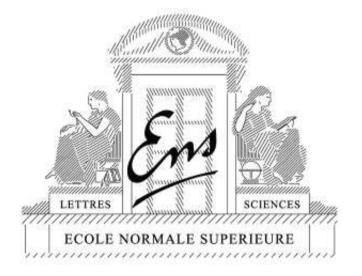
Convex sparse methods for feature hierarchies

Francis Bach

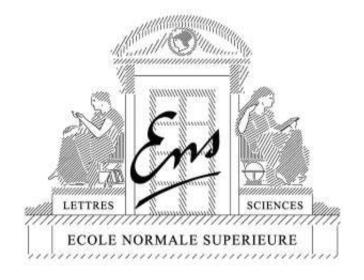
Willow project, INRIA - Ecole Normale Supérieure



Learning with kernels is not dead

Francis Bach

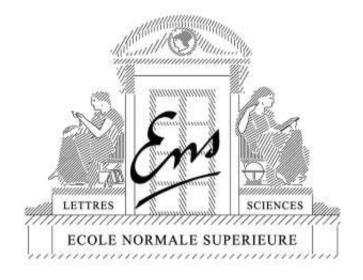
Willow project, INRIA - Ecole Normale Supérieure



Learning with kernels is not dead Learning kernels is not dead either

Francis Bach

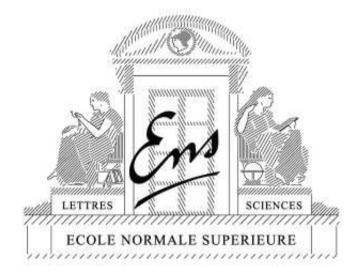
Willow project, INRIA - Ecole Normale Supérieure



Smart shallow learning

Francis Bach

Willow project, INRIA - Ecole Normale Supérieure

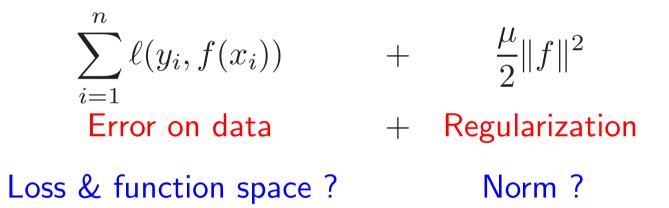


Outline

- Supervised learning and regularization
 - Kernel methods vs. sparse methods
- MKL: Multiple kernel learning
 - Non linear sparse methods
- HKL: Hierarchical kernel learning
 - Feature hierarchies non linear variable selection

Supervised learning and regularization

- Data: $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$, $i = 1, \dots, n$
- Minimize with respect to function $f : \mathcal{X} \to \mathcal{Y}$:



- Two theoretical/algorithmic issues:
 - 1. Loss / energy
 - 2. Function space / norm / architecture

Regularizations

- Main goal: avoid overfitting
- Two main lines of work:
 - 1. Euclidean and Hilbertian norms (i.e., ℓ^2 -norms)
 - Non linear kernel methods

Regularizations

- Main goal: avoid overfitting
- Two main lines of work:
 - 1. Euclidean and Hilbertian norms (i.e., ℓ^2 -norms)
 - Non linear kernel methods
 - 2. Sparsity-inducing norms
 - Usually restricted to linear predictors on vectors $f(x) = w^{\top}x$
 - Main example: ℓ_1 -norm $||w||_1 = \sum_{i=1}^p |w_i|$
 - Perform model selection as well as regularization

- Data: $x_i \in \mathcal{X}, y_i \in \mathcal{Y}, i = 1, ..., n$, with features $\Phi(x) \in \mathcal{F} = \mathbb{R}^p$ - Predictor $f(x) = w^{\top} \Phi(x)$ linear in the features
- Optimization problem: $\lim_{w \in \mathbb{R}^p} \sum_{i=1}^n \ell(y_i, y_i)$

$$\min_{w \in \mathbb{R}^p} \sum_{i=1}^n \ell(y_i, w^{\top} \Phi(x_i)) + \frac{\mu}{2} \|w\|_2^2$$

