
STA 4273H:
Statistical Machine Learning

Russ	
 Salakhutdinov	

Department of Computer Science!
Department of Statistical Sciences!

rsalakhu@cs.toronto.edu!
h0p://www.cs.utoronto.ca/~rsalakhu/	

Lecture 8	

Project Reminder

• 

•  Brief presentations will be done in an alphabetical order.

•  You should have your name, and project title on the first slide.

•  Brief 5-minute presentations of projects will take place on Monday,
March 23. You need to send me 6-7 slides in pdf formtat describing your
project.

•  You will have 5-7 mins to briefly describe your project and what you
would want to accomplish in this project.

•  Deadline: Sunday March 22, 2015. Submit your slides by e-mail:
rsalakhu@cs.toronto.edu

Continuous Latent Variable Models
• 

•  Motivation: for many datasets, data points lie close to a manifold of
much lower dimensionality compared to that of the original data space.

•  Training continuous latent variable models often called dimensionality
reduction, since there are typically many fewer latent dimensions.

•  So far we have looked at models with discrete latent variables, such as
mixture of Gaussians.

•  Often there are some unknown underlying causes of the data.

•  Sometimes, it is more appropriate to think in terms of continuous
factors which control the data we observe.

•  Examples: Principal Components Analysis, Factor Analysis,
Independent Components Analysis

Intrinsic Latent Dimensions
•  •  What are the intrinsic latent dimensions in these two datasets?

CSC2515: Lecture 8 Continuous Latent Variables

2

Example: continuous underlying variables
• What are the intrinsic latent dimensions in these two datasets?

• How can we find these dimensions from the data?•  How can we find these latent dimensions from this high-dimensional
data.

CSC2515: Lecture 8 Continuous Latent Variables

2

Example: continuous underlying variables
• What are the intrinsic latent dimensions in these two datasets?

• How can we find these dimensions from the data?

Intrinsic Latent Dimensions
•  •  In this dataset, there is only 3 degrees of freedom of variability,
corresponding to the vertical and horizontal translations, and rotations.

•  Each image undergoes a random displacement and rotation within
some larger image field.

•  The resulting images have 100 £ 100 = 10,000 pixels.

Generative View
•  •  Each data example generated by first selecting a point from a
distribution in the latent space, then generating a point from the
conditional distribution in the input space

•  This leads to probabilistic formulation of the Principal
Component Analysis and Factor Analysis.

•  We will first look at standard PCA, and then consider its probabilistic
formation.

•  Simplest latent variable models: Assume Gaussian
distribution for both latent and observed variables.

•  Advantages of probabilistic formulation: use of EM for parameter
estimation, mixture of PCAs, Bayesian PCA.

Principal Component Analysis
•  •  Used for data compression, visualization, feature extraction, dimensionality
reduction.

•  The goal is find M principal components
underlying D-dimensional data

-  select the top M eigenvectors of S (data
covariance matrix):

-  project each input vector x into this subspace,
e.g.

•  Full projection into M dimensions
takes form:

CSC2515: Lecture 8 Continuous Latent Variables

5

Standard PCA
• Used for data compression, visualization, feature extraction,

dimensionality reduction
• Algorithm: to find M components underlying D-dimensional data

– select the top M eigenvectors of S (data covariance matrix):
– project each input vector x into this subspace, e.g.,

• Full projection onto M dimensions:

• Two views/derivations:
– Maximize variance (scatter of green points)
– Minimize error (red-green distance per datapoint)

z = u x

•  Two views/derivations:

-  Maximize variance (scatter of green
points).

-  Minimize error (red-green distance
per data point).

•  Define the direction of this space using a
D-dimensional unit vector u1, so that

Maximum Variance Formulation
•  Consider a dataset {x1,…,xN}, xn 2 RD. Our goal is to project data onto a
space having dimensionality M < D.

•  Consider the projection into M=1 dimensional space.

•  Objective: maximize the variance of the projected
data with respect to u1.

CSC2515: Lecture 8 Continuous Latent Variables

6

Standard PCA: Variance maximization
• One dimensional example
• Objective: maximize projected variance w.r.t. U1

– where sample mean and data covariance are:

• Must constrain ||u1||: via Lagrange multiplier, maximize w.r.t u1

• Optimal u1 is principal component (eigenvector with maximal
eigenvalue)

∑
{u x − u x̄} = u Su

x̄ =
1

N
x

S =
1

N
(x − x̄)(x − x̄)

u Su + λ(1− u u)

where sample mean and data covariance is given by:

CSC2515: Lecture 8 Continuous Latent Variables

6

Standard PCA: Variance maximization
• One dimensional example
• Objective: maximize projected variance w.r.t. U1

– where sample mean and data covariance are:

• Must constrain ||u1||: via Lagrange multiplier, maximize w.r.t u1

• Optimal u1 is principal component (eigenvector with maximal
eigenvalue)

∑
{u x − u x̄} = u Su

x̄ =
1

N
x

S =
1

N
(x − x̄)(x − x̄)

u Su + λ(1− u u)

Maximum Variance Formulation
•  •  Maximize the variance of the projected data:

CSC2515: Lecture 8 Continuous Latent Variables

6

Standard PCA: Variance maximization
• One dimensional example
• Objective: maximize projected variance w.r.t. U1

– where sample mean and data covariance are:

• Must constrain ||u1||: via Lagrange multiplier, maximize w.r.t u1

• Optimal u1 is principal component (eigenvector with maximal
eigenvalue)

∑
{u x − u x̄} = u Su

x̄ =
1

N
x

S =
1

N
(x − x̄)(x − x̄)

u Su + λ(1− u u)

•  Must constrain ||u1|| = 1. Using Langrage
multiplier, maximize:

CSC2515: Lecture 8 Continuous Latent Variables

6

Standard PCA: Variance maximization
• One dimensional example
• Objective: maximize projected variance w.r.t. U1

– where sample mean and data covariance are:

• Must constrain ||u1||: via Lagrange multiplier, maximize w.r.t u1

• Optimal u1 is principal component (eigenvector with maximal
eigenvalue)

∑
{u x − u x̄} = u Su

x̄ =
1

N
x

S =
1

N
(x − x̄)(x − x̄)

u Su + λ(1− u u)

•  Setting the derivative with respect to u1 to zero:

•  Hence u1 must be an eigenvector of S.

