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• Supervised learning and regularization

– Kernel methods vs. sparse methods

• MKL: Multiple kernel learning

– Non linear sparse methods

• HKL: Hierarchical kernel learning

– Feature hierarchies - non linear variable selection



Supervised learning and regularization

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n

• Minimize with respect to function f : X → Y:

n
∑

i=1

ℓ(yi, f(xi)) +
µ

2
‖f‖2

Error on data + Regularization

Loss & function space ? Norm ?

• Two theoretical/algorithmic issues:

1. Loss / energy

2. Function space / norm / architecture



Regularizations

• Main goal: avoid overfitting

• Two main lines of work:

1. Euclidean and Hilbertian norms (i.e., ℓ2-norms)

– Non linear kernel methods



Regularizations

• Main goal: avoid overfitting

• Two main lines of work:

1. Euclidean and Hilbertian norms (i.e., ℓ2-norms)

– Non linear kernel methods

2. Sparsity-inducing norms

– Usually restricted to linear predictors on vectors f(x) = w⊤x

– Main example: ℓ1-norm ‖w‖1 =
∑p

i=1 |wi|

– Perform model selection as well as regularization



Kernel methods: regularization by ℓ2-norm

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n, with features Φ(x) ∈ F = R
p

– Predictor f(x) = w⊤Φ(x) linear in the features

• Optimization problem: min
w∈Rp

n
∑

i=1

ℓ(yi, w
⊤Φ(xi)) +

µ

2
‖w‖2
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∑
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ℓ(yi, w
⊤Φ(xi)) +

µ

2
‖w‖2
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• Representer theorem (Kimeldorf and Wahba, 1971): solution must

be of the form w =
∑n

i=1 αiΦ(xi)

– Equivalent to solving: min
α∈Rn

n
∑

i=1

ℓ(yi, (Kα)i) +
µ

2
α⊤Kα

– Kernel matrix Kij = k(xi, xj) = Φ(xi)
⊤Φ(xj)



Kernel methods: regularization by ℓ2-norm

• Running time O(n2κ + n3) where κ complexity of one kernel

evaluation (often much less) - independent from p

• Kernel trick: implicit mapping if κ = o(p) by using only k(xi, xj)

instead of Φ(xi)

• Examples:

– Polynomial kernel: k(x, y) = (1 + x⊤y)d ⇒ F = polynomials

– Gaussian kernel: k(x, y) = e−α‖x−y‖2
2 ⇒F = smooth functions

– Kernels on structured data (see Shawe-Taylor and Cristianini, 2004)



Kernel methods: regularization by ℓ2-norm

• Running time O(n2κ + n3) where κ complexity of one kernel

evaluation (often much less) - independent from p

• Kernel trick: implicit mapping if κ = o(p) by using only k(xi, xj)

instead of Φ(xi)

• Examples:

– Polynomial kernel: k(x, y) = (1 + x⊤y)d ⇒ F = polynomials

– Gaussian kernel: k(x, y) = e−α‖x−y‖2
2 ⇒F = smooth functions

– Kernels on structured data (see Shawe-Taylor and Cristianini, 2004)

• + : Implicit non linearities and high-dimensionality

• − : Problems of interpretability, dimension really high?



Kernel methods are “not” infinite-dimensional

• Usual message: “learning with infinite dimensions in finite time”

• But infinite number of features of rapidly decaying magnitude

– Mercer expansion: k(x, y) =
∑∞

p=1 λiϕi(x)ϕi(y)

– (λi)i convergent series

• Zenon’s paradox (Achilles and the tortoise)



ℓ1-norm regularization (linear setting)

• Data: covariates xi ∈ R
p, responses yi ∈ Y, i = 1, . . . , n

• Minimize with respect to loadings/weights w ∈ R
p:

n
∑

i=1

ℓ(yi, w
⊤xi) + µ‖w‖1

Error on data + Regularization

• square loss ⇒ basis pursuit (signal processing) (Chen et al., 2001),

Lasso (statistics/machine learning) (Tibshirani, 1996)



ℓ2-norm vs. ℓ1-norm

• ℓ1-norms lead to interpretable models

• ℓ2-norms can be run implicitly with “very large” feature spaces

• Algorithms:

– Smooth convex optimization vs. nonsmooth convex optimization

• Theory:

– better predictive performance?