• Data: $x_i \in \mathcal{X}, y_i \in \mathcal{Y}, i = 1, ..., n$, with features $\Phi(x) \in \mathcal{F} = \mathbb{R}^p$ - Predictor $f(x) = w^{\top} \Phi(x)$ linear in the features

• Optimization problem:
$$\min_{w \in \mathbb{R}^p} \sum_{i=1}^n \ell(y_i, w^\top \Phi(x_i)) + \frac{\mu}{2} ||w||_2^2$$

• Representer theorem (Kimeldorf and Wahba, 1971): solution must be of the form $w = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$

- Equivalent to solving:
$$\lim_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \ell(y_i, (K\alpha)_i) + \frac{\mu}{2} \alpha^\top K \alpha$$

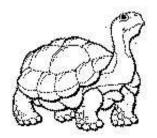
- Kernel matrix $K_{ij} = k(x_i, x_j) = \Phi(x_i)^{\top} \Phi(x_j)$

- Running time $O(n^2\kappa + n^3)$ where κ complexity of one kernel evaluation (often much less) independent from p
- Kernel trick: implicit mapping if $\kappa = o(p)$ by using only $k(x_i, x_j)$ instead of $\Phi(x_i)$
- Examples:
 - Polynomial kernel: $k(x,y) = (1 + x^{\top}y)^d \Rightarrow \mathcal{F} = \text{polynomials}$
 - Gaussian kernel: $k(x,y) = e^{-\alpha ||x-y||_2^2} \implies \mathcal{F} = \text{smooth functions}$
 - Kernels on structured data (see Shawe-Taylor and Cristianini, 2004)

- Running time $O(n^2\kappa + n^3)$ where κ complexity of one kernel evaluation (often much less) independent from p
- Kernel trick: implicit mapping if $\kappa = o(p)$ by using only $k(x_i, x_j)$ instead of $\Phi(x_i)$
- Examples:
 - Polynomial kernel: $k(x,y) = (1 + x^{\top}y)^d \Rightarrow \mathcal{F} = \text{polynomials}$
 - Gaussian kernel: $k(x,y) = e^{-\alpha ||x-y||_2^2} \implies \mathcal{F} = \text{smooth functions}$
 - Kernels on structured data (see Shawe-Taylor and Cristianini, 2004)
- + : Implicit non linearities and high-dimensionality
- — : Problems of interpretability, dimension really high?

Kernel methods are "not" infinite-dimensional

- Usual message: "learning with infinite dimensions in finite time"
- But infinite number of features of **rapidly decaying magnitude**
 - Mercer expansion: $k(x,y) = \sum_{p=1}^{\infty} \lambda_i \varphi_i(x) \varphi_i(y)$
 - $(\lambda_i)_i$ convergent series
- Zenon's paradox (Achilles and the tortoise)



ℓ_1 -norm regularization (linear setting)

- Data: covariates $x_i \in \mathbb{R}^p$, responses $y_i \in \mathcal{Y}$, $i = 1, \dots, n$
- Minimize with respect to loadings/weights $w \in \mathbb{R}^p$:

$$\sum_{i=1}^{n} \ell(y_i, w^{\top} x_i) + \mu \|w\|_1$$

Error on data + Regularization

 square loss ⇒ basis pursuit (signal processing) (Chen et al., 2001), Lasso (statistics/machine learning) (Tibshirani, 1996)

ℓ^2 -norm vs. ℓ^1 -norm

- ℓ^1 -norms lead to interpretable models
- ℓ^2 -norms can be run implicitly with "very large" feature spaces
- Algorithms:
 - Smooth convex optimization vs. nonsmooth convex optimization
- Theory:
 - better predictive performance?