•  The maximum variance of the projected data is given by:

•  Optimal u1 is principal component (eigenvector with maximal eigenvalue).

Minimum Error Formulation
•  Introduce a complete orthonormal set of D-dimensional basis vectors:

•  Without loss of generality, we can write:

Rotation of the coordinate system to a
new system defined by ui.

•  Our goal is to represent data points by the projection into M-dimensional
subspace (plus some distortion):
•  Represent M-dim linear subspace by the first M of the basis vectors:

Minimum Error Formulation
•  •  Represent M-dim linear subspace by the first M of the basis vectors:

where zni depend on the particular data point and bi
are constants.

•  Objective: minimize distortion with respect to ui, zni,
and bi.

CSC2515: Lecture 8 Continuous Latent Variables

8

Standard PCA: Error minimization
• Data points represented by projection onto M-dimensional subspace,

plus some distortion:
• Objective: minimize distortion w.r.t. U1 (reconstruction error of xn)

• The objective is minimized when the D-M components are the
eigenvectors of S with lowest eigenvalues → same result

J =
∑ ∑

b (x u − x̄ u) =
∑

u Su

znj = x
T
nuj

bj = x̄
T
uj

x̃ =
∑

z u +
∑

b u

J =

∑
||x − x̃ ||

•  Minimizing with respect to znj, bj:

•  Hence, the objective reduces to:

Minimum Error Formulation
•  •  Minimize distortion with respect to ui: constraint minimization problem:

•  The objective is minimized when the remaining D-M components are the
eigenvectors of S with lowest eigenvalues → same result.

•  The general solution is obtained by choosing ui to
be eigenvectors of the covariance matrix:

•  The distortion is then given by:

•  We will later see a generalization: deep autoencoders.

Applications of PCA
•  •  Run PCA on 2429 19x19 grayscale images (CBCL database)

CSC2515: Lecture 8 Continuous Latent Variables

9

Applying PCA to faces
• Need to first reduce dimensionality of inputs (will see in tutorial

how to handle high-dimensional inputs) – down-sample images
• Run PCA on 2429 19x19 grayscale images (CBCL database)

• Compresses the data: can get good reconstructions with only 3
components

• Pre-processing: can apply classifier to latent representation --
PPCA w/ 3 components obtains 79% accuracy on face/non-face
discrimination in test data vs. 76.8% for m.o.G with 84 states

• Can be good for visualization

•  Data compression: We can get good reconstructions with only 3 components.

•  Pre-processing: We can apply a standard classifier to latent representation --
PCA with 3 components obtains 79% accuracy on face/non-face discrimination in
test data vs. 76.8% for mixture of Gaussians with 84 components.

•  Data visualization: by projecting the data onto the first two principal
components.

Learned Basis
•  •  Run PCA on 2429 19x19 grayscale images (CBCL database)

CSC2515: Lecture 8 Continuous Latent Variables

10

Applying PCA to faces: Learned basis

PCA vs. Fisher’s LDA
•  •  A comparison of PCA with Fisher’s LDA for linear dimensionality reduction.

•  PCA chooses direction of maximum variance (magenta curve) leading to
strong class overlap (unsupervised).

•  LDA takes into account the class labels (supervised), leading to a
projection into the green curve.

PCA for High-Dimensional Data
•  •  In some applications of PCA, the number of data points is smaller than the
dimensionality of the data space, i.e. N<D.
•  In so far, we need to find the eigenvectors of the D £ D data covariance
matrix S, which scales as O(D3).

•  Direct application of PCA will often be computationally infeasible.

•  Solution: Let X be the N £ D centered data matrix. The corresponding
eigenvector equation becomes:

•  Pre-multiply by X:

PCA for High-Dimensional Data
•  •  Define vi = Xui, and hence we have:

•  This is an eigenvector equation for the N £ N matrix

•  Computational cost scales as O(N3) rather than O(D3).

•  It has the same N-1 eigenvalues as the original data covariance matrix S
(which itself has an additional D-N+1 zero eigenvalues).

•  To determine eigenvectors, we multiply by XT:

•  Hence XT vi is an eigenvector of S with eigenvalue ¸i.

•  These eigenvectors may not be normalized.

Probabilistic PCA
•  •  Probabilistic, generative view of data.

•  Key advantages of probabilistic PCA (PPCA):

-  It represents a constrained form of the Gaussian distribution.
-  We can derive EM algorithm for PCA which is computationally efficient.

-  PPCA allows us to deal with missing values in the data set.

-  We can formulate mixture of PPCAs in a principled way.
-  PPCA forms the basis for a Bayesian PCA, in which the dimensionality of
the principal subspace can be determined from the data.
-  The existence of a likelihood function allows direct comparisons with
other probabilistic density models

-  PPCA can be used to model class conditional densities and hence it can
be applied to classification problems.

Probabilistic PCA
•  •  Key assumptions:

-  underlying latent M-dim variable z has a
Gaussian distribution.

-  linear relationship between M-dim latent z
and D-dim observed x variables.

-  isotropic Gaussian noise in observed
dimensions

CSC2515: Lecture 8 Continuous Latent Variables

11

Probabilistic PCA
• Probabilistic, generative view of data
• Assumptions:

– underlying latent variable has a Gaussian distribution
– linear relationship between latent and observed variables
– isotropic Gaussian noise in observed dimensions

p(z) = N (z|0, I)

p(x|z) = N (x|Wz+ µ,σ
2
I)

x = Wz+ µ+ ϵ
•  Hence the mean of x is a linear function of z governed by the D £ M matrix W
and the D-dim vector µ.

•  We will see that the columns of W span the principal subspace of the data
space (Columns of W are the principal components, ¾2 is sensor noise).

Generative View of PPCA
•  •  Generative view of the PPCA for a 2-d data space and 1-d latent space:

•  Draw a value of the latent variable from its prior distribution:

•  Draw a value for x from from an isotropic Gaussian distribution:

Density contours for the
marginal distribution p(x).

