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Three Approaches to Classification

e Construct a discriminant function that directly maps each input
vector to a specific class.

 Model the conditional probability distribution p(Cx|x), and then
use this distribution to make optimal decisions.

e There are two approaches:

- Discriminative Approach: Model p(Ci|x), directly, for example
by representing them as parametric models, and optimize for
parameters using the training set (e.g. logistic regression).

- Generative Approach: Model class conditional densities p(x|Cx)
together with the prior probabilities p(Cy) for the classes. Infer
posterior probability using Bayes’ rule:

p(x|Cr)p(Ck)
p(Cr|x) =

p(x)

We will consider next.



Fixed Basis Functions

» So far, we have considered classification models that work directly in
the input space.

* All considered algorithms are equally applicable if we first make a
fixed nonlinear transformation of the input space using vector of
basis functions ¢(x).

» Decision boundaries will be linear in the feature space ¢, but would
correspond to nonlinear boundaries in the original input space x.

 Classes that are linearly separable in the feature space ¢(x)need
not be linearly separable in the original input space.



Linear Basis Function Models

Corresponding feature space using

Original input space ) : :
two Gaussian basis functions
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» We define two Gaussian basis functions with centers shown by green the
crosses, and with contours shown by the green circles.

« Linear decision boundary (right) is obtained using logistic regression, and
corresponds to nonlinear decision boundary in the input space (left, black curve).



Logistic Regression

e Consider the problem of two-class classification.

» \We have seen that the posterior probability of class C, can be written
as a logistic sigmoid function:

_ 1 _ T
p(CﬂX) — 1 —|—eXp(—WTX> _ O-(W X>7

where p(Cs|x) =1 — p(C1|x), and we omit the bias term for clarity.

e This model is known as logistic regression (although this is a

model for classification rather than regression).
logistic sigmoid function

Note that for generative models, we would 1 , 2
first determine the class conditional :
densities and class-specific priors, and then
use Bayes’ rule to obtain the posterior

probab”ltles fi5koisnssnscmstmieming .................... J

Here we model p(Cr|x) directly.




ML for Logistic Regression

» We observed a training dataset {x,,,t,}, n=1,..,N; t, € {0,1}.

e Maximize the probability of getting the label right, so the likelihood
function takes form:

p(t|X, w) = ﬁ [yi”(l - yn)l_tnla Yn = o (W' xn).

 Taking the negative log of the likelihood, we can define cross-entropy

error function (that we want to minimize):
N

E(w):—lnp(t|X,w):—Z[tnlnyn—|—(1—t lnl—yn} ZE
n=1
* Differentiating and using the chain rule:
d ~ Yn — tn d . d
@En — yn(l _yn)a d_wyn — yn(l _yn)xna @‘7@):0(@)(1_0(@))-
d dFE,, dy,
—En — — = (Un — In)Xn.
dw a7, dw W )X

* Note that the factor involving the derivative of the logistic function cancelled.



ML for Logistic Regression

* \We therefore obtain:
N

VE(w) = Z(yn — Ly )X
=N

prediction target

 This takes exactly the same form as the gradient of the sum-of-
squares error function for the linear regression model.

e Unlike in linear regression, there is no closed form solution, due
to nonlinearity of the logistic sigmoid function.

e The error function is convex and can be optimized using standard
gradient-based (or more advanced) optimization techniques.

» Easy to adapt to the online learning setting.



Multiclass Logistic Regression

* For the multiclass case, we represent posterior probabilities by a

softmax transformation of linear functions of input variables :
exp(wWi, X)
P(Cr|x) = yr(x) = :
Zj eXP(Wf )

» Unlike in generative models, here we will use maximum likelihood to
determine parameters of this discriminative model directly.

* As usual, we observed a dataset {x,,t,}, n=1,.., N, where

we use 1-of-K encoding for the target vector t,..

» So if x,, belongs to class C,, then t is a binary vector of length K
containing a single 1 for element k (the correct class) and 0 elsewhere.

* For example, if we have K=5 classes, then an input that belongs to
class 2 would be given a target vector:

t =(0,1,0,0,0)".



Multiclass Logistic Regression

* \We can write down the likelihood function:

p(TIX, wi, ..., wx) = [| [H p<ckxn)tnk] =11 [ yf:;f]

\ nzlkkzl J, n=1 Lk=1
Y

N x K binary matrix of
target variables.