ℓ^2 vs. ℓ^1 - Gaussian hare vs. Laplacian tortoise



- First-order methods (Fu, 1998; Wu and Lange, 2008)
- Homotopy methods (Markowitz, 1956; Efron et al., 2004)

Lasso - Two main recent theoretical results

- Consistency condition (Zhao and Yu, 2006; Wainwright, 2006; Zou, 2006; Yuan and Lin, 2007)
- 2. Exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$\log p = O(n)$$

Lasso - Two main recent theoretical results

- Consistency condition (Zhao and Yu, 2006; Wainwright, 2006; Zou, 2006; Yuan and Lin, 2007)
- 2. Exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$\log p = O(n)$$

• Question: is it possible to build a sparse algorithm that can learn from more than 10^{80} features?

Lasso - Two main recent theoretical results

- Consistency condition (Zhao and Yu, 2006; Wainwright, 2006; Zou, 2006; Yuan and Lin, 2007)
- 2. Exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$\log p = O(n)$$

- Question: is it possible to build a sparse algorithm that can learn from more than 10^{80} features?
 - Some type of recursivity/factorization is needed!

Outline

- Supervised learning and regularization
 - Kernel methods vs. sparse methods
- MKL: Multiple kernel learning
 - Non linear sparse methods
- HKL: Hierarchical kernel learning
 - Feature hierarchies non linear variable selection

Multiple kernel learning - MKL (Lanckriet et al., 2004; Bach et al., 2004)

- Kernels $k_v(x,x') = \Phi_v(x)^{\top} \Phi_v(x')$ on the same input space, $v \in V$
- Concatenation of features $\Phi(x) = (\Phi_v(x))_{v \in V}$ equivalent to summing kernels

$$k(x, x') = \Phi(x)^{\top} \Phi(x') = \sum_{v \in V} \Phi_v(x)^{\top} \Phi_v(x') = \sum_{v \in V} k_v(x, x')$$

- If predictors $w = (w_v)_{v \in V}$, then penalizing by $\left(\sum_{v \in V} \|w_v\|_2\right)^2$
 - will induce sparsity at the kernel level (many w_v equal to zero)
 - is equivalent to learn a sparse positive combination $\sum_{v \in V} \eta_v k_v(x,x')$
- NB: penalizing by $\sum_{v \in V} \|w_v\|_2^2$ is equivalent to uniform weights

Hierarchical kernel learning - HKL (Bach, 2008)

• Many kernels can be decomposed as a sum of many "small" kernels

$$k(x, x') = \sum_{v \in V} k_v(x, x')$$

• Example with $x = (x_1, \ldots, x_q) \in \mathbb{R}^q$ (\Rightarrow non linear variable selection)

– Gaussian/ANOVA kernels: $p = \#(V) = 2^q$

$$\prod_{j=1}^{q} \left(1 + e^{-\alpha(x_j - x'_j)^2} \right) = \sum_{J \subset \{1, \dots, q\}} \prod_{j \in J} e^{-\alpha(x_j - x'_j)^2} = \sum_{J \subset \{1, \dots, q\}} e^{-\alpha \|x_J - x'_J\|_2^2}$$

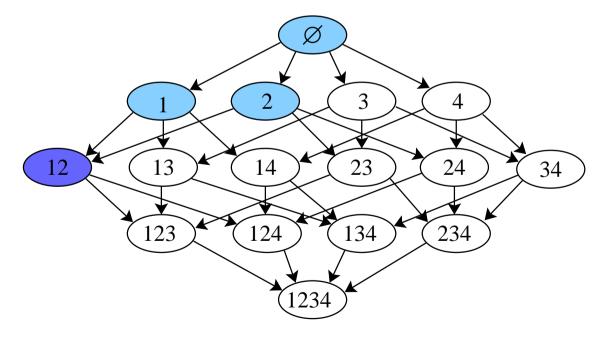
• Goal: learning sparse combination $\sum_{v \in V} \eta_v k_v(x, x')$