CSC2515: Lecture 8 Continuous Latent Variables

11

Probabilistic PCA
• Probabilistic, generative view of data
• Assumptions:

– underlying latent variable has a Gaussian distribution
– linear relationship between latent and observed variables
– isotropic Gaussian noise in observed dimensions

p(z) = N (z|0, I)

p(x|z) = N (x|Wz+ µ,σ
2
I)

x = Wz+ µ+ ϵ

Marginal Data Density
•  •  The joint p(z,x), the marginal data distribution p(x), and the posterior
distribution p(z|x) are also Gaussian.

•  Marginal data density (also known as predictive distribution):

CSC2515: Lecture 8 Continuous Latent Variables

12

Probabilistic PCA: Marginal data density
• Columns of W are the principal components, σ2 is sensor noise
• Product of Gaussians is Gaussian: the joint p(z,x), the marginal

data distribution p(x) and the posterior p(z|x) are also Gaussian
• Marginal data density (predictive distribution):

• Can derive by completing square in exponent, or by just
computing mean and covariance given that it is Gaussian:

p(x) =
∫

p(z)p(x|z)dz = N (x|µ,WW + σ I)

E[x] = E[µ+Wz+ ϵ] = µ+WE[z] +E[ϵ]

= µ+W0 + 0 = µ

C = Cov[x] = E[(z− µ)(z− µ)]

= E[(µ+Wz+ ϵ− µ)(µ+Wz+ ϵ− µ)]

= E[(Wz+ ϵ)(Wz+ ϵ)]

= WW + σ I

•  Can derive this result directly by computing the mean and covariance given
that it is Gaussian:

CSC2515: Lecture 8 Continuous Latent Variables

12

Probabilistic PCA: Marginal data density
• Columns of W are the principal components, σ2 is sensor noise
• Product of Gaussians is Gaussian: the joint p(z,x), the marginal

data distribution p(x) and the posterior p(z|x) are also Gaussian
• Marginal data density (predictive distribution):

• Can derive by completing square in exponent, or by just
computing mean and covariance given that it is Gaussian:

p(x) =
∫

p(z)p(x|z)dz = N (x|µ,WW + σ I)

E[x] = E[µ+Wz+ ϵ] = µ+WE[z] +E[ϵ]

= µ+W0 + 0 = µ

C = Cov[x] = E[(z− µ)(z− µ)]

= E[(µ+Wz+ ϵ− µ)(µ+Wz+ ϵ− µ)]

= E[(Wz+ ϵ)(Wz+ ϵ)]

= WW + σ I

CSC2515: Lecture 8 Continuous Latent Variables

12

Probabilistic PCA: Marginal data density
• Columns of W are the principal components, σ2 is sensor noise
• Product of Gaussians is Gaussian: the joint p(z,x), the marginal

data distribution p(x) and the posterior p(z|x) are also Gaussian
• Marginal data density (predictive distribution):

• Can derive by completing square in exponent, or by just
computing mean and covariance given that it is Gaussian:

p(x) =
∫

p(z)p(x|z)dz = N (x|µ,WW + σ I)

E[x] = E[µ+Wz+ ϵ] = µ+WE[z] +E[ϵ]

= µ+W0 + 0 = µ

C = Cov[x] = E[(z− µ)(z− µ)]

= E[(µ+Wz+ ϵ− µ)(µ+Wz+ ϵ− µ)]

= E[(Wz+ ϵ)(Wz+ ϵ)]

= WW + σ I

Redundancy in Parameterization
•  •  The marginal distribution is governed by parameters W, µ, ¾2:

CSC2515: Lecture 8 Continuous Latent Variables

12

Probabilistic PCA: Marginal data density
• Columns of W are the principal components, σ2 is sensor noise
• Product of Gaussians is Gaussian: the joint p(z,x), the marginal

data distribution p(x) and the posterior p(z|x) are also Gaussian
• Marginal data density (predictive distribution):

• Can derive by completing square in exponent, or by just
computing mean and covariance given that it is Gaussian:

p(x) =
∫

p(z)p(x|z)dz = N (x|µ,WW + σ I)

E[x] = E[µ+Wz+ ϵ] = µ+WE[z] +E[ϵ]

= µ+W0 + 0 = µ

C = Cov[x] = E[(z− µ)(z− µ)]

= E[(µ+Wz+ ϵ− µ)(µ+Wz+ ϵ− µ)]

= E[(Wz+ ϵ)(Wz+ ϵ)]

= WW + σ I

•  Redundancy in parameterization: rotation of the latent space coordinates.

•  Let R be an orthogonal matrix, then define a new matrix:

•  Then

•  There is a whole family of matrices all of which give rise to the same
marginal distribution.

•  Rotations within the latent space.

Joint Density for PPCA
•  •  Joint density for PPCA, where x is D-dim and z is M-dim is given:

CSC2515: Lecture 8 Continuous Latent Variables

13

• Joint density for PPCA (x is D-dim., z is M-dim):

– where cross-covariance terms from:

• Note that evaluating predictive distribution involves inverting C:
reduce O(D3) to O(M3) by applying matrix inversion lemma:

Probabilistic PCA: Joint distribution

Cov[z,x] = E[(z− 0)(x− µ)T] = E[z(µ+Wz+ ϵ− µ)T]

= E[z(Wz+ ϵ)T] = W
T

C = σ I− σ W(W W + σ I) W

where cross covariance term forms:

CSC2515: Lecture 8 Continuous Latent Variables

13

• Joint density for PPCA (x is D-dim., z is M-dim):

– where cross-covariance terms from:

• Note that evaluating predictive distribution involves inverting C:
reduce O(D3) to O(M3) by applying matrix inversion lemma:

Probabilistic PCA: Joint distribution

Cov[z,x] = E[(z− 0)(x− µ)T] = E[z(µ+Wz+ ϵ− µ)T]

= E[z(Wz+ ϵ)T] = W
T

C = σ I− σ W(W W + σ I) W

•  When evaluating marginal distribution, we need to invert a D £ D matrix C,
which can be expensive.
•  Reduce O(D3) to O(M3) by applying matrix inversion lemma:

CSC2515: Lecture 8 Continuous Latent Variables

13

• Joint density for PPCA (x is D-dim., z is M-dim):

– where cross-covariance terms from:

• Note that evaluating predictive distribution involves inverting C:
reduce O(D3) to O(M3) by applying matrix inversion lemma:

Probabilistic PCA: Joint distribution

Cov[z,x] = E[(z− 0)(x− µ)T] = E[z(µ+Wz+ ϵ− µ)T]

= E[z(Wz+ ϵ)T] = W
T

C = σ I− σ W(W W + σ I) W

Posterior Distribution for PPCA
•  •  Inference in PPCA amounts to computing posterior distribution over latent
variables:

•  Mean of inferred z is the projection of centered x:
linear operation.