ℓ2 vs. ℓ1 - Gaussian hare vs. Laplacian tortoise

• First-order methods (Fu, 1998; Wu and Lange, 2008)
• Homotopy methods (Markowitz, 1956; Efron et al., 2004)



Lasso - Two main recent theoretical results

1. Consistency condition (Zhao and Yu, 2006; Wainwright, 2006; Zou,

2006; Yuan and Lin, 2007)

2. Exponentially many irrelevant variables (Zhao and Yu, 2006;

Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen

and Yu, 2009): under appropriate assumptions, consistency is possible

as long as

log p = O(n)
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• Question: is it possible to build a sparse algorithm that can learn

from more than 1080 features?



Lasso - Two main recent theoretical results

1. Consistency condition (Zhao and Yu, 2006; Wainwright, 2006; Zou,

2006; Yuan and Lin, 2007)

2. Exponentially many irrelevant variables (Zhao and Yu, 2006;

Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen

and Yu, 2009): under appropriate assumptions, consistency is possible

as long as

log p = O(n)

• Question: is it possible to build a sparse algorithm that can learn

from more than 1080 features?

– Some type of recursivity/factorization is needed!
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Multiple kernel learning - MKL

(Lanckriet et al., 2004; Bach et al., 2004)

• Kernels kv(x, x′) = Φv(x)⊤Φv(x
′) on the same input space, v ∈ V

• Concatenation of features Φ(x) = (Φv(x))v∈V equivalent to summing

kernels

k(x, x′) = Φ(x)⊤Φ(x′) =
∑

v∈V

Φv(x)⊤Φv(x
′) =

∑

v∈V

kv(x, x′)

• If predictors w = (wv)v∈V , then penalizing by
(
∑

v∈V ‖wv‖2

)2

– will induce sparsity at the kernel level (many wv equal to zero)

– is equivalent to learn a sparse positive combination
∑

v∈V

ηvkv(x, x′)

• NB: penalizing by
∑

v∈V ‖wv‖
2
2 is equivalent to uniform weights



Hierarchical kernel learning - HKL (Bach, 2008)

• Many kernels can be decomposed as a sum of many “small” kernels

k(x, x′) =
∑

v∈V

kv(x, x′)

• Example with x = (x1, . . . , xq) ∈ R
q (⇒ non linear variable selection)

– Gaussian/ANOVA kernels: p = #(V ) = 2q

q
∏

j=1

(

1 + e−α(xj−x′
j)

2
)

=
∑

J⊂{1,...,q}

∏

j∈J

e−α(xj−x′
j)

2

=
∑

J⊂{1,...,q}

e−α‖xJ−x′
J‖

2
2

• Goal: learning sparse combination
∑

v∈V

ηvkv(x, x′)



Restricting the set of active kernels

• With flat structure

– Consider block ℓ1-norm:
∑

v∈V ‖wv‖2

– cannot avoid being linear in p = #(V )

• Using the structure of the small kernels

– for computational reasons

– to allow more irrelevant variables



Restricting the set of active kernels

• V is endowed with a directed acyclic graph (DAG) structure:

select a kernel only after all of its ancestors have been selected

• Gaussian kernels: V = power set of {1, . . . , q} with inclusion DAG

– Select a subset only after all its subsets have been selected

23 341413 24

123 234124 134

1234

12

1 2 3 4



DAG-adapted norm (Zhao & Yu, 2008)

• Graph-based structured regularization

– D(v) is the set of descendants of v ∈ V :

∑

v∈V

‖wD(v)‖2 =
∑

v∈V





∑

t∈D(v)

‖wt‖
2
2





1/2

• Main property: If v is selected, so are all its ancestors
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DAG-adapted norm (Zhao & Yu, 2008)

• Graph-based structured regularization

– D(v) is the set of descendants of v ∈ V :

∑

v∈V

‖wD(v)‖2 =
∑

v∈V





∑

t∈D(v)

‖wt‖
2
2





1/2

• Main property: If v is selected, so are all its ancestors

• Questions :

– polynomial-time algorithm for this norm?

– necessary/sufficient conditions for consistent kernel selection?

– Scaling between p, q, n for consistency?

– Applications to variable selection or other kernels?



