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Abstract

Markov random fields (MRFs) are difficult to
evaluate as generative models because comput-
ing the test log-probabilities requires the in-
tractable partition function. Annealed impor-
tance sampling (AIS) is widely used to estimate
MRF partition functions, and often yields quite
accurate results. However, AIS is prone to over-
estimate the log-likelihood with little indication
that anything is wrong. We present the Re-
verse AIS Estimator (RAISE), a stochastic lower
bound on the log-likelihood of an approximation
to the original MRF model. RAISE requires only
the same MCMC transition operators as standard
AIS. Experimental results indicate that RAISE
agrees closely with AIS log-probability estimates
for RBMs, DBMs, and DBNs, but typically errs
on the side of underestimating, rather than over-
estimating, the log-likelihood.

1 Introduction

In recent years, there has been a resurgence of interest in
learning deep representations due to the impressive perfor-
mance of deep neural networks across a range of tasks.
Generative modeling is an appealing method of learning
representations, partly because one can directly evaluate
a model by measuring the probability it assigns to held-
out test data. Restricted Boltzmann machines (RBMs;
Smolensky, 1986) and deep Boltzmann machines (DBMs;
Salakhutdinov and Hinton, 2009) are highly effective at
modeling various complex visual datasets (e.g. Salakhutdi-
nov and Murray, 2008; Salakhutdinov and Hinton, 2009).
Unfortunately, measuring their likelihood exactly is in-
tractable because it requires computing the partition func-
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tion of a Markov random field (MRF).

Annealed importance sampling (AIS; Neal, 2001) has
emerged as the state-of-the-art algorithm for estimating
MRF partition functions, and is widely used to evaluate
MRFs as generative models (Salakhutdinov and Murray,
2008; Theis et al., 2011). AIS is a consistent estimator
of the partition function (Neal, 2001), and often performs
very well in practice. However, it has a property which
makes it unreliable: it tends to underestimate the parti-
tion function, which leads to overly optimistic measures
of the model likelihood. In some cases, it can overesti-
mate the log-likelihood by tens of nats (e.g. Grosse et al.,
2013), and one cannot be sure whether impressive test log-
probabilities result from a good model or a bad partition
function estimator. The difficulty of evaluating likelihoods
has led researchers to propose alternative generative mod-
els for which the log-likelihood can be computed exactly
(Larochelle and Murray, 2011; Poon and Domingos, 2011)
or lower bounded (Gregor et al., 2014; Mnih and Gregor,
2014), but RBMs and DBMs remain the state-of-the-art for
modeling complex data distributions.

Bengio et al. (2013) highlighted the problem of optimistic
RBM log-likelihood estimates and proposed a pessimistic
estimator based on nonparametric density estimation. Un-
fortunately, they reported that their method tends to under-
estimate log-likelihoods by tens of nats on standard bench-
marks, which is insufficient accuracy since the difference
between competing models is often on the order of one nat.

We introduce the Reverse AIS Estimator (RAISE), an al-
gorithm which computes conservative estimates of MRF
log-likelihoods, but which achieves similar accuracy to AIS
in practice. In particular, consider an approximate genera-
tive model defined as the distribution of approximate sam-
ples computed by AIS. Using importance sampling with a
carefully chosen proposal distribution, RAISE computes a
stochastic lower bound on the log-likelihood of the approx-
imate model. RAISE is simple to implement, as it requires
only the same MCMC transition operators as standard AIS.

We evaluated RAISE by using it to estimate test log-
1Authors contributed equally
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probabilities of several RBMs, DBMs, and Deep Belief
Networks (DBNs). The RAISE estimates agree closely
with the true log-probabilities on small RBMs where the
partition function can be computed exactly. Furthermore,
they agree closely with the standard AIS estimates for full-
size RBMs, DBMs, and DBNs. Since one estimate is opti-
mistic and one is pessimistic, this agreement is an encour-
aging sign that both estimates are close to the correct value.
Our results suggest that AIS and RAISE, used in conjunc-
tion, can provide a practical way of estimating MRF test
log-probabilities.

2 Background

2.1 Restricted Boltzmann Machines

While our proposed method applies to general MRFs, we
use as our running example a particular type of MRF
called the restricted Boltzmann machine (RBM; Smolen-
sky, 1986). An RBM is an MRF with a bipartite structure
over a set of visible units v = (v1, . . . , vNv ) and hidden
units h = (h1, . . . , hNh

). In this paper, for purposes of
exposition, we assume that all of the variables are binary
valued. In this case, the distribution over the joint state
{v,h} can be written as f(v,h)/Z , where

f(v,h) = exp
(
a>v + b>h+ v>Wh

)
, (1)

and a, b, and W denote the visible biases, hidden biases,
and weights, respectively. The weights and biases are the
RBM’s trainable parameters.