Restricting the set of active kernels

- With flat structure
 - Consider block ℓ^1 -norm: $\sum_{v \in V} \|w_v\|_2$
 - cannot avoid being linear in p=#(V)
- Using the structure of the small kernels
 - for computational reasons
 - to allow more irrelevant variables

Restricting the set of active kernels

- V is endowed with a directed acyclic graph (DAG) structure:
 select a kernel only after all of its ancestors have been selected
- Gaussian kernels: $V = power \text{ set of } \{1, \ldots, q\}$ with inclusion DAG
 - Select a subset only after all its subsets have been selected

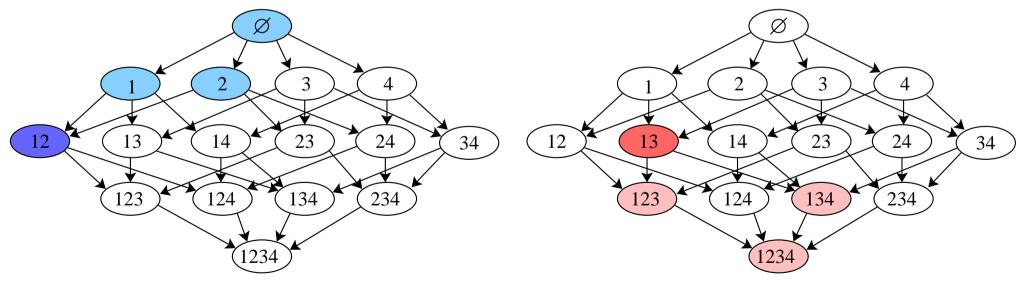


DAG-adapted norm (Zhao & Yu, 2008)

• Graph-based structured regularization

$$D(v) \text{ is the set of descendants of } v \in V:$$
$$\sum_{v \in V} \|w_{D(v)}\|_2 = \sum_{v \in V} \left(\sum_{t \in D(v)} \|w_t\|_2^2 \right)^{1/2}$$

• Main property: If v is selected, so are all its ancestors



DAG-adapted norm (Zhao & Yu, 2008)

• Graph-based structured regularization

- D(v) is the set of descendants of
$$v \in V$$
:

$$\sum_{v \in V} \|w_{D(v)}\|_2 = \sum_{v \in V} \left(\sum_{t \in D(v)} \|w_t\|_2^2 \right)^{1/2}$$

- \bullet Main property: If v is selected, so are all its ancestors
- Questions :
 - **polynomial-time** algorithm for this norm?
 - necessary/sufficient conditions for consistent kernel selection?
 - Scaling between p, q, n for consistency?
 - Applications to variable selection or other kernels?

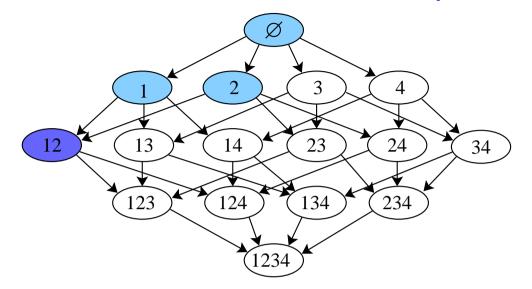
Active set algorithm for sparse problems

- \bullet First assume that the set J of active kernels is known
 - If J is small, solving the reduced problem is easy
 - Simply need to check if the solution is optimal for the full problem
 * If yes, the solution is found
 - * If not, add violating variables to the reduced problem

Active set algorithm for sparse problems

- \bullet First assume that the set J of active kernels is known
 - If J is small, solving the reduced problem is easy
 - Simply need to check if the solution is optimal for the full problem
 * If yes, the solution is found
 - * If not, add violating variables to the reduced problem
- **Technical issue**: computing approximate necessary and sufficient conditions in polynomial time in the out-degree of the DAG
 - NB: with flat structure, this is linear in p = #(V)
- Active set algorithm: start with the roots of the DAG and grow
 - Running time polynomial in the number of selected kernels