CSC2515: Lecture 8 Continuous Latent Variables

14

• Inference in PPCA produces posterior distribution over latent z
• Derive by applying Gaussian conditioning formulas (see 2.3 in

book) to joint distribution

• Mean of inferred z is projection of centered x – linear operation
• Posterior variance does not depend on the input x at all!

Probabilistic PCA: Posterior distribution

p(z|x) = N(z|m,V)

m = W
T (WW

T + σ
2
I)−1(x− µ)

V = I−W
T (WW

T + σ
2
I)−1

W

•  Posterior variance does not depend on the input x at all.

CSC2515: Lecture 8 Continuous Latent Variables

13

• Joint density for PPCA (x is D-dim., z is M-dim):

– where cross-covariance terms from:

• Note that evaluating predictive distribution involves inverting C:
reduce O(D3) to O(M3) by applying matrix inversion lemma:

Probabilistic PCA: Joint distribution

Cov[z,x] = E[(z− 0)(x− µ)T] = E[z(µ+Wz+ ϵ− µ)T]

= E[z(Wz+ ϵ)T] = W
T

C = σ I− σ W(W W + σ I) W

•  Remember: M matrix

Constrained Covariance
•  •  Marginal density for PPCA has the following form:

CSC2515: Lecture 8 Continuous Latent Variables

16

• Marginal density for PPCA (x is D-dim., z is M-dim):

– where θ = W, µ, σ
• Effective covariance is low-rank outer product of two long skinny

matrices plus a constant diagonal matrix

• So PPCA is just a constrained Gaussian model:
– Standard Gaussian has D + D(D+1)/2 effective parameters
– Diagonal-covariance Gaussian has D+D, but cannot capture correlations
– PPCA: DM + 1 – M(M-1)/2, can represent M most significant correlations

Probabilistic PCA: Constrained covariance

p(x|θ) = N (x|µ,WW + σ I)

Cov[x] W

W

σ I

where µ = {W,µ, ¾2).

•  The covariance is low-rank outer product of
two long skinny matrices plus a constant
diagonal matrix:

CSC2515: Lecture 8 Continuous Latent Variables

16

• Marginal density for PPCA (x is D-dim., z is M-dim):

– where θ = W, µ, σ
• Effective covariance is low-rank outer product of two long skinny

matrices plus a constant diagonal matrix

• So PPCA is just a constrained Gaussian model:
– Standard Gaussian has D + D(D+1)/2 effective parameters
– Diagonal-covariance Gaussian has D+D, but cannot capture correlations
– PPCA: DM + 1 – M(M-1)/2, can represent M most significant correlations

Probabilistic PCA: Constrained covariance

p(x|θ) = N (x|µ,WW + σ I)

Cov[x] W

W

σ I

•  Hence PPCA is a constrained Gaussian model.

•  We can fit model parameters using maximum likelihood.

Covariance C

Maximum Likelihood
•  •  Model parameters can be determined using maximum likelihood (by
integrating our latent variables):

CSC2515: Lecture 8 Continuous Latent Variables

17

Probabilistic PCA: Maximizing likelihood

• Fit parameters (θ = W, µ, σ) to max likelihood: make model
covariance match observed covariance; distance is trace of ratio

• Sufficient statistics: mean µ = (1/N)∑n xn and sample covariance S
• Can solve for ML params directly: kth column of W is the Mth

largest eigenvalue of S times the associated eigenvector; σ is the
sum of all eigenvalues less than Mth one

L(θ;X) = log p(X|θ) = log p(x |θ)

= −
N

2
log |C|−

1

2
(x − µ)C (x − µ)

= −
N

2
log |C|−

1

2
Tr[C (x − µ)(x − µ)]

= −
N

2
log |C|−

1

2
Tr[C S]

•  Maximizing with respect to the mean:

•  We then have:

•  Maximizing with respect to W and ¾2 can be solved directly.

Maximum Likelihood
•  •  Objective:

•  C is model covariance; S is sample data covariance.

•  In other words, we are trying to make the constrained model covariance as
close as possible to the observed covariance, where “close” means the
trace of the ratio.

•  Sufficient statistics: mean and sample covariance S.

Maximum Likelihood
•  •  Objective:

•  Maximizing with respect to W:

 where
•  UM is a D £ M matrix whose columns are given by the M principal

eigenvectors of the data covariance matrix S.
•  LM is the M £ M diagonal matrix containing M largest eigenvalues.
•  R is an arbitrary M £ M orthogonal matrix.

•  If the eigenvectors have been arranged in the order of decreasing values of the
corresponding eigenvalues, then the columns of W define the principal subspace
of standard PCA.

Maximum Likelihood
•  •  Objective:

•  Maximizing with respect to ¾2:

 which is the average variance associated with the discarded dimensions.

EM for PPCA
•  •  Instead of solving directly, we can use EM. The EM can be scaled to very
large high-dimensional datasets.
•  The complete-data log-likelihood takes form:

CSC2515: Lecture 8 Continuous Latent Variables

18

Probabilistic PCA: EM

• Rather than solving directly, can apply EM
• Need complete-data log likelihood

• E step: compute expectation of complete log likelihood with
respect to posterior of latent variables z, using current parameters –
can derive E[zn] and E[zn zn

T] from posterior p(z|x)
• M step: maximize with respect to parameters W and σ
• Iterative solution, updating parameters given current expectations,

expectations give current parameters
• Nice property – avoids direct O(ND2) construction of covariance

matrix, instead involves sums over data cases: O(NDM); can be
implemented online, without storing data

log p(X,Z|µ,W, σ) =
∑

[log p(x |z) + log p(z)]

•  E-step: compute expectation of complete log likelihood
with respect to posterior of latent variables z, using
current parameters.

•  We need to derive with respect to
the true posterior: p(z | X).

•  M-step: maximize with respect to parameters W and ¾2.

•  Appealing property: EM avoids direct O(ND2) construction of covariance matrix!