To train the RBM’s weights and biases, one can max-
imize the log-probability of a set of training examples
v
(1)
tr , . . . ,v

(Mtr)
tr . Since the log-likelihood gradient is in-

tractable to compute exactly, it is typically approximated
using contrastive divergence (Hinton, 2002) or persistent
contrastive divergence (Tieleman, 2008). The performance
of the RBM is then measured in terms of the average log-
probability of a set of test examples v(1)

test, . . . ,v
(Mtest)
test .

It remains challenging to evaluate the probability p(v) =
f(v)/Z of an example. The unnormalized probability
f(v) =

∑
h f(v,h) can be computed exactly since the

conditional distribution factorizes over the hj . However,
Z is intractable to compute exactly, and must be approxi-
mated.

RBMs can also be extended to deep Boltzmann machines
(Salakhutdinov and Hinton, 2009) by adding one or more
additional hidden layers. For instance, the joint distribution
of a DBM with two hidden layers h1 and h2 can be written
as f(v,h1,h2)/Z , where

f(v,h1,h2) = exp
(
a>v + b>1 h1 + b>2 h2+

+v>W1h1 + h>1 W2h2

)
. (2)

DBMs can be evaluated similarly to RBMs. The main
difference is that the unnormalized probability f(v) =

∑
h1,h2

f(v,h1,h2) is intractable to compute exactly.
However, Salakhutdinov and Hinton (2009) showed that,
in practice, the mean-field approximation yields an accu-
rate lower bound. Therefore, similarly to RBMs, the main
difficulty in evaluating DBMs is estimating the partition
function.

RBMs are also used as building blocks for training Deep
Belief Networks (DBNs; Hinton et al., 2006). For example,
a DBN with two hidden layers h1 and h2 is defined as the
probability distribution

p(v,h1,h2) = p2(h1,h2)p1(v |h1), (3)

where p2(h1,h2) is the probability distribution of an
RBM, and p1(v |h1) is a product of independent lo-
gistic units. The unnormalized probability f(v) =∑

h1,h2
p1(v |h1)f2(h1,h2) cannot be computed analyt-

ically, but can be approximated using importance sampling
or a variational lower bound that utilizes a recognition dis-
tribution q(h1 |v) approximating the posterior p(h1 |v)
(Hinton et al., 2006).

2.2 Partition Function Estimation

Often we have a probability distribution ptgt(x) =
ftgt(x)/Ztgt (which we call the target distribution) defined
on a space X , where ftgt(x) can be computed efficiently
for a given x ∈ X , and Ztgt is an intractable normalizing
constant. There are two particular cases which concern us
here. First, ptgt may correspond to a Markov random field
(MRF), such as an RBM, where ftgt(x) denotes the prod-
uct of all potentials, andZtgt =

∑
x ftgt(x) is the partition

function of the graphical model.

The second case is where one has a directed graphical
model with latent variables h and observed variables v.
Here, the joint distribution p(h,v) = p(h)p(v |h) can be
tractably computed for any particular pair (h,v). However,
one often wants to compute the likelihood of a test exam-
ple p(vtest) =

∑
h p(h,vtest). This can be placed in the

above framework with

ftgt(h) = p(h)p(vtest |h) and Ztgt = p(vtest). (4)

Mathematically, the two partition function estimation prob-
lems outlined above are closely related, and the same
classes of algorithms are applicable to each. However, they
differ in terms of the behavior of approximate inference al-
gorithms in the context of model selection. In particular,
many algorithms, such as annealed importance sampling
(Neal, 2001) and sequential Monte Carlo (del Moral et al.,
2006), yield unbiased estimates Ẑtgt of the partition func-
tion, i.e. E[Ẑtgt] = Ztgt. Jensen’s Inequality shows that
such an estimator tends to underestimate the log partition
function on average:

E[log Ẑtgt] ≤ logE[Ẑtgt] = logZtgt. (5)
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Algorithm 1 Annealed Importance Sampling
for i = 1 to M do

x0 ← sample from p0(x) = fini(x)/Zini

w(i) ← Zini

for k = 1 to K do
w(i) ← w(i) fk(xk−1)

fk−1(xk−1)

xk ← sample from Tk (· |xk−1)
end for

end for
return Ẑtgt =

∑M
i=1 w

(i)/M

In addition, Markov’s inequality shows that it is unlikely to
substantially overestimate logZtgt:

Pr(log Ẑtgt > logZtgt + b) < e−b. (6)

For these reasons, we will refer to the estimator as a
stochastic lower bound on logZtgt.