Consistency of kernel selection (Bach, 2008)



- Because of the selection constraints, getting the exact sparse model is not possible in general
- May only estimate the *hull* of the relevant kernels
- Necessary and sufficient conditions can be derived

Scaling between p, q, n

- n = number of observations
- $q = \max \operatorname{maximum} \operatorname{out} \operatorname{degree} \operatorname{in} \operatorname{the} \operatorname{DAG}$
- p =number of vertices in the DAG
- Theorem: Assume consistency condition satisfied, Gaussian noise with variance σ^2 , and $\lambda = c_1 \sigma \left(\frac{\log q}{n}\right)^{1/2} \leq c_2$; the probability of incorrect hull selection is less than c_3/q .

Scaling between p, q, n

- n = number of observations
- $q = \max \operatorname{maximum} \operatorname{out} \operatorname{degree} \operatorname{in} \operatorname{the} \operatorname{DAG}$
- p = number of vertices in the DAG
- Theorem: Assume consistency condition satisfied, Gaussian noise with variance σ^2 , and $\lambda = c_1 \sigma \left(\frac{\log q}{n}\right)^{1/2} \leq c_2$; the probability of incorrect hull selection is less than c_3/q .

• Unstructured case:
$$q = p \Rightarrow \log p = O(n)$$

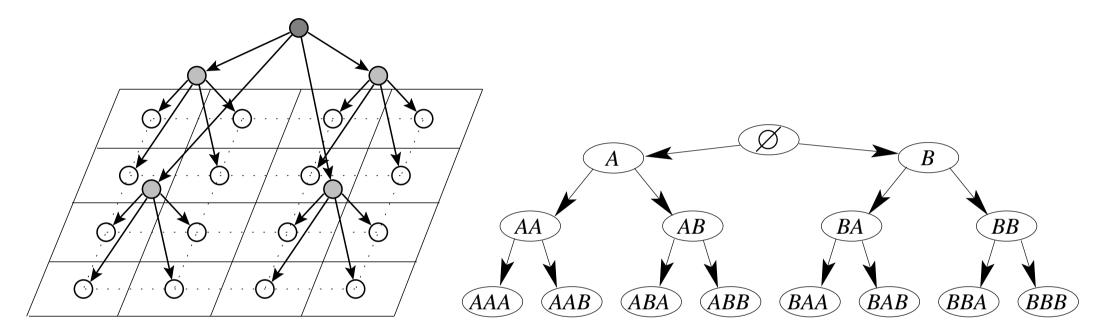
• Power set of q elements: $q \approx \log p \Rightarrow \left| \log \log p = \log q = O(n) \right|$

Mean-square errors (regression)

dataset	n	p	k	#(V)	L2	greedy	MKL	HKL
abalone	4177	10	pol4	$\approx 10^7$	44.2±1.3	43.9 ± 1.4	$44.5 {\pm} 1.1$	43.3±1.0
abalone	4177	10	rbf	$pprox 10^{10}$	43.0±0.9	$45.0 {\pm} 1.7$	$43.7 {\pm} 1.0$	43.0±1.1
boston	506	13	pol4	$\approx 10^9$	17.1±3.6	24.7±10.8	22.2±2.2	18.1±3.8
boston	506	13	rbf	$pprox 10^{12}$	16.4±4.0	32.4±8.2	$20.7{\pm}2.1$	$17.1{\pm}4.7$
pumadyn-32fh	8192	32	pol4	$\approx 10^{22}$	57.3±0.7	56.4±0.8	56.4±0.7	56.4±0.8
pumadyn-32fh	8192	32	rbf	$pprox 10^{31}$	$57.7 {\pm} 0.6$	72.2 ± 22.5	$56.5{\pm}0.8$	55.7±0.7
pumadyn-32fm	8192	32	pol4	$\approx 10^{22}$	$6.9{\pm}0.1$	$6.4{\pm}1.6$	$7.0{\pm}0.1$	3.1±0.0
pumadyn-32fm	8192	32	rbf	$pprox 10^{31}$	$5.0{\pm}0.1$	$46.2 {\pm} 51.6$	$7.1{\pm}0.1$	3.4±0.0
pumadyn-32nh	8192	32	pol4	$\approx 10^{22}$	84.2±1.3	73.3±25.4	83.6±1.3	36.7±0.4
pumadyn-32nh	8192	32	rbf	$pprox 10^{31}$	$56.5 {\pm} 1.1$	$81.3{\pm}25.0$	$83.7{\pm}1.3$	35.5±0.5
pumadyn-32nm	8192	32	pol4	$\approx 10^{22}$	$60.1{\pm}1.9$	69.9±32.8	77.5±0.9	5.5±0.1
pumadyn-32nm	8192	32	rbf	$\approx 10^{31}$	$15.7{\pm}0.4$	67.3±42.4	77.6±0.9	7.2±0.1