Only one term corresponding
to correct class contributes.

exp(w%xn)

Zj eXp(Wan> .

where ynr = p(Cr|xy) =

 Taking the negative logarithm gives the cross-entropy entropy function
for multi-class classification problem:

N
B(W1, ey Wit) = —Inp(T|X, Wi, ooy i) = = > [

 Taking the gradient:

N
VEw, (Wi, .. Wg) = Z(ynj — tnj)Xn.



Special Case of Softmax

e [f we consider a softmax function for two classes:

exp(a1) 1

p(Cifx) = exp(ar) + exp(az) 1+ exp(—(ar — az))

=o(a; — a2).

» So the logistic sigmoid is just a special case of the softmax function that
avoids using redundant parameters:
- Adding the same constant to both a, and a, has no effect.
- The over-parameterization of the softmax is because probabilities
must add up to one.



Recap

» Generative approach: Determine e Discriminative approach: Train

the class conditional densities and all of the model parameters to
class-specific priors, and then use maximize the probability of
Bayes’ rule to obtain the posterior getting the labels right.
probabilities.

— Different models can be trained  Model p(Cx|Xx) directly.
separately on different
machines.

— It is easy to add a new class
without retraining all the other
classes.

p(x|Ck)p(Ck)
p(x)

p(C[x) =



Bayesian Logistic Regression

* We next look at the Bayesian treatment of logistic regression.
 For the two-class problem, the likelihood takes form:

N
1 T
p(t|X, w) = H [yfl“(l — ?/n)l_tn]a In =14 exp(—w!x,) = o(W" %),
n=1

e Similar to Bayesian linear regression, we could start with a
Gaussian prior:

p(w) = N(w|mg, Sp).

* However, the posterior distribution
p(w|X, t) o p(t|X, w)p(w).

Is no longer Gaussian, and we cannot analytically integrate over model
parameters w.

* We need to introduce some approximations.



Pictorial illustration

e Consider a simple distribution: 0.3

p(w) o< exp(—w?)o (20w + 4).
0.6

e The plot shows the normalized
distribution (in yellow), which is 047
not Gaussian.

0.21

e The red curve displays the
corresponding Gaussian

-

approximation. & - 0



Recap: Computational Challenge of
Bayesian Framework

Remember: the big challenge is computing the posterior distribution.
There are several main approaches:

» Analytical integration: If we use “conjugate” priors, the posterior distribution
can be computed analytically (we saw this for Bayesian linear regression).

We will consider Laplace approximation next.

e Gaussian (Laplace) approximation: Approximate the posterior distribution
with a Gaussian. Works well when there is a lot of data compared to the
model complexity (as posterior is close to Gaussian).

* Monte Carlo integration: The dominant current approach is Markov Chain
Monte Carlo (MCMC) -- simulate a Markov chain that converges to the
posterior distribution. It can be applied to a wide variety of problems.

 Variational approximation: A cleverer way to approximate the posterior. It
often works much faster, but not as general as MCMC.



Laplace Approximation

0.8 . - - - - * We will use the following notation:
0.6} - p(z) = ]g, Z = /ﬁ(z)dz.

0.4+t
« We can evaluate p(z) point-wise

0.2} {  but cannot evaluate Z.

e For example

e, ~ p(Dlw)p(w)
p(w|D) = p(D) '

e Goal: Find a Gaussian approximation q(z) which is centered on a
mode of the distribution p(z).

O




0.4

0.2F

Laplace Approximation

0.8 . - - - - * We will use the following notation:
0.6} - p(z) = ]%’ Z = /ﬁ(z)dz.

* At the stationary point zg, the
gradient \/p(zg) vanishes.

| | | | | e Consider a Taylor approximation
2 -1 o 1 2 3 4 Inp(z)around zg.

- 5 1
Inp(z) =~ Inp(zg) — §(z — ZO)TA(Z — Z0),

O

where A is a Hessian matrix:
A=—<xyvInp(z)|z=z,-

e Exponentiating both sides:
. . 1
p(z) ~ p(zo) exp (5(2 —z0) Az — zo)) :



Laplace Approximation

0.8 . - - - - * We will use the following notation:
0.6} - p(z) = ]LZ), Z = /ﬁ(z)dz.
Z
0.4} 1 < Using Taylor approximation, we get:
_ . 1

0.2} 1 p(z) = p(zo) exp <—§(Z — ZO)TA(Z — ZO)> -

. . . | . .