In the MRF situation, Ztgt appears in the denominator, so
underestimates of the log partition function translate into
overestimates of the log-likelihood. This is problematic,
since inaccurate partition function estimates can lead one to
dramatically overestimate the performance of one’s model.
This problem has led researchers to consider alternative
generative models where the likelihood can be tractably
computed. By contrast, in the directed case, the parti-
tion function is the test log-probability (4), so underesti-
mates correspond to overly conservative measures of per-
formance. For example, the fact that sigmoid belief net-
works (Neal, 1992) have tractable lower (rather than upper)
bounds is commonly cited as a reason to prefer them over
RBMs and DBMs (e.g. Mnih and Gregor, 2014).

We note that it is possible to achieve stronger tail bounds
than (6) by combining multiple unbiased estimates in clever
ways (Gogate et al., 2007).

2.3 Annealed Importance Sampling

Annealed importance sampling (AIS) is an algorithm
which estimates Ztgt by gradually changing, or “anneal-
ing,” a distribution. In particular, one must specify a
sequence of K + 1 intermediate distributions pk(x) =
fk(x)/Zk for k = 0, . . .K, where pini(x) = p0(x) is
a tractable initial distribution, and ptgt(x) = pK(x) is
the intractable target distribution. For simplicity, assume
all distributions are strictly positive on X . For each pk,
one must also specify an MCMC transition operator Tk
(e.g. Gibbs sampling) which leaves pk invariant. AIS alter-
nates between MCMC transitions and importance sampling
updates, as shown in Algorithm 1.

The output of AIS is an unbiased estimate Ẑtgt ofZtgt. Im-
portantly, unbiasedness is not an asymptotic property, but
holds for anyK (Neal, 2001; Jarzynski, 1997). Neal (2001)
demonstrated this by viewing AIS as an importance sam-
pling estimator over an extended state space. In particular,

define the distributions

qfwd(x0:K−1) = p0(x0)

K−1∏
k=1

Tk(xk |xk−1) (7)

frev(x0:K−1) = ftgt(xK−1)
K−1∏
k=1

T̃k(xk−1 |xk), (8)

where T̃k(x′ |x) = Tk(x |x′)pk(x′)/pk(x) is the reverse
transition operator for Tk. Here, qfwd represents the se-
quence of states generated by AIS, and frev is a fictitious
(unnormalized) reverse chain which begins with an exact
sample from ptgt and applies the transitions in reverse or-
der. Neal (2001) showed that the AIS weights correspond
to the importance weights for frev with qfwd as the proposal
distribution.

The mathematical formulation of AIS leaves much flexibil-
ity for choosing intermediate distributions. The choice of
distributions can have a large effect on the performance of
AIS (Grosse et al., 2013), but the most common choice is
to take geometric averages of the initial and target distribu-
tions:

pβ(x) = fβ(x)/Z(β) = fini(x)
1−βftgt(x)

β/Z(β), (9)

where 0 = β0 < β1 < ... < βK = 1 defines the an-
nealing schedule. Commonly, fini is the uniform distribu-
tion, and (9) reduces to pβ(x) = ftgt(x)

β/Z(β). This
motivates the term “annealing”, and β resembles an in-
verse temperature parameter. As in simulated annealing,
the “hotter” distributions often allow faster mixing between
modes which are isolated in ptgt. Geometric averages are
widely used because they often have a simple form; for in-
stance, the geometric average of two RBMs is obtained by
linearly averaging the weights and biases. The values of
β can be spaced evenly between 0 and 1, although other
schedules have been explored (Neal, 1996; Behrens et al.,
2012; Calderhead and Girolami, 2009).

