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INPUTY

@ GOAL:make F(Y;W) lower around areas of high data density
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F(Y)




Energy-Based Model Framework

INPUTY

@ GOAL:make F(Y;W) lower around areas of high data density

@ Train the parameters of the model by minimizing a loss



Energy-Based Model Framework

INPUTY

@ GOAL:make F(Y;W) lower around areas of high data density

@ Train the parameters of the model by minimizing a loss

L(W)=F (Y ;W)



Energy-Based Model Framework

INPUTY

@ GOAL:make F(Y;W) lower around areas of high data density

@ Train the parameters of the model by minimizing a loss

rr L( ;W)

NOT A GOOD LOSS IN GENERAL!!




Energy-Based Model Framework

INPUTY

& Use contrastive loss

L(W)=L(F(Y;W),F(Y;W))
@ L(a,b): increasing fn of a, decreaasing fn of b
F(Y)
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Energy-Based Model Framework

INPUTY

& Use contrastive loss

L(W)=L(F(Y;W),F(Y;W))

F(Y)
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& Probabilistic View:

» Produce a probability density
function that:

» has high value in regions of
high sample density

» has low value everywhere else
(integral = 1).

& Energy-Based View:

» produce an energy function
E(Y,W) that:

» has low value in regions of high
sample density

» has high(er) value everywhere
else

Yann LeCun
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Energy <-> Probability

=

E(Y,W) x —log P(Y|W)
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_The Intractable Normalization Problem
[ —

& Example: Image Patches

& Learning:

» Make the energy of every “natural image” patch low
» Make the energy of everything else high!

AE(Y)

o—BE(Y.W)

P(Yﬁ H-") — fy o—BE(y,W)

Yann LeCun
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Training an Energy-Based Model to Approximate a Density

RN R———— ——————

make this big A P(Y)

—BE(Y,W) A
PY W) = J, e PRI +¢ : ** v

make this small

Maximizing P(YIW) on training samples l

Minimizing -log P(Y,W) on training samples

1
L(Y,W)=E(Y,W)+ Blog / —pEww) | A
Y

“ ! SR
make this small make this big T
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& Gradient of the negative log-likelihood loss for one sample Y:

OL(Y,W) _OE(Y,W) / . (y|W)8E(y, W)

oW oW oW v
@ Gradient descent: AE(Y)
OL(Y, W) l
AR
Pushes down on the Pulls up on the Y B . >
energy of the samples  energy of low-energy Y's

I

OE(Y, W) OE(y, W)
W — W | P(ylW
[ n /y (y|W) P

Yann LeCun




Solving The Intractable Normalization problem

& Probabilistic unsupervised learning is hard

» Pushing up on the energy of every points in regions of low data
density is often impractical.

& Solution 1: contrastive divergence [Hinton 2000]

» Only push up on points that are not to far from the training
samples, and only on those points that have low energy. These
points are obtained from the training samples through MCMC.

» This makes a “groove” in the energy surface around the data
manifold.

& Solution 2: MAIN INSIGHT'! [Ranzato, ..., LeCun AI-Stat 2007]

» Restrict the information content of the code (features) Z

» |If the code Z can only take a few different configurations, only a
correspondingly small number of Ys can be perfectly reconstructed

» ldea: impose a sparsity prior on Z
» This is reminiscent of sparse coding [Olshausen & Field 1997]

Yann LeCun
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_Contrastive Divergence Trick [Hinton 2000]

[ R—————————

& push down on the energy of the training
sample Y

& Pick a sample of low energy Y' near the
training sample, and pull up its energy
» this digs a trench in the energy Y,T >

surface around the training samples

DE(Y,W)  OE(Y',W)
ow T aw

T

Pulls up on the energy Y'

W —W—n

Pushes down on the energy
of the training sample Y

Yann LeCun
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_Contrastive Divergence Trick [Hinton 2000]

[ R—————————

& push down on the energy of the training
sample Y

& Pick a sample of low energy Y' near the
training sample, and pull up its energy A