•  Instead EM involves sums over data cases: O(NDM). It can also be
implemented online, without storing data.

Zero Noise Limit
•  •  We can derive standard PCA as a limit of probabilistic PCA as the noise
term goes to zero:

CSC2515: Lecture 8 Continuous Latent Variables

15

Standard PCA: Zero-noise limit of PPCA

• Can derive standard PCA as limit of Probabilistic PCA (PPCA) as
σ

2
→ 0.

• ML parameters W* are the same
• Inference is easier: orthogonal projection

• Posterior covariance is zero

lim W (WW + σ W) = (W W) W

•  ML parameters are the same.

•  Inferring the distribution over latent variables is easier: The posterior mean
reduces to:

•  Posterior covariance goes to zero:

which represents an orthogonal projection of the data point onto the latent
space – standard PCA.

EM for PPCA
•  •  EM algorithm for PCA.

Bayesian PCA
•  •  It is easy to take a Bayesian viewpoint and place priors over model
parameters.

•  One option is to employ the evidence
approximation (empirical Bayes) framework.

•  We can define an independent Gaussian prior
over each column of W.

•  Each such Gaussian has an independent
variance:

where wi is the ith column of W.

•  The values of ®i are re-estimated during training by maximizing the marginal
likelihood:

Example of Bayesian PCA
•  •  Hinton diagram of the matrix W: each element of W is depicted as a square
(white for positive and black for negative).

•  The synthetic dataset contains 300 points in D=10 space with the intrinsic
dimensionality set to D=3.

•  Bayesian PCA discovers appropriate dimensionality.

PPCA Bayesian PCA

Factor Analysis
•  •  Linear Gaussian latent variable model that is closely related to PPCA.

•  Key assumptions:

-  underlying latent M-dim variable z has a Gaussian distribution
-  linear relationship between M-dim latent z and D-dim observed x
variables.

-  diagonal Gaussian noise in observed dimensions.

CSC2515: Lecture 8 Continuous Latent Variables

20

Factor Analysis
• Can be viewed as generalization of PPCA
• Historical aside – controversial method, based on attempts to

interpret factors: e.g., analysis of IQ data identified factors related
to race

• Assumptions:
– underlying latent variable has a Gaussian distribution
– linear relationship between latent and observed variables
– diagonal Gaussian noise in data dimensions

• W: factor loading matrix (D x M)
• Ψ : data covariance (diagonal, or axis-aligned; vs. PCA’s spherical)

p(z) = N (z|0, I)

p(x|z) = N (x|Wz+ µ,Ψ)

•  W is a D £ M factor loading matrix.
•  ª is a M £ M diagonal matrix (or axis-aligned).

•  The only difference between PPCA and FA is that in Factor Analysis the
conditional distribution of the observed variable x has diagonal rather than
isotropic covariance.

Factor Analysis: Distributions
•  As in PPCA, the joint p(z,x), the marginal data distribution p(x), and the
posterior p(z|x) are also Gaussian.

•  Marginal distribution (predictive distribution):

CSC2515: Lecture 8 Continuous Latent Variables

21

Factor Analysis: Distributions
• As in PPCA, the joint p(z,x), the marginal data distribution p(x)

and the posterior p(z|x) are also Gaussian
• Marginal data density (predictive distribution):

• Joint density:

• Posterior, derived via Gaussian conditioning

p(x) =
∫

p(z)p(x|z)dz = N (x|µ,WW +Ψ)

p(z|x) = N(z|m,V)

m = W
T (WW

T +Ψ)−1(x− µ)

V = I−W
T (WW

T +Ψ)−1
W

•  The joint distribution:

CSC2515: Lecture 8 Continuous Latent Variables

21

Factor Analysis: Distributions
• As in PPCA, the joint p(z,x), the marginal data distribution p(x)

and the posterior p(z|x) are also Gaussian
• Marginal data density (predictive distribution):

• Joint density:

• Posterior, derived via Gaussian conditioning

p(x) =
∫

p(z)p(x|z)dz = N (x|µ,WW +Ψ)

p(z|x) = N(z|m,V)

m = W
T (WW

T +Ψ)−1(x− µ)

V = I−W
T (WW

T +Ψ)−1
W

Factor Analysis: Optimization
•  Parameters are coupled, which makes it impossible to solve for ML parameters
directly, unlike in probabilistic PCA.

•  Because FA is a latent variable model, we can use EM, or other nonlinear
optimization

•  E-step: compute posterior p(z|x): Use matrix inversion to convert D £ D matrix
inversions to M £ M.

•  M-step: take derivatives of the expected complete log likelihood with respect to
parameters.

•  Bayesian treatment of the factor analysis can be obtained by a straightforward
extension of standard FA (as we did for PPCA).

FA vs. PCA
•  intuition: Gaussians are hyperellipsoids.

•  Mean == center of football.
 Eigenvectors of covariance matrix == axes of football.
 Eigenvalues == lengths of axes.

•  In FA our football is an axis aligned cigar.
 In PCA our football is a sphere of radius ¾2.

Gaussians are Footballs in High-D

• Recall the intuition that Gaussians are hyperellipsoids.

•Mean == centre of football
Eigenvectors of covariance matrix == axes of football
Eigenvalues == lengths of axes

• In FA our football is an axis aligned cigar.
In PCA our football is a sphere of radius σ2.

PCA

εΙ

FA

Ψ

Likelihood Functions

• For both FA and PCA, the data model is Gaussian.
Thus, the likelihood function is simple (including the mean):

ℓ(θ;D) = −N

2
log |ΛΛ⊤ + Ψ|− 1

2

∑

n

(yn − µ)⊤(ΛΛ⊤ + Ψ)−1(yn − µ)

= −N

2
log |V|− 1

2
trace

[
V−1

∑

n

(yn − µ)(yn − µ)⊤
]

= −N

2
log |V|− 1

2
trace

[
V−1S

]

V is model covariance; S is sample data covariance.

• In other words, we are trying to make the constrained model
covariance as close as possible to the observed covariance, where
“close” means the trace of the ratio.

• Thus, the sufficient statistics are the same as for the Gaussian:
mean (1/N)

∑
n yn and covariance (1/N)

∑
n(yn − µ)(yn − µ)⊤.