Extensions to other kernels

• Extension to graph kernels, string kernels, pyramid match kernels



- Exploring large feature spaces with structured sparsity-inducing norms
 - Interpretable models
- Other structures than hierarchies or DAGs

Conclusions - Discussion Shallow, but not stupid

- Learning with a flat architecture and exponentially many features is possible
 - Theoretically
 - Algorithmically

Conclusions - **Discussion Shallow, but not stupid**

- Learning with a flat architecture and exponentially many features is possible
 - Theoretically
 - Algorithmically
- Deep vs. Shallow
 - non-linearities are important
 - multi-task learning is important
 - Problems are non-convex: convexity vs. non convexity
 - Theoretical guarantees vs. empirical evidence
 - Dealing with prior knowledge / structured data Interpretability
 - Learning / engineering / sampling intermediate representations

References

- F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Adv. NIPS, 2008.
- F. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2004.
- P. J. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. *Annals of Statistics*, 2008. To appear.
- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. *SIAM Rev.*, 43(1):129–159, 2001. ISSN 0036-1445.
- B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Stat., 32:407, 2004.
- W. Fu. Penalized regressions: the bridge vs. the Lasso. *Journal of Computational and Graphical Statistics*, 7(3):397–416, 1998).
- G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. *J. Math. Anal. Applicat.*, 33:82–95, 1971.
- G. R. G. Lanckriet, N. Cristianini, L. El Ghaoui, P. Bartlett, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. *Journal of Machine Learning Research*, 5:27–72, 2004.
- Y. Lin and H. H. Zhang. Component selection and smoothing in multivariate nonparametric regression. *Annals of Statistics*, 34(5):2272–2297, 2006.
- K. Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. *Electronic Journal of Statistics*, 2, 2008.

- H. M. Markowitz. The optimization of a quadratic function subject to linear constraints. *Naval Research Logistics Quarterly*, 3:111–133, 1956.
- N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. *Ann. Stat.*, 2009. to appear.
- B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.
- J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Camb. U. P., 2004.
- R. Tibshirani. Regression shrinkage and selection via the lasso. *Journal of The Royal Statistical Society Series B*, 58(1):267–288, 1996.
- G. Wahba. Spline Models for Observational Data. SIAM, 1990.
- M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using ℓ_1 constrained quadratic programming. Technical Report 709, Dpt. of Statistics, UC Berkeley, 2006.
- T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression. *Ann. Appl. Stat.*, 2(1):224–244, 2008.
- M. Yuan and Y. Lin. On the non-negative garrotte estimator. *Journal of The Royal Statistical Society Series B*, 69(2):143–161, 2007.
- P. Zhao and B. Yu. On model selection consistency of Lasso. JMLR, 7:2541-2563, 2006.
- H. Zou. The adaptive Lasso and its oracle properties. JASA, 101:1418–1429, 2006.