 32 × 32 × 3 RGB pixels. Extreme variability in scale, viewpoint,
illumination, and cluttered background makes object recognition task for this dataset quite difficult.
Similar to [8], in order to learn good generic low-level features, we first train a two-layer DBM in
completely unsupervised fashion using 4 million tiny images5 [23]. We use a conditional Gaussian
distribution to model observed pixel values [8, 6]. The first DBM layer contained 10,000 binary
hidden units, and the second layer contained M=1000 softmax units, each defining a distribution
over 10, 000 second layer features6. We then fit an HDP prior over h2 to the 100 object classes.

Fig. 2 displays a random subset of the 1st and 2nd layer DBM features, as well as higher-level class-
sensitive features, or topics, learned by the HDP model. To visualize a particular higher-level feature,
we first sample M words from a fixed topic φt, followed by sampling RGB pixel values from the
conditional DBM model. While DBM features capture mostly low-level structure, including edges
and corners, the HDP features tend to capture higher-level structure, including contours, shapes,
color components, and surface boundaries. More importantly, features at all levels of the hierarchy
evolve without incorporating any image-specific priors. Fig. 3 shows a typical partition over 100
classes that our model learns with many super-categories containing semantically similar classes.

We next illustrate the ability of the HDP-DBM to generalize from a single training example of a
“pear” class. We trained the model on 99 classes containing 500 training images each, but only one
training example of a “pear” class. Fig. 4 shows the kind of transfer our model is performing: the
model discovers that pears are like apples and oranges, and not like other classes of images, such as
dolphins, that reside in very different parts of the hierarchy. Hence the novel category can inherit

5The dataset contains random images of natural scenes downloaded from the web
6We also experimented with a 3-layer DBM model, as well as various softmax parameters: M = 500 and

M = 2000. The difference in performance was not significant.
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Figure 4: Left: Training examples along with eight most probable topics φt, ordered by hand. Right: Perfor-
mance of HDP-DBM, DBM, and SVMs for all object classes when learning with 3 examples. Object categories
are sorted by their performance.

CIFAR Dataset Handwritten Characters Motion Capture
Number of examples Number of examples Number of examples

Model 1 3 5 10 50 1 3 5 10 1 3 5 10 50

Tuned HDP-DBM 0.36 0.41 0.46 0.53 0.62 0.67 0.78 0.87 0.93 0.67 0.84 0.90 0.93 0.96
HDP-DBM 0.34 0.39 0.45 0.52 0.61 0.65 0.76 0.85 0.92 0.66 0.82 0.88 0.93 0.96
Flat HDP-DBM 0.27 0.37 0.42 0.50 0.61 0.58 0.73 0.82 0.89 0.63 0.79 0.86 0.91 0.96
DBM 0.26 0.36 0.41 0.48 0.61 0.57 0.72 0.81 0.89 0.61 0.79 0.85 0.91 0.95
DBN 0.25 0.33 0.37 0.45 0.60 0.51 0.72 0.81 0.89 0.61 0.79 0.84 0.92 0.96
SVM 0.18 0.27 0.31 0.38 0.61 0.41 0.66 0.77 0.86 0.54 0.78 0.84 0.91 0.96
1-NN 0.17 0.18 0.19 0.20 0.32 0.43 0.65 0.73 0.81 0.58 0.75 0.81 0.88 0.93
GIST 0.27 0.31 0.33 0.39 0.58 - - - - - - - -

Table 1: Classification performance on the test set using 2*AUROC-1. The results in bold correspond to ROCs
that are statistically indistinguishable from the best (the difference is not statistically significant).

the prior distribution over similar high-level shape and color features, allowing the HDP-DBM to
generalize considerably better to new instances of the “pear” class.