Fitting the PCA model

• The standard EM algorithm applies to PCA also:
E-step: qt+1 = p(zn|yn, θt)
M-step: θt+1 = argmaxθ

∑
n

∫
z qt+1(zn|yn) log p(yn, zn|θ)dzn

• For this we need the conditional distribution (inference)
and the expected log of the complete data. Results:

E − step : qt+1 = p(z|y, θt) = N (zn|mn,Vn)

Vn = (I + σ−2Λ⊤Λ)−1

mn = σ−2VnΛ⊤y

M − step : Λt+1 =

(
∑

n

ynmn⊤

)(
NV +

∑

n

mnmn⊤

)−1

σ2t+1
=

1

ND

∑

i

[
∑

n

ynyn⊤ − Λt+1
∑

n

mnyn⊤

]

ii

Direct Fitting

• For FA the parameters are coupled in a way that makes it
impossible to solve for the ML params directly.
We must use EM or other nonlinear optimization techniques.

• But for PCA, the ML params can be solved for directly:
The kth column of Λ is the kth largest eigenvalue of the sample
covariance S times the associated eigenvector.

• The global sensor noise σ2 is the sum of all the eigenvalues smaller
than the kth one.

• This technique is good for initializing FA also.

•We can’t make the sensor noise unconstrained, or else we would
always get a perfect fit!

Rotation Invariance in PCA
•  In PPCA the rotation of the data is unimportant: we can multiply the data x by a
rotation matrix Q without changing anything:

CSC2515: Lecture 8 Continuous Latent Variables

23

Factor Analysis vs. PCA: Rotations
• In PPCA, the data can be rotated without changing anything:

multiply data by matrix Q, obtain same fit to data

• But the scale is important
• PCA looks for directions of large variance, so it will grab large

noise directions

µ ← Qµ

W ← QW

Ψ ← Ψ

•  However, the scale is important.

•  PCA looks for directions of large variance,
so it will chase big noise directions.

CSC2515: Lecture 8 Continuous Latent Variables

23

Factor Analysis vs. PCA: Rotations
• In PPCA, the data can be rotated without changing anything:

multiply data by matrix Q, obtain same fit to data

• But the scale is important
• PCA looks for directions of large variance, so it will grab large

noise directions

µ ← Qµ

W ← QW

Ψ ← Ψ

Scale Invariance in FA
•  In FA, the data can be re-scaled without changing anything.

•  However, rotation in data space is important.

•  FA looks for directions of large correlation
in the data, so it will not model large
variance noise.

CSC2515: Lecture 8 Continuous Latent Variables

23

Factor Analysis vs. PCA: Rotations
• In PPCA, the data can be rotated without changing anything:

multiply data by matrix Q, obtain same fit to data

• But the scale is important
• PCA looks for directions of large variance, so it will grab large

noise directions

µ ← Qµ

W ← QW

Ψ ← Ψ

•  Multiply xi by ®i:

CSC2515: Lecture 8 Continuous Latent Variables

24

Factor Analysis vs. PCA: Scale

• In FA, the data can be re-scaled without changing anything
• Multiply xi by αi:

• But rotation in data space is important
• FA looks for directions of large correlation in the data, so it will

not model large variance noise

µi ← αiµi

Wij ← αiWij

Ψi ← α
2
i Ψi

Model Identifiability
•  Factors in FA are non-identifiable: not guaranteed to find the same set of
parameters – not just local minimum but invariance.

•  This means that there is no “one best” setting of the parameters. An infinite
number of parameters all give the same ML score.

•  Rotate W by any unitary Q and model stays the same – W only appears in
model as outer product WWT

•  Degeneracy makes unique interpretation of learned factors impossible.

Mixture of Dimensionality Reducers
•  The next logical step is to consider a model that has two kinds latent variables:
one discrete cluster, and one vector of continuous causes.

•  Such models simultaneously do clustering, and within each cluster,
dimensionality reduction.

Model Invariance and Identifiability

• There is degeneracy in the FA model.

• Since Λ only appears as outer product ΛΛ⊤, the model is invariant
to rotation and axis flips of the latent space.

•We can replace Λ with ΛQ for any unitary matrix Q and the model
remains the same: (ΛQ)(ΛQ)⊤ = Λ(QQ⊤)Λ⊤ = ΛΛ⊤.

• This means that there is no “one best” setting of the parameters.
An infinite number of parameters all give the ML score!

• Such models are called un-identifiable since two people both fitting
ML params to the identical data will not be guaranteed to identify
the same parameters.

Latent Covariance in Factor Analysis and PCA

•What if we allow the latent variable z to have a covariance matrix
of its own: p(z) = N (z|0,P)?

•We can still compute the marginal probability:

p(y|θ) =

∫

z
p(z)p(y|z, θ)dz = N (y|µ , ΛPΛ⊤+Ψ)

•We can always absorb P into the loading matrix Λ by diagonalizing
it: P = EDE⊤ and setting Λ = ΛED1/2.

• Thus, there is another degeneracy in FA, between P and Λ:
we can set P to be the identity, to be diagonal, whatever we want.

• Traditionally we break this degeneracy by either:

– set the covariance P of the latent variable to be I (FA) or

– force the columns of Λ to be orthonormal (PCA)

Mixtures of Dimensionality Reducers

•What’s the next logical step?

• Try a model that has two kinds latent variables: one discrete
cluster, and one vector of continuous causes.

• Such models simultaneously do clustering, and within each cluster,
dimensionality reduction. Great idea!

Mixtures of Factor Analyzers

• The simplest version of this is the mixture of factor analyzers.

p(z) = N (z|0, I) p(k) = αk
p(y|z, k, θ) = N (y|µk + Λkz, Ψ)

p(y|θ) =
∑

k

∫

z
p(k)p(z)p(y|z, k, θ)dz

=
∑

k

αkN (y|µk , ΛkΛ⊤
k +Ψ)

•Which is a constrained mixture of Gaussians.

• This is like a mixture of linear experts, using a logistic regression
gate, eith missing inputs.

• Fitting procedure? EM, of course!

• see ftp.cs.toronto.edu/pub/zoubin/tr-96-1.ps.gz

•  Example: Mixture of Factor Analyzers:

which is constrained mixture of Gaussians.

•  Fitting is done via EM algorithm.