3 Reverse AIS Estimator
A significant difficulty in evaluating MRFs is that it is in-
tractable to compute the partition function. Furthermore,
the commonly used algorithms, such as AIS, tend to over-
estimate the log-likelihood. If we cannot hope to obtain
provably accurate partition function estimates, it would be
far preferable for algorithms to underestimate, rather than
overestimate, the log-likelihoods. This would save us from
the embarrassment of reporting unrealistically high test
log-probability scores for a given dataset. In this section,
we define an approximate generative model which becomes
equivalent to the MRF in the limit of infinite computation.
We then present a procedure for obtaining unbiased esti-
mates of the probability of a test example (and therefore
a stochastic lower bound on the test log-probability) under
the approximate model.
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Algorithm 2 Reverse AIS Estimator (RAISE)
for i = 1 to M do

hK ← sample from ptgt(h |vtest)

w(i) ← ftgt(vtest)/Z0

for k = K − 1 to 0 do
xk ← sample from T̃k (· |xk+1)

w(i) ← w(i) fk(xk)
fk+1(xk)

end for
end for
return p̂ann(vtest) =

∑M
i=1 w

(i)/M

3.1 Case of Tractable Posterior

In this section, we denote the model state as x = (v,h),
with v observed and h unobserved. Let us first assume
the conditional distribution ptgt(h |v) is tractable, as is the
case for RBMs. Define the following generative process,
which corresponds to the sequence of transitions in AIS:

pfwd(x0:K) = p0(x0)
K∏
k=1

Tk(xk |xk−1). (10)

By taking the final visible states of this process, we obtain
a generative model (which we term the annealing model)
which approximates ptgt(v):

pann(vK) =
∑

x0:K−1,hK

pfwd(x0:K−1,hK ,vK). (11)

Suppose we are interested in estimating the probability of
a test example vtest. We use as a proposal distribution a re-
verse chain starting from vtest. In the annealing metaphor,
this corresponds to gradually “melting” the distribution:

qrev(x0:K−1,hK |vtest) = ptgt(hK |vtest)
K∏
k=1

T̃k(xk−1 |xk),

where we identify vk = vtest, and T̃k(x
′ |x) =

Tk(x |x′)pk(x′)/pk(x) is the reverse transition operator
for Tk. We then obtain the following identity:

pann(vtest) = Eqrev

[
pfwd(x0:K−1,hK ,vtest)

qrev(x0:K−1,hK |vtest)

]
= Eqrev

[
p0(x0)

ptgt(hK |vtest)

K∏
k=1

Tk(xk |xk−1)

T̃k(xk−1 |xk)

]

= Eqrev

[
p0(x0)

ptgt(hK |vtest)

K∏
k=1

fk(xk)

fk(xk−1)

]

= Eqrev

[
p0(x0)

ptgt(hK |vtest)

ftgt(xK)

f0(x0)

K−1∏
k=0

fk(xk)

fk+1(xk)

]

= Eqrev

[
fK(vtest)

Z0

K−1∏
k=0

fk(xk)

fk+1(xk)

]
, Eqrev [w] . (12)

This yields the following algorithm: generate M samples
from qrev, and average the values w defined in (12). There

is no need to store the full chains, since the weights can be
updated online. We refer to this algorithm as the Reverse
AIS Estimator, or RAISE. The full algorithm is given in
Algorithm 2. We note that RAISE is straightforward to
implement, as it requires only the same MCMC transition
operators as standard AIS.

Our derivation (12) mirrors the derivation of AIS by Neal
(2001). The difference is that in AIS, the reverse chain is
merely hypothetical; in RAISE, the reverse chain is simu-
lated, and it is the forward chain which is hypothetical.

By (12), the weights w are an unbiased estimator of the
probability pann(vtest). Therefore, following the discus-
sion of Section 2.2, logw is a stochastic lower bound on
log pann(vtest). Furthermore, since pann converges to ptgt
in probability as K → ∞ (Neal, 2001), we would heuris-
tically expect RAISE to yield a conservative estimate of
log ptgt(vtest). This is not strictly guaranteed, however;
RAISE may overestimate log ptgt(vtest) for finite K if
pann(vtest) > ptgt(vtest), which is possible if the AIS ap-
proximation somehow attenuates pathologies in the origi-
nal MRF. (One such example is described in Section 5.1.)
However, since RAISE is a stochastic lower bound on the
log-probabilities under the annealing model, we can strictly
rule out the possibility of RAISE reporting unrealistically
high test log-probabilities for a given dataset, a situation
frequently observed with AIS.