—2 = 0 I 2 3 4

« Hence a Gaussian approximation for p(z) is:

1/2
q(z) = (Li;D/Q exXp <—%(Z - ZO)TA(Z — Z0)> ;

where Zg is the mode of p(z), and A is the Hessian:

A=—vvInp(z)|s=z-



Laplace Approximation

0.8 . - - - - * We will use the following notation:
0.6} - p(z) = ]LZ>, Z = /ﬁ(z)dz.
Z
0.4} 1 < Using Taylor approximation, we get:
_ . 1
02t 1 p(z) ~ p(zo) exp <_§(Z . ZO)TA(Z — zo)> .
. . . | . .
—2 = 0 I 2 3 4
p(D|w)p(w)

e Bayesian inference: D) =
y p(w|D) (D)

« Identify: 5(8|D) = p(D|)p(8), Z = / p(D|0)p(8)d8.

» The posterior is approximately Gaussian around the MAP estimate:

~ |A|1/2 1 TA
p(9|D) ~ (27T>D/2 exp —5(9 — 9MAP> (9 — 9MAP> .



Laplace Approximation

0.8 . - - - - * We will use the following notation:
0.6} - p(z) = ]LZ>, Z = /ﬁ(z)dz.
Z
0.4r 1 e« Using Taylor approximation, we get:
. . 1
0.2} 1 p(z) = p(zo) exp <—§(Z — Z0>TA(Z — ZO)> -
. . | . .
-2 -1 0 1 2 3 4
i i} 1 . (2m)P/?
Z = /p(z)dz ~ p(zo) /eXP (—§(Z —70)" Az — Z0>> = p(2o) (‘A’)_UQ '

« We can approximate Model Evidence: p(D) = /p(D\@)P(H)dQ,

using Laplace approximation:

D 1
Inp(D) ~ Inp(D|Omap) + In P(Oyap) + — In 27 — = In
1\

) 2 2
Y Y

Data fit Occam factor: penalize model complexity

Al
_/




Bayesian Information Criterion

 BIC can be obtained from the Laplace approximation:
D 1
Inp(D) ~ Inp(D|Omap) + In P(Oymap) + Bl In 27 — 5 In |A],

by taking the large sample limit (N — oc) where N is the number of
data points.

1
Inp(D) ~ In p(D|Omar) — §Dln N.

e Quick and easy, does not depend on the prior.
e Can use maximum likelihood estimate instead of the MAP estimate.

e D denotes the number of well-determined parameters.
* Danger: Counting parameters can be tricky (e.g. infinite models).



Bayesian Logistic Regression

e Remember the likelihood:
N 1
%)

p(t| X, w) = H [yn (1 —yn)?! 75n]7 Yn = 7 ey =o(W" X,).

 And the prior: p( ) = N (w|myg, Sp).

Log-prior term

* The log of the posterior takes form: / Log-likelihood
1 term

Inp(w|X,t) = —§(W —my)?' Sy (w — my)

N
+ Z [tn Iny, + (1 —t,)In(1 — tn)] + const.

n=1

» We first maximize the log-posterior to get the MAP estimate: wyap.
* The inverse of covariance is given by the matrix of second derivatives:

Sy = —vwvinpw/X,t) =5, +Zyn — Y )X XL
e The Gaussian approximation to the posterior dlstrlbutlon IS given by:

q(W> — N(W‘WMAP, SN>



Predictive Distribution

 The predictive distribution for class C,, given a new input x” is
given by marginalizing with respect to posterior distribution p(w|X,t),
which is itself approximated by a Gaussian distribution:

p(C1]x",t,X) = /p(Cl\X*,W)p(w]t,X)dw

%/J(WTX*)Q(W)dW’ ¥~ Sstill not

tractable.
with the corresponding probability for class C, given by:

p(C1|x*,t,X) =1 — p(Cq1|x", t, X).

e The convolution of Gaussian with logistic sigmoid cannot be evaluated
analytically.



Predictive Distribution

p(Ci|x*, X, t) =~ /U(WTX*)q(W)dw.