» this digs a trench in the energy
surface around the training samples

DE(Y,W)  OE(Y',W)
ow T aw

T

Pulls up on the energy Y'

W —W—n

Pushes down on the energy
of the training sample Y

Yann LeCun
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Energy-Based Model Framework

INPUTY

& Use contrastive loss

» e.g. maximum likelihood learning

» generally intractable and expensive in high dimensions

L(W)=L(F(Y;W),F(Y;W))



Energy-Based Model Framework

INPUTY
JOINT ENERGY E(Y;Z;W)
CODE Z

@ Restrict information content of internal representation
» assume that input 1s reconstructed from code

* inference determines the value of Z and F(Y ;W)
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Energy-Based Model Framework

INPUTY
JOINT ENERGY E(Y;Z;W)
CODE Z

@ Restrict information content of internal representation

» assume that input 1s reconstructed from code

* inference determines the value of Z and F(Y ;W)

CODE Z
INPUT Y ————- Encoder %’ Decoder —>
-

Cost

Reconstruction

+—P Error

(ENERGY)

If Z 1s constrained, we can simply train by minimizing the energy

loss over the training set:

L(W)=F (Y ;W)
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The Encoder/Decoder Architecture

@ Each stage is composed of [Hinton 05, Bengio 06, LeCun 06, Ng 07]

» an encoder that produces a feature vector from the input

» a decoder that reconstruct the input from the feature vector
@ PCA is a special case (linear encoder and decoder)

RECONSTRUCTION

ERROR
, Decoder
Distance ,
(basis fns)

Encoder
(predictor)

INPUT FEATURES

Yann LeCun
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‘ Deep Learning: Stack of Encoder/Decoders
I ——— =

N ———— |

& Train each stage one after the other

& 1. Train the first stage

, Decoder
Distance ,
basis fns

bredictor

t New York University

Yann LeCun



— —— e ——————

_Deep Learning: Stack of Encoder/Decoders

mm

& Train each stage one after the other

& 2. Remove the decoder. and train the second Stage

, Decoder
Distance ,
basis fns

bredictor bredictor

t New York University

Yann LeCun
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Deep Learning: Stack of Encoder/Decoders
RO~

& Train each stage one after the other
@ 3. Remove the 2" stage decoder, and train a supervised classifier on top

& 4. Refine the entire system with supervised learning
» e.g. using gradient descent / backprop

Classifier,

bredictor bredictor

Yann LeCun
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4raiig an Encoder/Decoder Module
RO«

& Define the Energy F(Y) as the reconstruction error
» Example: F(Y) = || Y - Decoder(Encoder(Y)) ||?

& Probabilistic Training, given a training set (Y1, Y2.......)

» Interpret the energy F(Y) as a -log P(Y) (unnormalized)
» Train the encoder/decoder to maximize the prob of the data

& Train the encoder/decoder so that:
» F(Y) is small in regions of high data density (good reconstruction)
» F(Y) is large in regions of low data density (bad reconstruction)

RECONSTRUCTION
ERROR E(Y)

Encoder
(predictor)

INPUT FEATURES

t New York University

Yann LeCun



E(X,Z) = Dist[X,Dec(Z)] + Dist[Z,Enc(X)] + Reg(Z)

F(X)=MIN_z E(X,Z) or F(X)=-log SUM_z exp(-E(X,z))

Regularization

Distance
(Reconstruction
error)

Encoder
(predictor)
RBM 1is a special case:
Enc(X) = W.X, Dist(Z,W.X)=72'W.X

Dec(Z)=W'Z, Dist(X,W'X)=XW.Z

Yann LeCun

Rectification

Normalization

Pooling

Distance
(Code pred.
error)




: The Main Insight [Ranzato et al. 2007]

& If the information content of the feature vector is limited (e.g. by
imposing sparsity constraints), the energy MUST be large in most of the
space.

» pulling down on the energy of the training samples will
necessarily make a groove

& The volume of the space over which the energy is low is limited by the
entropy of the feature vector

» Input vectors are reconstructed from feature vectors.

