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Three Approaches to Classification 
•  Construct a discriminant function that directly maps each input 
vector to a specific class.    

•  Model the conditional probability distribution                and then 
use this distribution to make optimal decisions.    
•  There are two approaches: 

-   Discriminative Approach: Model                 directly, for example 
by representing them as parametric models, and optimize for 
parameters using the training set (e.g. logistic regression).     

-   Generative Approach: Model class conditional densities                
together with the prior probabilities           for the classes. Infer 
posterior probability using Bayes’ rule:      

We will consider next. 



Fixed Basis Functions 
•  So far, we have considered classification models that work directly in 
the input space.  

•  All considered algorithms are equally applicable if we first make a 
fixed nonlinear transformation of the input space using  vector of 
basis functions 

•  Decision boundaries will be linear in the feature space      but would 
correspond to nonlinear boundaries in the original input space x.   

•  Classes that are linearly separable in the feature space         need 
not be linearly separable in the original input space.  



Linear Basis Function Models 

•  We define two Gaussian basis functions with centers shown by green the 
crosses, and with contours shown by the green circles.   

Original input space Corresponding feature space using 
two Gaussian basis functions 

•  Linear decision boundary (right) is obtained using logistic regression, and 
corresponds to nonlinear decision boundary in the input space (left, black curve).   



Logistic Regression 
•  Consider the problem of two-class classification. 
•  We have seen that the posterior probability of class C1 can be written 
as a logistic sigmoid function: 

where                                        and we omit the bias term for clarity.   

•  This model is known as logistic regression (although this is a 
model for classification rather than regression).  

logistic sigmoid function 
Note that for generative models, we would 
first determine the class conditional 
densities and class-specific priors, and then 
use Bayes’ rule to obtain the posterior 
probabilities.  

Here we model               directly.  



ML for Logistic Regression 
•  We observed a training dataset  
•  Maximize the probability of getting the label right, so the likelihood 
function takes form: 

•  Taking the negative log of the likelihood, we can define cross-entropy 
error function (that we want to minimize): 

•  Differentiating and using the chain rule: 

•  Note that the factor involving the derivative of the logistic function cancelled.  



ML for Logistic Regression 
•  We therefore obtain: 

•  This takes exactly the same form as the gradient of the sum-of-
squares error function for the linear regression model.  

target prediction 

•  Unlike in linear regression, there is no closed form solution, due 
to nonlinearity of the logistic sigmoid function.  

•  The error function is convex and can be optimized using standard 
gradient-based (or more advanced) optimization techniques.  

•  Easy to adapt to the online learning setting.  



Multiclass Logistic Regression 
•  For the multiclass case, we represent posterior probabilities by a 
softmax transformation of linear functions of input variables : 

•  Unlike in generative models, here we will use maximum likelihood to 
determine parameters of this discriminative model directly.  

•  As usual, we observed a dataset                                       where 
we use 1-of-K encoding for the target vector tn.  

•  So if xn belongs to class Ck, then t is a binary vector of length K 
containing a single 1 for element k (the correct class) and 0 elsewhere.  

•  For example, if we have K=5 classes, then an input that belongs to 
class 2 would be given a target vector: 



Multiclass Logistic Regression 
•  We can write down the likelihood function: 

N £ K binary matrix of 
target variables. 

Only one term corresponding 
to correct class contributes. 

•  Taking the negative logarithm gives the cross-entropy entropy function 
for multi-class classification problem: 

where  

•  Taking the gradient: 



 Special Case of Softmax 
•  If we consider a softmax function for two classes: 

•  So the logistic sigmoid is just a special case of the softmax function that 
avoids using redundant parameters: 

-  Adding the same constant to both a1 and a2 has no effect.   
-  The over-parameterization of the softmax is because probabilities 

must add up to one.  



Recap 
•  Generative approach:  Determine 
the class conditional densities and 
class-specific priors, and then use 
Bayes’ rule to obtain the posterior 
probabilities.  

–  Different models can be trained 
separately on different 
machines. 

–  It is easy to add a new class 
without retraining all the other 
classes. 

•  Discriminative approach: Train 
all of the model parameters to 
maximize the probability of 
getting the labels right. 

Model                directly. 



Bayesian Logistic Regression 
•  We next look at the Bayesian treatment of logistic regression. 
•  For the two-class problem, the likelihood takes form: 

•  Similar to Bayesian linear regression, we could start with a 
Gaussian prior: 

•  However, the posterior distribution 

 
is no longer Gaussian, and we cannot analytically integrate over model 
parameters w.  

•  We need to introduce some approximations.  



Pictorial illustration 
•  Consider a simple distribution: 

•  The plot shows the normalized 
distribution (in yellow), which is 
not Gaussian.  

•  The red curve displays the 
corresponding Gaussian 
approximation.  



Recap: Computational Challenge of 
Bayesian Framework 

Remember: the big challenge is computing the posterior distribution. 
There are several main approaches:  

•  Analytical integration: If we use “conjugate” priors, the posterior distribution 
can be computed analytically (we saw this for Bayesian linear regression).  