Active set algorithm for sparse problems

• First assume that the set J of active kernels is known

– If J is small, solving the reduced problem is easy

– Simply need to check if the solution is optimal for the full problem

∗ If yes, the solution is found

∗ If not, add violating variables to the reduced problem



Active set algorithm for sparse problems

• First assume that the set J of active kernels is known

– If J is small, solving the reduced problem is easy

– Simply need to check if the solution is optimal for the full problem

∗ If yes, the solution is found

∗ If not, add violating variables to the reduced problem

• Technical issue: computing approximate necessary and sufficient

conditions in polynomial time in the out-degree of the DAG

– NB: with flat structure, this is linear in p = #(V )

• Active set algorithm: start with the roots of the DAG and grow

– Running time polynomial in the number of selected kernels



Consistency of kernel selection (Bach, 2008)

23 341413 24

123 234124 134

1234

12

1 2 3 4

• Because of the selection constraints, getting the exact sparse model

is not possible in general

• May only estimate the hull of the relevant kernels

• Necessary and sufficient conditions can be derived



Scaling between p, q, n

n = number of observations

q = maximum out degree in the DAG

p = number of vertices in the DAG

• Theorem: Assume consistency condition satisfied, Gaussian noise

with variance σ2, and λ = c1σ
(

log q
n

)1/2

6 c2; the probability of

incorrect hull selection is less than c3/q.



Scaling between p, q, n

n = number of observations

q = maximum out degree in the DAG

p = number of vertices in the DAG

• Theorem: Assume consistency condition satisfied, Gaussian noise

with variance σ2, and λ = c1σ
(

log q
n

)1/2

6 c2; the probability of

incorrect hull selection is less than c3/q.

• Unstructured case: q = p ⇒ log p = O(n)

• Power set of q elements: q ≈ log p ⇒ log log p = log q = O(n)



Mean-square errors (regression)

dataset n p k #(V ) L2 greedy MKL HKL
abalone 4177 10 pol4 ≈107 44.2±1.3 43.9±1.4 44.5±1.1 43.3±1.0
abalone 4177 10 rbf ≈1010 43.0±0.9 45.0±1.7 43.7±1.0 43.0±1.1
boston 506 13 pol4 ≈109 17.1±3.6 24.7±10.8 22.2±2.2 18.1±3.8
boston 506 13 rbf ≈1012 16.4±4.0 32.4±8.2 20.7±2.1 17.1±4.7

pumadyn-32fh 8192 32 pol4 ≈1022 57.3±0.7 56.4±0.8 56.4±0.7 56.4±0.8
pumadyn-32fh 8192 32 rbf ≈1031 57.7±0.6 72.2±22.5 56.5±0.8 55.7±0.7
pumadyn-32fm 8192 32 pol4 ≈1022 6.9±0.1 6.4±1.6 7.0±0.1 3.1±0.0
pumadyn-32fm 8192 32 rbf ≈1031 5.0±0.1 46.2±51.6 7.1±0.1 3.4±0.0
pumadyn-32nh 8192 32 pol4 ≈1022 84.2±1.3 73.3±25.4 83.6±1.3 36.7±0.4
pumadyn-32nh 8192 32 rbf ≈1031 56.5±1.1 81.3±25.0 83.7±1.3 35.5±0.5
pumadyn-32nm 8192 32 pol4 ≈1022 60.1±1.9 69.9±32.8 77.5±0.9 5.5±0.1
pumadyn-32nm 8192 32 rbf ≈1031 15.7±0.4 67.3±42.4 77.6±0.9 7.2±0.1



Extensions to other kernels

• Extension to graph kernels, string kernels, pyramid match kernels

ABBABAAAA AAB

BBBAABAA

BA

BAB BBA BBBBAA

• Exploring large feature spaces with structured sparsity-inducing norms

– Interpretable models

• Other structures than hierarchies or DAGs



Conclusions - Discussion

Shallow, but not stupid

• Learning with a flat architecture and exponentially many

features is possible

– Theoretically

– Algorithmically



Conclusions - Discussion

Shallow, but not stupid

• Learning with a flat architecture and exponentially many

features is possible

– Theoretically

– Algorithmically

• Deep vs. Shallow

– non-linearities are important

– multi-task learning is important

– Problems are non-convex: convexity vs. non convexity

– Theoretical guarantees vs. empirical evidence

– Dealing with prior knowledge / structured data - Interpretability

– Learning / engineering / sampling intermediate representations
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