» Note that the logistic function depends on w only through its projection
onto x™. Denoting « = w’x*, we have:

o(wlx*) = /5(a — wlx*)o(a)da,
where ¢ is the Dirac delta function. Hence

/U(WTX*)q(W)dW = /a(a)p(a)da, where p(a) = /5(a—wa*)q(W)dw.
—— 1-dimensional

* Let us characterize p(a). integral.

» The delta function imposes a linear constraint on w. It forms a marginal
distribution from the joint g(w) by marginalizing out all directions
orthogonal to x’.

e Since q(w) is Gaussian, the marginal is also Gaussian.



Predictive Distribution

[ o xyatwyew = [ olalpla)da, where p(a) = [ 5(a— wx")q(w)dw.

* We can evaluate the mean and variance of the marginal p(a).

pa = Ela] = /ap )da = /W W)W = Wypapx . Same form as the
, Y~ predictive
o = var[a] = /p(a)[ ] = — distribution for the
Bayesian linear
- / [(Ww!x*)? — (Wiapx™)?] g(W)dw = x*TSNx*. regression model.
 Hence we obtain approximate predictive:
p(C1]x", X, t) ~ /U(WTX*)q(W)dW = /U(a)N(a\ua,ag).

e The integral is 1-dimensional and can further be approximated via:

/a(a)/\/(ama, 02) ~ o (k). where k = (1+ mo2/8)~1/2



Midterm Review

» Polynomial curve fitting — generalization, overfitting
e Decision theory:

* Minimizing misclassification rate / Minimizing the expected loss

p(x,C1) :O l p(miStake> = p(X S Rlch) +p(X c RQ,Cl)
i p(z,Cs) — / p(Xa CQ) dx + / p(X, Cl) dx.
: R1 Ro
- R4 - Ro -

* Loss functions for regression

B = [ [ (¢ y60) plx.taxct



Midterm Review

e Bernoulli, Multinomial random variables (mean, variances)

e Multivariate Gaussian distribution (form, mean, covariance)

 Maximum likelihood estimation for these distributions.

» Exponential family / Maximum likelihood estimation / sufficient
statistics for exponential family.

p(x|n) = h(x)g(n) exp {n' u(x)}

e Linear basis function models / maximum likelihood and least
sqguares:

N
Inp(t| X, w, ) = In N (t,|wl o (xy,), —1
p(t|X, w, ) 2 (talW " (xn), B) W — (<I>T<I>> &7t

wlm

al N N
z:: (tn — W' d(xn )2—|—Eln/6’—51n(27r).



Midterm Review

Ridge
» Regularized least squares: regression

-
A

N
1 —1
3t - W)+ SwTw w = ()\I n <I>T<I>) 3Tt
n=1

e Bias-variance decomposition.

High variance

—
T

=

Low bias



Midterm Review

e Bayesian Inference: likelihood, prior, posterior:

_ p(Plw)P(w)

p(w|D) = Marginal likelihood

P(D) (normalizing constant):

» Marginal likelihood / predictive distribution. (D) = / p(D|w)P(w)dw

e Bayesian linear regression / parameter estimation / posterior
distribution / predictive distribution

e Bayesian model comparison / Evidence approximation

A

) Matching data and
\ M, model complexity
i Aw osterior
\ T\ M; Inp(D) ~ Inp(D|wyrap) + M In ( post ) ,
| Aprrior

\

Do

\

v



Midterm Review

» Classification models:

e Discriminant functions
e Fisher’s linear discriminant
» Perceptron algorithm

* Probabilistic Generative Models / Gaussian class conditionals /
Maximum likelihood estimation:

pxICH) = s o0 (5 )5 ) )

T

p(Cr|x) = o(W' x + wp),

w=3""(p; — p),

e 1 re-1 p(C1)
Wo = 2#12 H1‘|‘2N22 “2+lnp(62)°




Midterm Review

 Discriminative Models / Logistic regression / maximum likelihood
estimation 08

« Laplace approximation ™

047

027

O 1 I 1 " "
-2 -1 0 1 2 3 4

* BIC
D 1
Inp(D) ~ Inp(D|Omar) + In P(Orap) + B} In2m — 5 In |A|,

» Bayesian logistic regression / predictive distribution