Independent Components Analysis
•  ICA is another continuous latent variable model, like FA, but it has a non-
Gaussian and factorized prior on the latent variables.
•  This is good in situations where most of the factors are small most of
the time, and do not interact with each other.

Independent Components Analysis (ICA)

• ICA is another continuous latent variable model, like FA, but it has
a non-Gaussian and factorized prior on the latent variables.

• This is good in situations where most of the factors are very small
most of the time and they do not interact with each other.
Example: mixtures of speech signals.

• The learning problem is the same: find the weights from the factors
to the outputs and infer the unknown factor values. In the case of
ICA the factors are sometimes called “sources”, and the learning is
sometimes called “unmixing”.

Geometric Intuition

• Since the latent variables are assumed to be independent, we are
trying to find a linear transformation of the data that recovers these
independent causes.

•Often we use heavy tailed source priors, e.g. p(zi) ∝ 1/ cosh(zi).

• Geometric intuition: finding spikes in histograms.

−0.5 0 0.5
−0.5

0

0.5

x1

x 2

Learned basis vectors

ICA Model

• The simplest form of ICA has as many outputs as sources (square)
and no sensor noise on the outputs:

p(z) =
∏

k

p(zk)

y = Vz

• Learning in this case can be done with gradient descent (plus some
“covariant” tricks to make the updates faster and more stable).

• If you keep the square V and use isotropic Gaussian noise on the
outputs there is a simple EM algorithm, derived by Max Welling
and Markus Weber.

•Much more complex cases have been studied also: nonsquare,
convolutional, time delays in mixing, etc.

• But for that, we need to know about time-series...

Reminder: Means, Variances and Covariances

• Remember the definition of the mean and covariance of a vector
random variable:

E[x] =

∫

x
xp(x)dx = m

Cov[x] = E[(x − m)(x − m)⊤] =

∫

x
(x − m)(x − m)⊤p(x)dx = V

which is the expected value of the outer product of the variable
with itself, after subtracting the mean. Symmetric.

• Also, the (cross)covariance between two variables:

Cov[x,y] = E[(x − mx)(y − my)⊤] = C

=

∫

xy
(x − mx)(y − my)⊤p(x,y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

•  Example: Mixture of speech signals.

•  The learning problem is the same: find the weights from the factors to the
outputs and infer the unknown factor values.

•  ICA: the factors are sometimes called “sources”, and the learning is sometimes
called “unmixing”.

Geometric Intuition
•  Since latent variables are assumed to be independent, we are trying to find
linear transformation of data that recovers independent causes.
•  Avoid degeneracies in Gaussian latent variable models: Assume non-Gaussian
prior distribution for latent variables (sources).

•  Geometric intuition: finding spikes in
histograms.

•  Often we use heavy-tailed source priors, e.g.:

CSC2515: Lecture 8 Continuous Latent Variables

27

ICA Intuition
• Since latent variables assumed to be independent, trying to find

linear transformation of data that recovers independent causes
• Avoid degeneracies in Gaussian latent variable models: assume

non-Gaussian prior distribution for latents (sources)
• Often we use heavy-tailed source priors, e.g.,

• Geometric intuition: find spikes in histogram

p(zj) =
1

π cosh(z) = 1
π(exp(z)+exp(−z))

Independent Components Analysis (ICA)

• ICA is another continuous latent variable model, like FA, but it has
a non-Gaussian and factorized prior on the latent variables.

• This is good in situations where most of the factors are very small
most of the time and they do not interact with each other.
Example: mixtures of speech signals.

• The learning problem is the same: find the weights from the factors
to the outputs and infer the unknown factor values. In the case of
ICA the factors are sometimes called “sources”, and the learning is
sometimes called “unmixing”.

Geometric Intuition

• Since the latent variables are assumed to be independent, we are
trying to find a linear transformation of the data that recovers these
independent causes.

•Often we use heavy tailed source priors, e.g. p(zi) ∝ 1/ cosh(zi).

• Geometric intuition: finding spikes in histograms.

−0.5 0 0.5
−0.5

0

0.5

x1

x 2

Learned basis vectors

ICA Model

• The simplest form of ICA has as many outputs as sources (square)
and no sensor noise on the outputs:

p(z) =
∏

k

p(zk)

y = Vz

• Learning in this case can be done with gradient descent (plus some
“covariant” tricks to make the updates faster and more stable).

• If you keep the square V and use isotropic Gaussian noise on the
outputs there is a simple EM algorithm, derived by Max Welling
and Markus Weber.

•Much more complex cases have been studied also: nonsquare,
convolutional, time delays in mixing, etc.

• But for that, we need to know about time-series...

Reminder: Means, Variances and Covariances

• Remember the definition of the mean and covariance of a vector
random variable:

E[x] =

∫

x
xp(x)dx = m

Cov[x] = E[(x − m)(x − m)⊤] =

∫

x
(x − m)(x − m)⊤p(x)dx = V

which is the expected value of the outer product of the variable
with itself, after subtracting the mean. Symmetric.

• Also, the (cross)covariance between two variables:

Cov[x,y] = E[(x − mx)(y − my)⊤] = C

=

∫

xy
(x − mx)(y − my)⊤p(x,y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

•  Recall that in PPCA (and FA) the model cannot distinguish between two
different choices for the latent variables: These differ simply by a rotation in latent
space!

ICA Model
•  The simplest form of ICA has as many outputs as sources (square) and no
sensor noise on the outputs:

•  Learning in this case can be done with gradient descent (plus some
tricks to make the updates faster and more stable).

CSC2515: Lecture 8 Continuous Latent Variables

28

ICA Details
• Simplest form of ICA has as many outputs as sources (square)

and no sensor noise on the outputs:

• Learning in this case can be done with gradient descent (plus
some “covariant” tricks to make updates faster and more stable)

• If keep V square, and assume isotropic Gaussian noise on the
outputs, there is a simple EM algorithm

• Much more complex cases have been studied also: non-square,
time delays, etc.

p(z) =
∏

k

p(zk)

x = Vz

•  If we keep V square, and assume isotropic Gaussian noise on the outputs,
there is a simple EM algorithm.

•  Much more complex cases have been studied also: nonsquare, convolutional,
time delays in mixing, etc..

Autoencoders
•  Neural networks can also be used for nonlinear dimensionality reduction.
•  This is achieved by having the same number of outputs as inputs. These
models are called autoencoders.