3.2 Extension to Intractable Posterior Distributions

Because Algorithm 2 begins with an exact sample from
the conditional distribution ptgt(h |vtest), it requires that
this distribution be tractable. However, many models of
interest, such as DBMs, have intractable posterior distribu-
tions. To deal with this case, we augment the forward chain
with an additional heating step, such that the conditional
distribution in the final step is tractable, but the distribu-
tion over v agrees with that of pann in (11). We make the
further (weak) assumption that p0(h |v) is tractable. Let
T

(v)
k denote an MCMC transition operator which preserves
pk(v,h), but does not change v. For example, it may cy-
cle through Gibbs updates to all variables except v. The
forward chain then has the following distribution:

pfwd(x0:K ,h
′
0:K−1) = p0(x0)

K∏
k=1

Tk(xk |xk−1)

K−1∏
k=0

T
(vK)
k (h′k |h′k+1),

where we identify h′K = hK . The reverse distribution is
given by:

qrev(x0:K−1,hK ,h
′
0:K−1 |vtest) =

p0(h
′
0 |vtest)

K−1∏
k=0

T̃
(vtest)
k (h′k+1 |h′k)

K∏
k=1

T̃k(xk−1 |xk).
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Figure 1: A schematic of RAISE for intractable distributions, applied to DBMs. Green: generative model. Blue: proposal distribution.
At the top is shown which distribution the variables at each step are meant to approximate.

Algorithm 3 RAISE with intractable posterior
for i = 1 to M do

h′0 ← sample from p0(h |vtest)

w(i) ← p0(vtest)
for k = 1 to K do

h′k ← sample from T̃
(vtest)
k (· |h′k−1)

w(i) ← w(i) fk(h
′
k,vtest)

fk−1(h
′
k
,vtest)

end for
for k = K − 1 to 0 do

xk ← sample from T̃k (· |xk+1)

w(i) ← w(i) fk(xk)
fk+1(xk)

end for
end for
return p̂ann(vtest) =

∑M
i=1 w

(i)/M

The unbiased estimator is derived similarly to that of Sec-
tion 3:

w ,
pfwd(x0:K−1,hK ,vtest,h

′
0:K−1)

qrev(x0:K−1,hK ,h′0:K−1 |vtest)
(13)

= p0(vtest)
K−1∏
k=0

fk(xk)

fk+1(xk)

K∏
k=1

fk(h
′
k,vtest)

fk−1(h′k,vtest)

The full algorithm is shown in Algorithm 3, and a
schematic for the case of DBMs is shown in Figure 1.

3.3 Interpretation as Unrolling

Hinton et al. (2006) showed that the Gibbs sampling pro-
cedure for a binary RBM could be interpreted as generat-
ing from an infinitely deep sigmoid belief net with shared
weights. They used this insight to derive a greedy training
procedure for Deep Belief Nets (DBNs), where one unties
the weights of a single layer at a time. Furthermore, they
observed that one could perform approximate inference in
the belief net using the transpose of the generative weights
to compute a variational approximation.

We note that, for RBMs, RAISE can similarly be viewed
as a form of unrolling: the annealed generative model pann
can be viewed as a belief net with K + 1 layers. Further-
more, the RAISE proposal distribution can be viewed as
using the transpose of the weights to perform approximate
inference. (The difference from approximate inference in
DBNs is that RAISE samples the units rather than using the
mean-field approximation).

This interpretation of RAISE suggests a method of apply-

Figure 2: RAISE applied to a DBN unrolled into a very deep sig-
moid belief net, for K = 1000 intermediate distributions. Green:
generative model. Blue: proposal distribution.

ing it to DBNs. The generative model is obtained by un-
rolling the RBM on top of the directed layers as shown in
Figure 2. The proposal distribution uses the transposes of
the DBN weights for each of the directed layers. The rest
is the same as the ordinary RAISE for the unrolled part of
the model.

4 Variance Reduction using Control
Variates

One of the virtues of log-likelihood estimation using AIS
is its speed: the partition function need only be estimated
once. RAISE, unfortunately, must be run separately for ev-
ery test example. We would therefore prefer to compute the
RAISE estimate for only a small number of test examples.
Unfortunately, subsampling the test examples introduces a
significant source of variability: as different test examples
can have wildly different log-likelihoods2, the estimate of
the average log-likelihood can vary significantly depending
which batch of examples is selected. We attenuate this vari-
ability using the method of control variates (Ross, 2006), a
variance reduction technique which has also been applied
to black-box variational inference (Ranganath et al., 2014).

If Y1, . . . , Yn are independent samples of a random variable
Y , then the sample average 1

n

∑n
i=1 Yi is an unbiased es-

timator of E [Y ] with variance Var [Y ] /n. If X is another
random variable (which ideally is both cheap to compute

2This effect can be counterintuitively large due to different
complexities of different categories; e.g., for the mnistCD25-500
RBM, the average log-likelihood of handwritten digits “1” was
56.6 nats higher than the average log-likelihood of digits “8”.
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and highly correlated with Y ), then for any scalar α,

1

n

n∑
i=1

(Yi − αXi) +
α

N

N∑
i=1

Xi (14)

is an unbiased estimator of E [Y ] with variance

Var [Y − αX]

n
+ α2Var [X]

N
+ 2α

Cov [Y − αX,X]

n
.