» |f few feature configurations are possible, few input vectors can
be reconstructed properly

Yann LeCun

t New York University
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e Training sample

e Input vector which is NOT a training sample

e Feature vector

INPUT SPACE
®
® ® ®
o
®
° ®
® ®

Yann LeCun

'* hy Limit the Information Content of the Code?
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FEATURE
SPACE




y Limit the Information Content of the Code?

w

e Training sample

e Input vector which is NOT a training sample

e FKFeature vector

Training based on minimizing the reconstruction error over

the training set

INPUT SPACE .
o ®
®
® e
® o

lllllllllllllllllllll

Yann LeCun
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SPACE
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‘Why Limit the I

[ R ——

|

e Training sample

e Input vector which is NOT a training sample

e FKFeature vector

BAD: machine does not learn structure from training data!!

It just copies the data.

INPUT SPACE
O
O o
O
O
O © O
@ O
Yann LeCun
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FEATURE
SPACE
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_Why Limit the Information Content of the Code?

e Training sample
e Input vector which is NOT a training sample

e FKFeature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
? SPACE
@ ® () @
o o
(] @
@ ® @ ®
@ @ ([

Yann LeCun
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e Training sample

e Input vector which is NOT a training sample

e FKFeature vector

'* hy Limit the Information Content of the Code?

IDEA: reduce number of available codes.

INPUT SPACE

lllllllllllllllllllllllllllllllllllllll

Yann LeCun
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Why Limit the Information Content of the Code?

[ ——— ——

e Training sample
e Input vector which is NOT a training sample

e FKFeature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
° SPACE
@
@
P ———e o
@ @ @

Yann LeCun
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1.5

@ 2 dimensional toy dataset
» Mixture of 3 Cauchy distrib.

0.5

@ Visualizing energy surface
(black = low, white = high)

-0.5

|
o 0.5

T *peA autoencoder sparse coding K-Means

nde uni pde units nde uni

Y —WZ|?

pull-up dimens. part. func. sparsity

decoder
energy

WZ
Y —WZ|IP+A|Z

WZ
Y —WZ|J

Y —WZ|?

1-of-N code




@ 2 dimensional toy dataset
» spiral

; @ Visualizing energy surface
(black = low, white = high)

‘ *"PCA ‘autoencoder sparse coding K-Means

nde 1uni nde uni ) code units ) code uni

energy Y —wz |

pull-up dimens. dimens. sparsity [-of-N code




‘ Sparsity Penalty to Restrict the Code

& We are going to impose a sparsity penalty on the code to restrict its
information content.

& We will allow the code to have higher dimension than the input

& Categories are more easily separable in high-dim sparse feature spaces
» This is a trick that SVM use: they have one dimension per sample

& Sparse features are optimal when an active feature costs more than an
inactive one (zero).

» e.g. neurons that spike consume more energy
» The brain is about 2% active on average.

Yann LeCun

t New York University



.Sparse Decomposition with Linear Reconstruction

[Olshausen and Field 1997]
@ Energy(Input,Code) = || Input — Decoder(Code) II* + Sparsity(Code)

& Energy(Input) = Min_over_Code[ Energy(Input,Code) ]

Dbserved Latent
Input Y Decoder Code Z

t“%

# ™, Reconstr. of
*.  input
v uzf,:<—<fd(2) -V,

[}
“l

» Energy: minimize to infer Z
E(Y,Z':W)=|Y'-W,Z'|[+A > |7
) ’ - v d <
i . I ]
F(Y;W)=min E(Y',z; W)
» Loss: minimize to learn W (the columns of W are constrained to have norm 1)

L(W):Zi F(Y ;W):Zi (min , E(Y',Z'; W))

t New York University

Yann LeCun




Problem with Sparse Decomposition: It's slow

& Inference: Optimal_Code = Arg_Min_over_Code[ Energy(Input,Code) ]
E(Y,Z W)=Y =w,Z| +a 2. |2
F(Y;W)=min E(Y',z; W)

Zi=argminZE (Y', z;, W)

» For each new Y, an optimization algorithm must be run to find the
corresponding optimal Z

» This would be very slow for large scale vision tasks
» Also, the optimal Z are very unstable:

¢ A small change in Y can cause a large change in the optimal Z

Yann LeCun

t New York University



Solution: Predictive Sparse Decomposition (PSD)

[Kavukcuoglu, Ranzato, LeCun, 2009]
& Prediction the optimal code with a trained encoder

& Energy = reconstruction_error + code_prediction_error + code_sparsity
E(Y,Z W)=Y =w, ZIP+1Z' = f,(Y)IF+a 2. |2]
f . (Y')=Dtanh(W,Y)

Prediction of

f,(Y) =D tanh(W, Y)

Observed s f
Input Y Reconstr. o

"«.’ ’,‘n i n p u t
1Y - £4Z) 12

L)
o
L)

* ’h..

Yann LeCun
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' PSD: Inference

& Inference by gradient descent starting from the encoder output

E(Y,Z W)=Y =w, ZIP+|Z' = f,(Y) P+ 2 |2]

Z'=argmin E(Y', z; W)

Prediction of
cod

f,(Y) =D tanh(W, Y)

Observed s f
Input Y Reconstr. o

"«.’ ’,‘n i n p u t
LY B2

L)
o
L)

o’h..

Yann LeCun

t New York University



& Learning by minimizing the average energy of the training data with
respect to Wd and We.

@ Loss function: L(W)=Zi F (Yi : W)
F(Y ;W)=min E(Y',z; W)

Prediction of
cod

f,(Y) =D tanh(W, Y)

Observed s f
Input Y Reconstr. o

"«.’ ’,‘n i n p u t
LY B2

L)
o
L)

o’h..

Yann LeCun

t New York University



PSD: Learning Algorithm

Prediction of

4 1.(Y) =D tanh(W, Y) I Z-£,(Y) I,
Latent
‘~’ Code Z
Observed s e
I n p u t Y .0'.’ .'00. Re cons t F. Of 1°’. * *
.'t’.' %4,‘ i n p u t ‘o"’+’ ‘..io
> | Y -£{2) I f(Z)=W,Z |- r VA

& 1. Initialize Z = Encoder(Y)

& 2. Find Z that minimizes the energy function

& 3. Update the Decoder basis functions to reduce reconstruction error
& 4. Update Encoder parameters to reduce prediction error

& Repeat with next training sample

Yann LeCun

t New York University
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Decoder Basis Functions on MNIST

» PSD trained on handwritten digits: decoder filters are ‘‘parts” (strokes).

¢ Any digit can be reconstructed as a linear combination of a small number of
these “parts”.

Yann LeCun * New York University
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PSD Training on Natural Image Patches

m‘__n—;_,_A —

———

& Basis functions are like Gabor filters (like receptive fields in V1 neurons)

o 256 filters of size 12x12

& Trained on natural image
patches from the Berkeley
dataset

& Encoder is linear-tanh-
diagonal

Yann LeCun
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Classification Error Rate on MNIST

& Supervised Linear Classifier trained on 200 trained sparse features
» Red: linear-tanh-diagonal encoder; Blue: linear encoder

R 10 Samples 100 Samples 1000 Samples
= (i [T Tewinicrg a5 : : . o :
= tJ1zarg
=== Twining
== "arirg Ape e ok

R 2
B. .
n il
# a& £ .
& & &
& " [
O 1A (IR i
£ ? £
o i b

t
e

-5 i i
H (8] o ) L] a7 .2 e 0 1E . e
RIGE ANGE FIREE

Yann LeCun
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Classification Error Rate on MNIST
Mﬁaﬁ‘m

& Supervised Linear Classifier trained on 200 trained sparse features

10 samples 100 samples 1000 samples
[+ FAIN trsin : - ' + : : Raw pixels ' : '
RAW st ' - ' ' : -
4 Ef 10 + . S 5 . . +PCA S
n PCA Irsin B
A PN 3 o L
‘ ® : o i - -
o SN fhal . . .
-4-GEShite Ry ﬂ i e o Sparse
- . 19 ' \ '
o REM: brsin .
4 REH: Ll e # # : Features
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5t . } 1 I
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_Learned Features on natural patches: V1-like receptive fields

[ S—— IR—|

Yann LeCun
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Learned Features: V1-like receptive fields

o 12x12 filters
& 1024 filters

Yann LeCun * New York University



-— e

_How well d PSD features work on Caltech-101?

