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non-linear processing in the early visual system

estimated linear receptive field contrast/size response function
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non-linear statistical dependencies in natural images
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p(y2|y1) p(y2|y1) Y = B+ wiy?
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a generative model for covariance matrices
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multivariate Gaussian model

x ~ N(0,C)

latent variables specify the covariance

C=f(y)
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a distributed code

if only we could find a basis for covariance matrices...
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a distributed code

if only we could find a basis for covariance matrices...

use the matrix-logarithm transform

log C

C=exp(X A y;)
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a compact parameterization for cov-components

find common directions of change in variation/correlation
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a compact parameterization for cov-components

find common directions of change in variation/correlation

vectors b, allow a more compact description of the basis functions

b,’s are unit norm (w;, can absorb scaling)
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the full model

p(y) = [1p(y;) o e 21l
Aj =Y, wirbiby

logC =Y, y,A,;
p(x|ly) = N(0,C)



the full model
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the full model

p(y) = [1p(y;) o e 21l
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the full model

p(y) = [1p(y;) o e 21l

Aj =3, wirbyby

logC =Y, y,A,;
by,
p(x|ly) = N(0,C)
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normalization by the inferred covariance matrix

> @ > hormalized response
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training the model on natural images

p(y) = [Ip(y;) o« e~ 2 ¥l

ylyQ--- yJ

A; =Y, wirbrby

log C = Zj yjAj

N ° p(x]y) = N(0,C)
by,
(X‘ ) learning details:
PAxlY e gradient ascent on data likelihood
* 20x20 image patches from ~100 natural images
*1000 b, ’s

*150y;'s



learned vectors
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learned vectors
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black — 25 example features
grey — all 1000 features in model




one unit encodes global image contrast
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inferred contrast

normalization by
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normalization by inverse covariance




Restricted Boltzmmann Machines

E(V, h) - — Z Wf,;j’vihj
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gated Restricted Boltzmann Machines (Memisevic and Hinton, CVPR 07)

image sequence (t-> )

E(x,y,h) = =) W;rziy;h
E(x,y,h) = —x" (3" hyWy) y
x - Gaussian (pixels)
y - Gaussian (pixels)
h - binary

trained on image sequences
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gated Restricted Boltzmann Machines (Memisevic and Hinton, CVPR 07)

E(x,y,h) = —[x;y]" (3 hWy) [x;y]

x - Gaussian (pixels)

W L Y y - Gaussian (pixels)

h - binary

trained on image sequences

image sequence (t-> )

log-Covariance factor model

p(x|y) = N(0,C) log p(x|y) —xTe(= 2 YA x

log C = Zj yjAj
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summary

* modeling non-linear dependencies motivated by statistical patterns
* higher-order models can capture context
* normalization by local “whitening” removes most structure

questions
* joint model for normalized response and normalization (context) signal?

* how to extend to entire image?
* where are these computations found in the brain?
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