In our experiments, Y is the RAISE estimate of the log-
probability of a test example, and X is the (exact or es-
timated) log unnormalized probability under the original
MRF. Since the unnormalized probability under the MRF
is significantly easier to evaluate than the log-probability
under the annealing model, we can let N to be much larger
than n; we set n = 100 and let N be the total number of
test examples. Since the annealing model is an approxi-
mation to the MRF, the two models should assign similar
log-probabilities, so we set α = 1. Hence we expect the
variance of Y −X to be smaller than the variance of Y , and
thus (14) to have a significantly smaller variance than the
sample average. Empirically, we have found that Y − X
has significantly smaller variance than Y , even when the
number of intermediate distributions is relatively small.

5 Experimental Results
We have evaluated RAISE on several MRFs to determine
if its log-probability estimates are both accurate and con-
servative. We compared our estimates against those ob-
tained from standard AIS. We also compared against the
exact log-probabilities of small models for which the parti-
tion function can be computed exactly (Salakhutdinov and
Murray, 2008). AIS is expected to overestimate the true
log-probabilities while RAISE is expected to underestimate
them. Hence, a close agreement between the two estima-
tors would be a strong indication of accurate estimates.

We considered two datasets: (1) the MNIST handwritten
digit dataset (LeCun et al., 1998), which has long served as
a benchmark for both classification and density modeling,
and (2) the Omniglot dataset (Lake et al., 2013), which con-
tains images of handwritten characters across many world
alphabets.3

Both AIS and RAISE can be used with any sequence of
intermediate distributions. For simplicity, in all of our ex-
periments, we used the geometric averages path (9) with
linear spacing of the parameter β. We tested two choices
of initial distribution pini: the uniform distribution, and the
data base rate (DBR) distribution (Salakhutdinov and Mur-
ray, 2008), where all units are independent, all hidden units

3We used the standard split of MNIST into 60,000 training and
10,000 test examples and a random split of Omniglot into 24,345
training and 8,070 test examples. In both cases, the inputs are
28× 28 binary images.

mnistPCD-20

mnistCD1-20

mnistCD1-500

mnistPCD-500

mnistCD25-500

mnistDBN

mnistDBM

omniPCD-1000

Number of intermediate distributions

A
v
e
ra

g
e
 t

e
st

 s
e
t

lo
g

 p
ro

b
a
b

ili
ty

Figure 3: RAISE estimates of average test log-probabilities us-
ing uniform pini. The log-probability estimates tend to increase
with the number of intermediate distributions, suggesting that
RAISE is a conservative estimator.

are uniform, and the visible biases are set to match the aver-
age pixel values in the training set. In all cases, our MCMC
transition operator was Gibbs sampling.

We estimated the log-probabilities of a random sample of
100 examples from the test set using RAISE and used the
method of control variates (Sec. 4) to estimate the aver-
age log-probabilities on the full test dataset. For RBM ex-
periments, the control variate was the RBM log unnormal-
ized probability, log f(v), whereas for DBMs and DBNs,
we used an estimate based on simple importance sampling
as described below. For each of the 100 test examples,
RAISE was run with 50 independent chains, while the AIS
partition function estimates used 5,000 chains; this closely
matched the computation time per intermediate distribution
between the two methods. Each method required about 1.5
hours with the largest number of intermediate distributions
(K = 100,000).

5.1 Restricted Boltzmann Machines

We considered models trained using two algorithms: con-
trastive divergence (CD; Hinton, 2002) with both 1 and
25 CD steps, and persistent contrastive divergence (PCD;
Tieleman, 2008). We will refer to the RBMs by the dataset,
training algorithm, and the number of hidden units. For ex-
ample, “mnistCD25-500” denotes an RBM with 500 hid-
den units, trained on MNIST using 25 CD steps. The
MNIST trained RBMs are the same ones evaluated by
Grosse et al. (2013). We also provide comparisons to the
Conservative Sampling-based Log-likelihood (CSL) esti-
mator of Bengio et al. (2013).4

Figure 3 shows the average RAISE test log-probability es-
timates for all of the RBMs as a function of the number of
intermediate distributions. In all of these examples, as ex-
pected, the estimated log-probabilities tended to increase