& Recognition Architecture

Filter Non- Spatial o
—> —> » (lassifier |—»

Bank Linearity| |Pooling

SVM

| oo EEEE )

Yann LeCun

t New York University



Procedure for a single-stage system

mﬁ%k;-i— = = - = 7

& 1. Pre-process images
» remove mean, high-pass filter, normalize contrast

& 2. Train encoder-decoder on 9x9 image patches

& 3. use the filters in a recognition architecture

» Apply the filters to the whole image

» Apply the tanh and D scaling

» Add more non-linearities (rectification, normalization)
» Add a spatial pooling layer

& 4. Train a supervised classifier on top
» Multinomial Logistic Regression or Pyramid Match Kernel SVM

Filter Non- Spatial o
—>> —>> » C(Classifier |—»

Bank Linearity] |Pooling

Yann LeCun

t New York University
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Using PSD Features for Recognition

& 64 filters on 9x9 patches trained with PSD
» with Linear-Sigmoid-Diagonal Encoder

Yann LeCun

welghts (-0,25828 — 00,3043

t New York University



Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
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Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
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Local Contrast
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Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?
+ N Normalization layer: needed?

Pinto, Cox and DiCarlo, PloS 08
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Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

+ P Pooling down-sampling layer: average or max?

Pooling Down-
Sampling Layer



Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

+ P Pooling down-sampling layer: average or max?

H




Feature Extraction

+ C  Convolution/sigmoid layer: filter bank? Learning, fixed Gabors?
¥ Abs Rectification layer: needed?

+ N Normalization layer: needed?

+ P Pooling down-sampling layer: average or max?

H

THIS IS ONE STAGE OF FEATURE EXTRACTION




Training Protocol
@ Training

@ Logistic Regression on Random Features: R

@ Logistic Regression on PSD features: U

@ Refinement of whole net from random with backprop: R+
@ Refinement of whole net starting from PSD filters: U+

* Classifier
@ Multinomial Logistic Regression or Pyramid Match Kernel SVM




64.F s — R/N/P5%3] - log reg

R/N/P | Rue—N-Pa | Rupo—Pa [N-Py [N-Ps| Pa
Ut 54.2% 50.0% 44.3% 18.5% 14.5%
R* 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.0% | 433(£1.6)% | 440% | 17.2% |  13.4%
R 53.3% 3.7% | 321% | 153% | 12.1(+2.2)%
64.F 50, — R/N/P*®] - PMK
U 65.0%
96.F % — R/N/P5*%| - PCA - lin_svm
U 58.0%

96.Gabors - PCA - lin_svim (Pinto and DiCarlo 2006)

Gabors 59.0%
SIFT - PMK (Lazebnik et al. CVPR 2006)

Gabors 64.6%

Yann LeCun




Using PSD Features for Recognition
e —— R NNNNNNN——————

& Rectification makes a huge difference:

» 14.5% -> 50.0%, without normalization
» 44.3% -> 54.2% with normalization

& Normalization makes a difference:
» 50.0 - 54.2

& Unsupervised pretraining makes small difference
& PSD works just as well as SIFT

& Random filters work as well as anything!
» If rectification/normalization is present

& PMK_SVM classifier works a lot better than multinomial log_reg on low-

level features
» 52.2% - 65.0%

Yann LeCun t New York University




Comparing Optimal Codes Predicted Codes on Caltech 101
N S R RANNNNNNNNn——————

& Approximated Sparse Features Predicted by PSD give better recognition
results than Optimal Sparse Features computed with Feature Sign!
» PSD features are more stable.