•  Gaussian (Laplace) approximation: Approximate the posterior distribution 
with a Gaussian. Works well when there is a lot of data compared to the 
model complexity (as posterior is close to Gaussian).  

•  Monte Carlo integration: The dominant current approach is Markov Chain 
Monte Carlo (MCMC) -- simulate a Markov chain that converges to the 
posterior distribution. It can be applied to a wide variety of problems.  

•  Variational approximation: A cleverer way to approximate the posterior. It 
often works much faster, but not as general as MCMC.  

We will consider Laplace approximation next. 



Laplace Approximation 
•  We will use the following notation:  

•  Goal: Find a Gaussian approximation q(z) which is centered on a 
mode of the distribution p(z).  

•  We can evaluate         point-wise 
but cannot evaluate 

•  For example 



Laplace Approximation 
•  We will use the following notation:  

•  Consider a Taylor approximation    
             around 

•  At the stationary point       the 
gradient              vanishes. 

where A is a Hessian matrix: 

•  Exponentiating both sides: 



Laplace Approximation 

•   Using Taylor approximation, we get: 

•  We will use the following notation:  

where      is the mode of          and A is the Hessian:  

•  Hence a Gaussian approximation for          is:  



Laplace Approximation 

•  Bayesian inference: 

•  The posterior is approximately Gaussian around the MAP estimate: 

•  Identify: 

•   Using Taylor approximation, we get: 

•  We will use the following notation:  



Laplace Approximation 

•  We can approximate Model Evidence: 
 using Laplace approximation: 

Occam factor: penalize model complexity Data fit 

•   Using Taylor approximation, we get: 

•  We will use the following notation:  



Bayesian Information Criterion 
•  BIC can be obtained from the Laplace approximation:  

by taking the large sample limit (N ! 1) where N is the number of 
data points.  

•  Quick and easy, does not depend on the prior.  
•  Can use maximum likelihood estimate instead of the MAP estimate. 
•  D denotes the number of well-determined parameters. 
•  Danger: Counting parameters can be tricky (e.g. infinite models).  



Bayesian Logistic Regression 
•  Remember the likelihood: 

•  And the prior: 

•  The log of the posterior takes form: 
Log-prior term 

Log-likelihood 
term 

•  We first maximize the log-posterior to get the MAP estimate:  
•  The inverse of covariance is given by the matrix of second derivatives: 

•  The Gaussian approximation to the posterior distribution is given by: 



Predictive Distribution 
•  The predictive distribution for class C1, given a new input x* is 
given by marginalizing with respect to posterior distribution                  
which is itself approximated by a Gaussian distribution:  

with the corresponding probability for class C2 given by:  

Still not 
tractable. 

•  The convolution of Gaussian with logistic sigmoid cannot be evaluated 
analytically.  



Predictive Distribution 

•  Note that the logistic function depends on w only through its projection 
onto x*. Denoting                    we have: 

where ± is the Dirac delta function. Hence 

•  The delta function imposes a linear constraint on w. It forms a marginal 
distribution from the joint q(w) by marginalizing out  all directions 
orthogonal to x*.  

•  Since q(w) is Gaussian, the marginal is also Gaussian.  

•  Let us characterize p(a).  
1-dimensional 
integral. 



Predictive Distribution 

•  We can evaluate the mean and variance of the marginal p(a).  

•  Hence we obtain approximate predictive: 

Same form as the 
predictive 
distribution for the 
Bayesian linear 
regression model.  

•  The integral is 1-dimensional and can further be approximated via:   



Midterm Review 
•  Polynomial curve fitting – generalization, overfitting 

•  Decision theory:  

•  Minimizing misclassification rate / Minimizing the expected loss 

•  Loss functions for regression  



Midterm Review 
•  Bernoulli, Multinomial random variables (mean, variances)  

•  Multivariate Gaussian distribution (form, mean, covariance) 

•  Maximum likelihood estimation for these distributions.    

•  Exponential family / Maximum likelihood estimation / sufficient 
statistics for exponential family.  

•  Linear basis function models / maximum likelihood and least 
squares:  



Midterm Review 
•  Regularized least squares: 

Ridge 
regression 

•  Bias-variance decomposition.  

Low bias 

High variance 



Midterm Review 
•  Bayesian Inference: likelihood, prior, posterior:   

•  Marginal likelihood / predictive distribution.  

•  Bayesian linear regression / parameter estimation / posterior 
distribution / predictive distribution  

•  Bayesian model comparison / Evidence approximation  

Matching data and  
model complexity 

Marginal likelihood 
(normalizing constant): 



Midterm Review 
•  Classification models:  

•  Discriminant functions 
•  Fisher’s linear discriminant 
•  Perceptron algorithm 

•  Probabilistic Generative Models / Gaussian class conditionals / 
Maximum likelihood estimation: 



Midterm Review 
•  Discriminative Models / Logistic regression / maximum likelihood 
estimation  

•  Laplace approximation  

•  BIC  

•  Bayesian logistic regression / predictive distribution   