Table 1 quantifies performance using the area under the ROC curve (AUROC) for classifying 10,000
test images as belonging to the novel vs. all other 99 classes (we report 2*AUROC-1, so zero cor-
responds to the classifier that makes random predictions). The results are averaged over 100 classes
using “leave-one-out” test format. Based on a single example, the HDP-DBM model achieves an
AUROC of 0.36, significantly outperforming DBMs, DBNs, SVMs, as well as 1-NN using standard
image-specific GIST features [24] that achieve an AUROC of 0.26, 0.25, 0.18 and 0.27 respectively.
Table 1 also shows that fine-tuning parameters of all layers jointly as well as learning super-category
hierarchy significantly improves model performance. As the number of training examples increases,
the HDP-DBM model still consistently outperforms alternative methods. Fig. 4 further displays per-
formance of HDP-DBM, DBM, and SVM models for all object categories when learning with only
three examples. Observe that over 40 classes benefit in various degrees from learning a hierarchy.

5.2 Handwritten Characters

The handwritten characters dataset [9] can be viewed as the “transpose” of MNIST. Instead of con-
taining 60,000 images of 10 digit classes, the dataset contains 30,000 images of 1500 characters (20
examples each) with 28× 28 pixels. These characters are from 50 alphabets from around the world,
including Bengali, Cyrillic, Arabic, Sanskrit, Tagalog (see Fig. 5). We split the dataset into 15,000
training and 15,000 test images (10 examples of each class). Similar to the CIFAR dataset, we pre-
train a two-layer DBM model, with the first layer containing 1000 hidden units, and the second layer
containing M=100 softmax units, each defining a distribution over 1000 second layer features.

Fig. 2 displays a random subset of training images, along with the 1st and 2nd layer DBM features,
as well as higher-level class-sensitive HDP features. The HDP features tend to capture higher-level
parts, many of which resemble pen “strokes”. Table 1 further shows results for classifying 15,000
test images as belonging to the novel vs. all other 1,499 character classes. The HDP-DBM model
significantly outperforms other methods, particularly when learning characters with few training
examples. Fig. 6 further displays learned super-classes along with examples of entirely novel char-
acters that have been generated by the model for the same super-class, as well as conditional samples
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Training samples
DBM features

1st layer 2nd layer HDP high-level features

Figure 5: A random subset of the training images along with 1st and 2nd layer DBM features, as well as
higher-level class-sensitive HDP features/topics.

Learned Super-Classes (by row) Sampled Novel Characters
Learning with 3 examples

Training Examples Conditional Samples

Figure 6: Left: Learned super-classes along with examples of novel characters, generated by the model for
the same super-class. Right: Three training examples along with 8 conditional samples.

when learning only with three training examples. (we note that using Deep Belief Networks instead
of DBMs produced far inferior generative samples). Remarkably, many samples look realistic, con-
taining coherent, long-range structure, while at the same time being different from existing training
images (see Supplementary Materials for a much richer class of generated samples).

5.3 Motion capture

We next applied our model to human motion capture data consisting of sequences of 3D joint angles
plus body orientation and translation [18]. The dataset contains 10 walking styles, including normal,
drunk, graceful, gangly, sexy, dinosaur, chicken, old person, cat, and strong. There are 2500 frames
of each style at 60fps, where each time step was represented by a vector of 58 real-valued numbers.
The dataset was split at random into 1500 training and 1000 test frames of each style. We further
preprocessed the data by treating each window of 10 consecutive frames as a single 58 ∗ 10 = 580-
d data vector. For the two-layer DBM model, the first layer contained 500 hidden units, with the
second layer containing M=50 softmax units, each defining a distribution over 500 second layer
features. As expected, Table 1 shows that the HDP-DBM model performs much better compared
to other models when discriminating between existing nine walking styles vs. novel walking style.
The difference is particularly large in the regime when we observe only a handful number of training
examples of a novel walking style.

6 Conclusions
We developed a compositional architecture that learns an HDP prior over the activities of top-level
features of the DBM model. The resulting compound HDP-DBM model is able to learn low-level
features from raw sensory input, high-level features, as well as a category hierarchy for parameter
sharing. Our experimental results show that the proposed model can acquire new concepts from
very few examples in a diverse set of application domains. The compositional model considered in
this paper was directly inspired by the architecture of the DBM and HDP, but it need not be. Indeed,
any other deep learning module, including Deep Belief Networks, sparse auto-encoders, or any
other hierarchical Bayesian model can be adapted. This perspective opens a space of compositional
models that may be more suitable for capturing the human-like ability to learn from few examples.
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