53

8 o
— N

Average Accuracy per Class (%)
0
-

49 ............................................................................................................ -e- PSD Predictor H
—©—Regressor
48 ............................................................................................................... _e_ FS
47 ; | —©=PSD Optimal
0 0.05 0.1 0.15

llllll

Sparsity Penalty per Code Unit

0.2

Feature Sign (FS)
1S an optimization
methods for
computing

sparse codes
[Lee...Ng 2006]

t New York University



_PSD Features are more stable

& Approximated Sparse Features Predicted by PSD give better recognition
results than Optimal Sparse Features computed with Feature Sign!

& Because PSD features are more stable. Feature obtained through sparse
optimization can change a lot with small changes of the input.

Feature Sign PSD PSD Random

P(0]0) 0.99 | | | P(0]0) 1.00 P(0]0) 0.98 | | |
P(|) 0.60 | e e P(|) 0.94 1 P({|) 0.54 | g S -
P(+|+) 0.5 I RIS 1 P(+[+) 0.95 1 P(+[+) 0.59 | s
P(0]#) 0.4 — B o S— P0]#) 0.05 ! p(ojs) 041 — B o S— _
P(0]-) 0.40 ISR e 1 P(0]) 0.0 : ; | 1 P(0]) 0.45 [ e :
P(+{0) 0.01} o R 1 P(#[0) 0.00f oo e e P(+{0) 0.01} oo e e
P(0) 0.01} e v Ju— P(0) 0.00 o et P0) 0.00F — o a—
P(+) 0.007 e e st PR 0.00f e e e P+ 0.01] e e e
PLI#) 0.00] ............... ............... R— PLI#) 0000 ............... ______________ L P 000f ............... ______________ ]
0 025 05 075 1 0 025 05 075 1 0 025 05 075 1

How many features change sign in patches from successive

video frames (a,b), versus patches from random frame pairs (c)

Yann LeCun

t New York University



_PSD features are much cheaper to compute
[ — S-S |

& Computing PSD features is hundreds of times cheaper than Feature Sign.

80

Yann LeCun

t New York University



_How Many 9x9 PSD features do we need?
[ — -S|

& Accuracy increases slowly past 64 filters.
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Tralnlng a Multi-Stage Hubel Wiesel Archltecture with PSD

mﬁm“,__l -

Filter] | Non- | |Spatial F1lte Non- | |Spatial o
Classifier
Bank | Linearity] Pooling ank inearity] Pooling

& 1. Train stage-1 filters with PSD on patches from natural images

& 2. Compute stage-1 features on training set

o 3. Train state-2 filters with PSD on stage-1 feature patches
& 4. Compute stage-2 features on training set

& 5. Train linear classifier on stage-2 features

& 6. Refine entire network with supervised gradient descent

& What are the effects of the non-linearities and unsupervised pretraining?

Yann LeCun

t New York University
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& Image Preprocessing:
» High-pass filter, local contrast normalization (divisive)

& First Stage:

» Filters: 64 9x9 kernels producing 64 feature maps
» Pooling: 10x10 averaging with 5x5 subsampling

& Second Stage:

» Filters: 4096 9x9 kernels producing 256 feature maps
» Pooling: 6x6 averaging with 3x3 subsampling
» Features: 256 feature maps of size 4x4 (4096 features)

& Classifier Stage:
» Multinomial logistic regression

& Number of parameters:
» Roughly 750,000

Yann LeCun

t New York University
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R/N/P¥ - log reg

R/NP|Raps=N-Py | Raps—Pa | N-Py |N-Py4 Pa
UrU* 65.5% 60.5% 6L0% | 34.0% 32.0%
RR" 64.7% 59.5% 60.0% | 31.0% 2.7h
U 63.77% 16.7% 56.0% | 23.1% 0.1%
RR | 60% | 337(+L5)% | ST6(+L9% | 1067 $87
GT X

64.F e, - R/N/P®5] - 256 F g - R/N] - PMK
UU 52.8%
HMAX: |Gabors-R/ Py |- Templates-R/ Py |-lin_svm (Serre 2005)(Mutch-Lowe 2006)
GT 56.0%

Yann LeCun
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Two-Stage Result Analysis
[ — —

& Second Stage + logistic regression = PMK_SVM

& Unsupervised pre-training doesn't help much :-(

& Random filters work amazingly well with normalization
& Supervised global refirnement helps a bit

& The best system is really cheap

& Either use rectification and average pooling or no rectification and max
pooling.