4The number of chains and number of Gibbs steps for CSL
were chosen to match the total number of Gibbs steps required by
RAISE and AIS for K = 100,000.
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uniform data base rates
Model exact CSL RAISE AIS gap RAISE AIS gap
mnistCD1-20 -164.50 -185.74 -165.33 -164.51 0.82 -164.11 -164.50 -0.39
mnistPCD-20 -150.11 -152.13 -150.58 -150.04 0.54 -150.17 -150.10 0.07
mnistCD1-500 — -566.91 -150.78 -106.52 44.26 -124.77 -124.09 0.68
mnistPCD-500 — -138.76 -101.07 -99.99 1.08 -101.26 -101.28 -0.02
mnistCD25-500 — -145.26 -88.51 -86.42 2.09 -86.39 -86.35 0.04
omniPCD-1000 — -144.25 -100.47 -100.45 0.02 -100.46 -100.46 0.00

Table 1: RAISE and AIS average test log-probabilities using 100,000 intermediate distributions and both choices of pini. CSL: the
estimator of Bengio et al. (2013). gap: the difference AIS− RAISE

(a) uniform (b) data base rates

Figure 4: AIS and RAISE estimates of mnistCD1-500 average
test log-probabilities have a significant gap when annealing from
a uniform initial distribution. However, they agree closely when
annealing from the data base rates.

with the number of intermediate distributions, consistent
with RAISE being a conservative log-probability estima-
tor.

Table 1 shows the final average test log-probability esti-
mates obtained using CSL as well as both RAISE and AIS
with 100,000 intermediate distributions. In all of the trials
using the DBR initial distribution, the estimates of AIS and
RAISE agreed to within 1 nat, and in many cases, to within
0.1 nats. The CSL estimator, on the other hand, underesti-
mated log ptgt by tens of nats in almost all cases, which is
insufficient accuracy since well-trained models often differ
by only a few nats.

We observed that the DBR initial distribution gave consis-
tently better agreement between the two methods compared
with the uniform distribution, consistent with the results
of Salakhutdinov and Murray (2008). The largest discrep-
ancy, 44.26 nats, was for mnistCD1-500 with uniform pini;
with DBR, the two methods differed by only 0.68. Figure 4
plots both estimates as a function of the number of initial
distributions. In the uniform case, one might not notice the
inaccuracy only by running AIS, as the AIS estimates may
appear to level off. One could be tricked into reporting re-
sults that are tens of nats too high! By contrast, when both
methods are run in conjunction, the inaccuracy of at least
one of the methods becomes obvious.

As discussed in Section 3.1, RAISE is a stochastic lower
bound on the log-likelihood of the annealing model pann,
but not necessarily of the RBM itself. When pann is a good
approximation to the RBM, RAISE gives a conservative es-
timate of the RBM log-likelihood. However, it is possible
for RAISE to overestimate the RBM log-likelihood if pann
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Figure 5: The mnistCD1-20 RBM, where we observed RAISE
to overestimate the RBM’s test log-probabilities. Left: Average
test log-probability estimates as a function of K. Top right: 10
independent samples from the RBM. Bottom right: 10 indepen-
dent samples from the annealing model pann with 10 intermediate
distributions. The pann samples, while poor, show greater diver-
sity compared to the RBM samples, consistent with pann better
matching the data distribution.

models the data distribution better than the RBM itself, for
instance if the approximation attenuates pathologies of the
RBM. We observed a single instance of this in our RBM
experiments: the mnistCD1-20 RBM, with the data base
rate initialization. As shown in Figure 5, the RAISE es-
timates exceeded the AIS estimates for small K, and de-
clined as K was increased. Since RAISE gives a stochastic
lower bound on log pann and AIS gives a stochastic upper
bound on log ptgt, this inversion implies that pann signif-
icantly outperformed the RBM itself. Indeed, the RBM
(mistakenly) assigned 93% of its probability mass to a sin-
gle hidden configuration, while the RAISE model spreads
its probability mass among more diverse configurations.

In all of our other RBM experiments, the AIS and RAISE
estimates with DBR initialization andK = 100,000 agreed
to within 0.1 nats. Figure 6 shows one such case, for an
RBM trained on the challenging Omniglot dataset.

Overall, the RAISE and AIS estimates using DBR initial-
ization agreed closely in all cases, and RAISE gave conser-
vative estimates in all but one case, suggesting that RAISE
typically gives accurate and conservative estimates of RBM
test log-probabilities.