•  Consider a multilayer perceptron that has D inputs, D outputs, and M hidden
units, with M<D.

•  It is useful if we can squeeze the
information through some kind of bottleneck.

-  If we use a linear network this is very similar
to Principal Components Analysis.

Autoencoders and PCA
•  Given an input x, its corresponding reconstruction is given by:

•  We can determine the network parameters
w by minimizing the reconstruction error:

•  If the hidden and output layers are linear,
it will learn hidden units that are a linear
function of the data and minimize the
squared error.

•  The M hidden units will span the same space as the first m principal
components. The weight vectors may not be orthogonal.

Deep Autoencoders
•  We can put extra nonlinear hidden layers between the input and the bottleneck
and between the bottleneck and the output.

•  This gives nonlinear generalization
of PCA.

•  Much harder to train.

•  It should be very good for non-linear
dimensionality reduction.

•  The network can be trained by the
minimization of the reconstruction
error function.

Geometrical Interpretation
•  Geometrical interpretation of the mappings performed by the network with 2
hidden layers for the case of D=3 and M=2 units in the middle layer.

•  The mapping F1 defines a nonlinear projection of points in the original D-space
into the M-dimensional subspace.

•  The mapping F2 maps from an M-dimensional space into D-dimensional
space .

Deep Autoencoders
•  We can consider very deep autoencoders.

Learning Deep Autoencoders

W

W

W +�

W

W

W

W

W +�

W +�

W +�

W

W +�

W +�

W +�

+�

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine�tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Learning Deep Generative Models – 7

•  There is an efficient way to learn these deep
autoencoders

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505•  By row: Real data, Deep autoencoder with a
bottleneck of 30 linear units, and 30-d PCA.

Deep Autoencoders
•  We can consider very deep autoencoders.
•  Similar model for the MNIST handwritten digits:

Real data

A Deep Autoencoder
(Ruslan Salakhutdinov)

• They always looked like a
really nice way to do non-
linear dimensionality
reduction:
– But it is very difficult to

optimize deep
autoencoders using
backpropagation.

• We now have a much better
way to optimize them.

1000 neurons

500 neurons

500 neurons

250 neurons

250 neurons

30

1000 neurons

28x28

28x28

linear
units

A comparison of methods for compressing
digit images to 30 real numbers.

real
data
30-D
deep auto
30-D logistic
PCA
30-D
PCA

Do the 30-D codes found by the deep
autoencoder preserve the class

structure of the data?

• Take the 30-D activity patterns in the code layer
and display them in 2-D using a new form of
non-linear multi-dimensional scaling (UNI-SNE)

• Will the learning find the natural classes?

entirely
unsupervised
except for the
colors

30-d deep autoencoder

30-d logistic PCA

30-d PCA

•  Deep autoencoder produces much better reconstructions.

Class Structure of the Data
•  Do the 30-D codes found by the deep autoencoder preserve the class
structure of the data?

•  Take the 30-D activity patterns in the code layer and display them in 2-D
using a new form of non-linear multi-dimensional scaling (UNI-SNE).

•  Will the learning find the natural classes?

Class Structure of the Data
•  Do the 30-D codes found by the deep autoencoder preserve the class
structure of the data?

A Deep Autoencoder
(Ruslan Salakhutdinov)

• They always looked like a
really nice way to do non-
linear dimensionality
reduction:
– But it is very difficult to

optimize deep
autoencoders using
backpropagation.

• We now have a much better
way to optimize them.

1000 neurons

500 neurons

500 neurons

250 neurons

250 neurons

30

1000 neurons

28x28

28x28

linear
units

A comparison of methods for compressing
digit images to 30 real numbers.

real
data
30-D
deep auto
30-D logistic
PCA
30-D
PCA

Do the 30-D codes found by the deep
autoencoder preserve the class

structure of the data?

• Take the 30-D activity patterns in the code layer
and display them in 2-D using a new form of
non-linear multi-dimensional scaling (UNI-SNE)

• Will the learning find the natural classes?

entirely
unsupervised
except for the
colors

Learning 2-D topic Space
•  Latent Semantics Analysis (LSA) uses SVD to get a low-rank approximation
of the log of term-frequency matrix:

20 newsgroup corpus: Learning 2-D topic space
Autoencoder 2−D Topic Space

talk.religion.misc

comp.graphics

sci.cryptography

misc.forsale

rec.sport.hockey

talk.politics.mideast
LSA 2−D Topic Space

• Latent Semantics Analysis (LSA) uses SVD to get a low-rank
approximation of the log of term-frequency matrix:

log(1 + M (doc, w)) ∼ USV

U = |doc|× d, S = d × d, V = d × |w|.
• A test query q is represented as d-dim vector S−1V log (1 + q).

13

20 newsgroup corpus: Learning 2-D topic space
Autoencoder 2−D Topic Space

talk.religion.misc

comp.graphics

sci.cryptography

misc.forsale

rec.sport.hockey

talk.politics.mideast
LSA 2−D Topic Space

• Latent Semantics Analysis (LSA) uses SVD to get a low-rank
approximation of the log of term-frequency matrix:

log(1 + M (doc, w)) ∼ USV

U = |doc|× d, S = d × d, V = d × |w|.
• A test query q is represented as d-dim vector S−1V log (1 + q).

13

20 newsgroup corpus: Learning 2-D topic space
Autoencoder 2−D Topic Space

talk.religion.misc

comp.graphics

sci.cryptography

misc.forsale

rec.sport.hockey

talk.politics.mideast
LSA 2−D Topic Space

• Latent Semantics Analysis (LSA) uses SVD to get a low-rank
approximation of the log of term-frequency matrix:

log(1 + M (doc, w)) ∼ USV

U = |doc|× d, S = d × d, V = d × |w|.
• A test query q is represented as d-dim vector S−1V log (1 + q).

13

Reuters dataset
•  Autoencoder: 2000-500-250-125-2 Reuters Corpus: Learning 2-D topic space

Autoencoder 2−D Topic Space

Legal/JudicialLeading Ecnomic
Indicators

European Community
Monetary/Economic

Accounts/
Earnings

Interbank Markets

Government
 Borrowings

Disasters and
Accidents

Energy Markets

LSA 2−D Topic Space

14