Yann LeCun t New York University
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Multistage Hubel-Wiesel Architecture: Filters

b—-______

& Stage 1

& After PSD

weights -0,2232 - 0,20750

& After supervised refinement

weights 3-0,28258 - 0,32043

& Stage2 "
i

weights $-0,0929 - 0,0734

weights $-0,0772 - 0,064

Yann LeCun

t New York University



Why Random Filters Work?
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Small NORB dataset

@ 5 classes and up to 24,300 training samples per class

g




@ Architecture

@ Two Stages

Error Rate (log scale) VS. Number Training Samples (log scale)

error rate
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_Learning Invariant Features [ Kavukcuoglu et al. CYPR 2009]

& Unsupervised PSD ignores the spatial pooling step.
& Could we devise a similar method that learns the pooling layer as well?

& Idea [Hyvarinen & Hoyer 2001]: sparsity on pools of features
» Minimum number of pools must be non-zero
» Number of features that are on within a pool doesn't matter
» Polls tend to regroup similar features

,
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cod
»1f(Y)=D MWP" Z- 1Y) I, >
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. e oD Y

0 b serv Ed ol ."."«'.

Input Y & ™. Reconstr. of
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> 1V-(D 1 2)=W,L |~ >

O 4
)
ot ¥

Yann LeCun

t New York University



. Learning the filters and the pools

& Using an idea from Hyvarinen: topographic square pooling (subspace ICA)
» 1. Apply filters on a patch (with suitable non-linearity)
» 2. Arrange filter outputs on a 2D plane
» 3. square filter outputs
» 4. minimize sqgrt of sum of blocks of squared filter outputs

K
Cwverall Sparsity term: 2 By, V_z
i=1 '

[

% v, —Jé I('q.mrz):’1 vi ZJEZ (wjzj)l
% T

% “‘ aussian
0 NN\, N\ \Window
= ot e m e “
D P. ‘ Map of

D ' features

D L ¥

Units in the code Z  Define pools and enforce sparsity across
Yann LeCun pOOlS

t New York University
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Learning the filters and the pools
————

& The filters arrange
themselves spontaneously so
that similar filters enter the
same pool.

& The pooling units can be seen
as complex cells

transformations of the input IH

» For some it's translations,
for others rotations, or
other transformations.

Yann LeCun

t New York University
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Pinwheels?
| —
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.Invariance Properties Compared to SIFT
| — . EE—————————————————wr

& Measure distance between feature vectors (128 dimensions) of 16x16
patches from natural images

» Left: normalized distance as a function of translation

» Right: normalized distance as a function of translation when one
patch is rotated 25 degrees.

& Topographic PSD features are more invariant than SIFT
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& Recognition Architecture
» ->HPF/LCN->filters->tanh->sqr->pooling->sqrt->Classifier
» Block pooling plays the same role as rectification

Input
image

Yann LeCun

nig Pool 1
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unsupervised invariant feature extractor
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Object
: | f‘ Category
o=
supervised
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t New York University
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» A/B Comparison with SIFT (128x34x34 descriptors)

» 32x16 topographic map with 16x16 filters

» Pooling performed over 6x6 with 2x2 subsampling

» 128 dimensional feature vector per 16x16 patch

» Feature vector computed every 4x4 pixels (128x34x34 feature maps)
» Resulting feature maps are spatially smoothed

Method Av. Accuracy/Class (%)
local norms. 5 + boxcars .5 + PCAgggo + linear SVM
IPSD (24x24) 50.9
SIFT (24x24) (non rot. 1nv.) 51.2
SIFT (24x24) (rot. inv.) 45.2
Serre et al. features [25] 47.1
local normg .. g + Spatial Pyramid Match Kernel SVM
SIFT [11] 64.6
IPSD (34x34) 59.6
IPSD (56x56) 62.6
vannl IPSD (120x120) 65.5 T,
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