a factor model for learning higher-order features in natural images

yan karklin (nyu + hhmi)

joint work with mike lewicki (case western reserve u)

icml workshop on learning feature hierarchies - june 18, 2009

non-linear processing in the early visual system

estimated linear receptive field

contrast/size response function

cat LGN (DeAngelis, Ohzawa, Freeman 1995)

cat LGN (Carandini 2004)

(Schwartz and Simoncelli, 2001)

non-linear statistical dependencies in natural images

a generative model for covariance matrices

multivariate Gaussian model

$$\mathbf{x} \sim \mathcal{N}(0, \mathbf{C})$$

latent variables specify the covariance

$$C = f(y)$$

a distributed code

if only we could find a basis for covariance matrices...

a distributed code

if only we could find a basis for covariance matrices...

use the *matrix-logarithm transform* $\exp(\mathbf{A}) = \mathbf{I} + \sum \mathbf{A}^k/k!$

$$\exp(\mathbf{A}) = \mathbf{I} + \sum \mathbf{A}^k / k$$

$$\boxed{\log \mathbf{C}} = \mathbf{y}_1 \boxed{\mathbf{A}_1} + \mathbf{y}_2 \boxed{\mathbf{A}_2} + \mathbf{y}_3 \boxed{\mathbf{A}_3} + \mathbf{y}_4 \boxed{\mathbf{A}_4} + \dots$$

$$C = \exp(\sum A_j y_j)$$

$$y = 0 \rightarrow C = I$$

a compact parameterization for cov-components

find *common directions of change* in variation/correlation

a compact parameterization for cov-components

find *common directions of change* in variation/correlation

$$\mathbf{A}_j = \sum_k w_{jk} \mathbf{b}_k \mathbf{b}_k^T$$

vectors $\mathbf{b_k}$ allow a more compact description of the basis functions

 $\mathbf{b_k}$'s are unit norm ($\mathbf{w_{ik}}$ can absorb scaling)

$$p(\mathbf{y}) = \prod p(y_j) \propto e^{-\sum |y_j|}$$

$$\mathbf{A}_j = \sum_k w_{jk} \mathbf{b}_k \mathbf{b}_k^T$$

$$\log \mathbf{C} = \sum_j y_j \mathbf{A}_j$$

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{0}, \mathbf{C})$$

$$p(\mathbf{y}) = \prod p(y_j) \propto e^{-\sum |y_j|}$$

$$\mathbf{A}_j = \sum_k w_{jk} \mathbf{b}_k \mathbf{b}_k^T$$

$$\log \mathbf{C} = \sum_j y_j \mathbf{A}_j$$

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{0}, \mathbf{C})$$

$$p(\mathbf{y}) = \prod p(y_j) \propto e^{-\sum |y_j|}$$

$$\mathbf{A}_j = \sum_k w_{jk} \mathbf{b}_k \mathbf{b}_k^T$$

$$\log \mathbf{C} = \sum_j y_j \mathbf{A}_j$$

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{0}, \mathbf{C})$$

$$p(\mathbf{y}) = \prod p(y_j) \propto e^{-\sum |y_j|}$$

$$\mathbf{A}_j = \sum_k w_{jk} \mathbf{b}_k \mathbf{b}_k^T$$

$$\log \mathbf{C} = \sum_j y_j \mathbf{A}_j$$

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{0}, \mathbf{C})$$

normalization by the inferred covariance matrix

training the model on natural images

$$p(\mathbf{y}) = \prod p(y_j) \propto e^{-\sum |y_j|}$$

$$\mathbf{A}_j = \sum_k w_{jk} \mathbf{b}_k \mathbf{b}_k^T$$

$$\log \mathbf{C} = \sum_j y_j \mathbf{A}_j$$

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{0}, \mathbf{C})$$

learning details:

- gradient ascent on data likelihood
- 20x20 image patches from ~100 natural images
- 1000 **b**_k's
- 150 y_j's

learned vectors

learned vectors

one unit encodes global image contrast

original patches

normalization by inferred contrast

original patches

normalization by inferred contrast

normalization by inverse covariance

Restricted Boltzmann Machines

$$E(\mathbf{v}, \mathbf{h}) = -\sum W_{ij} v_i h_j$$

gated Restricted Boltzmann Machines (Memisevic and Hinton, CVPR 07)

$$E(\mathbf{x}, \mathbf{y}, \mathbf{h}) = -\sum W_{ijk} x_i y_j h_k$$
$$E(\mathbf{x}, \mathbf{y}, \mathbf{h}) = -\mathbf{x}^T \left(\sum h_k \mathbf{W}_k \right) \mathbf{y}$$

x - Gaussian (pixels)

y - Gaussian (pixels)

h - binary

trained on image sequences

gated Restricted Boltzmann Machines (Memisevic and Hinton, CVPR 07)

$$E(\mathbf{x}, \mathbf{y}, \mathbf{h}) = -\sum W_{ijk} x_i y_j h_k$$
$$E(\mathbf{x}, \mathbf{y}, \mathbf{h}) = -[\mathbf{x}; \mathbf{y}]^T \left(\sum h_k \mathbf{W}_k\right) [\mathbf{x}; \mathbf{y}]$$

x - Gaussian (pixels)

y - Gaussian (pixels)

h - binary

trained on image sequences

log-Covariance factor model

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(0, \mathbf{C})$$
$$\log \mathbf{C} = \sum_{j} y_{j} \mathbf{A}_{j}$$

$$\log p(\mathbf{x}|\mathbf{y}) \propto -\mathbf{x}^T e^{\left(-\sum y_{\mathbf{j}} \mathbf{A}_{\mathbf{j}}\right)} \mathbf{x}$$

summary

- modeling non-linear dependencies motivated by statistical patterns
- higher-order models can capture context
- normalization by local "whitening" removes most structure

questions

- joint model for normalized response and normalization (context) signal?
- how to extend to entire image?
- where are these computations found in the brain?