5.2 Deep Boltzmann Machines

We used RAISE to estimate the average test log-
probabilities of two DBM models trained on MNIST and
Omniglot. The MNIST DBM has 2 hidden layers of size
500 and 1000, and the Omniglot DBM has 2 hidden layers
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AIS estimates
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Figure 6: Left: AIS and RAISE estimates of omniPCD-1000
RBM average test log-probabilities with annealing from a uni-
form initial distribution Top right: 32 training samples from
Omniglot training set Bottom right: 32 independent samples
from the omniPCD-1000 RAISE model with 100,000 intermedi-
ate distributions.

uniform data base rates
Model RAISE AIS gap RAISE AIS gap
MNIST DBM -85.69 -85.72 -0.03 -85.74 -85.67 0.07
Omniglot DBM -104.48 -110.86 -6.38 -102.64 -103.27 -0.63
MNIST DBN -84.67 -84.49 0.18 — — —
Omniglot DBN -100.78 -100.45 0.33 — — —

Table 2: Test log-probability estimates for deep models with
K = 100,000. gap: the difference AIS− RAISE

each of size 1000. As with RBMs, we ran RAISE on 100
random test examples and used the DBM log unnormal-
ized probability, log f(v), as a control variate. To obtain
estimates of the DBM unnormalized probability f(v) =∑

h1,h2
f(v,h1,h2) we used simple importance sampling

f(v) = Eq
(
f(v,h2)
q(h2 |v)

)
with 500 samples, where the pro-

posal distribution q was the mean-field approximation to
the conditional distribution p(h2 |v). The term f(v,h2)
was computed by summing out h1 analytically, which is
efficient because the conditional distribution factorizes.5

We compared the RAISE estimates to those obtained us-
ing AIS. All results for K = 100,000 are shown in Ta-
ble 2, and the estimates for the MNIST DBN are plotted as
a function of K in Figure 7. All estimates for the MNIST
DBM with K = 100,000 agreed quite closely, which is a
piece of evidence in favor of the accuracy of the estimates.
Furthermore, RAISE provided conservative estimates of
log-probabilities for small K, in contrast with AIS, which
gave overly optimistic estimates. For the Omniglot DBM,
RAISE overestimated the DBM log-probabilities by at least
6 nats, implying that the annealing model fit the data distri-
bution better than the DBM, analogously to the case of the
mnistCD1-20 RBM discussed in Section 5.1. This shows
that RAISE does not completely eliminate the possibility
of overestimating an MRF’s test log-probabilities.

5.3 Deep Belief Networks

In our final set of experiments, we used RAISE to esti-
mate the average test log-probabilities of DBNs trained on

5Previous work (e.g. Salakhutdinov and Hinton, 2009) esti-
mated log f(v) using the mean-field lower bound. We found im-
portance sampling to give more accurate results in the context of
AIS. However, it made less difference for RAISE, where the log
unnormalized probabilities are merely used as a control variate.

Figure 7: Average test log-probability estimates for MNIST
models as a function of K. Left: the DBM. Right: the DBN.

MNIST and Omniglot. The MNIST DBN had two hid-
den layers of size 500 and 2000, and the Omniglot DBN
had two hidden layers each of size 1000. For the ini-
tial distribution p0 we used the uniform distribution, as
the DBR distribution is not defined for DBNs. To ob-
tain estimates of DBN unnormalized probabilities f(v) =∑

h1
p(v |h1)f(h1) we used importance sampling f(v) =

Eq
(
p(v |h1)f(h1)
q(h1 |v)

)
with 500 samples, where q was the

DBN recognition distribution (Hinton et al., 2006).

All results for K = 100,000 are shown in Table 2, and
Figure 7 shows the estimates for the MNIST DBN as a
function of K. For both DBNs, RAISE and AIS agreed
to within 1 nat for K = 100,000, and RAISE gave conser-
vative log-probability estimates for all values of K.

5.4 Summary

Between our RBM, DBM, and DBN experiments, we com-
pared 10 different models using both uniform and data
base rate initial distributions. In all but two cases (the
mnistCD1-20 RBM and the Omniglot DBN), RAISE gave
estimates at or below the smallest log-probability estimates
produced by AIS, suggesting that RAISE typically gives
conservative estimates. Furthermore, in all but one case
(the Omniglot DBM), the final RAISE estimate agreed with
the lowest AIS estimate to within 1 nat, suggesting that it
is typically accurate.

6 Conclusion

In this paper, we presented RAISE, a stochastic lower
bound on the log-likelihood of an approximation to an
MRF model. Our experimental results show that RAISE
typically produces accurate, yet conservative, estimates of
log-probabilities for RBMs, DBMs, and DBNs. More im-
portantly, by using RAISE and AIS in conjunction, one can
judge the accuracy of one’s results by measuring the agree-
ment of the two estiatmators.
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