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Project Reminder

e Brief 5-minute presentations of projects will take place on Monday,
March 23. You need to send me 6-7 slides in pdf formtat describing your
project.

e Deadline: Sunday March 22, 2015. Submit your slides by e-mail:
rsalakhu@cs.toronto.edu

 You should have your name, and project title on the first slide.

* You will have 5-7 mins to briefly describe your project and what you
would want to accomplish in this project.

* Brief presentations will be done in an alphabetical order.



Continuous Latent Variable Models

e Often there are some unknown underlying causes of the data.

e So far we have looked at models with discrete latent variables, such as
mixture of Gaussians.

e Sometimes, it is more appropriate to think in terms of continuous
factors which control the data we observe.

» Motivation: for many datasets, data points lie close to a manifold of
much lower dimensionality compared to that of the original data space.

 Training continuous latent variable models often called dimensionality
reduction, since there are typically many fewer latent dimensions.

e Examples: Principal Components Analysis, Factor Analysis,
Independent Components Analysis



Intrinsic Latent Dimensions

 What are the intrinsic latent dimensions in these two datasets?
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 How can we find these latent dimensions from this high-dimensional
data.



Intrinsic Latent Dimensions

* |In this dataset, there is only 3 degrees of freedom of variability,
corresponding to the vertical and horizontal translations, and rotations.

IEENENE!

 Each image undergoes a random displacement and rotation within
some larger image field.

e The resulting images have 100 x 100 = 10,000 pixels.



Generative View

e Each data example generated by first selecting a point from a
distribution in the latent space, then generating a point from the
conditional distribution in the input space

/
e Simplest latent variable models: Assume Gaussian
distribution for both latent and observed variables.

e This leads to probabilistic formulation of the Principal
Component Analysis and Factor Analysis. X

* We will first look at standard PCA, and then consider its probabilistic
formation.

e Advantages of probabilistic formulation: use of EM for parameter
estimation, mixture of PCAs, Bayesian PCA.



Principal Component Analysis

e Used for data compression, visualization, feature extraction, dimensionality
reduction.

* The goal is find M principal components %) /
underlying D-dimensional data Xn

- select the top M eigenvectors of S (data \/ \'

| . S
covariance matrix): {uy, ..., uns }. /

- project each input vector x into this subspace, >/\o
€.Jd. 2n1 = Xgul.
e Full projection into M dimensions » Two views/derivations:
takes form: - Maximize variance (scatter of green
i u, ] points).

xpxy| = [z1- -z - Minimize error (red-green distance
T .
RJVa per data point).




Maximum Variance Formulation

» Consider a dataset {x,,...,X\}, X, € RP. Our goal is to project data onto a

space having dimensionality M < D.

e Consider the projection into M=1 dimensional space.

 Define the direction of this space using a
D-dimensional unit vector u,, so that uf u; = 1.

» Objective: maximize the variance of the projected
data with respect to u,.

1 T T 212 T
~ g {ui x, —u;x}* =uj Suy
n=1

where sample mean and data covariance is given by:

% = —ZXn

N ‘=
1 X T
S = NZ (xn, — X)(xXn — X)




Maximum Variance Formulation

* Maximize the variance of the projected data:
N
T T2 T
~ Z{u1 X, —ui X}* = uj Suy X e
n=1 i /

* Must constrain ||u,|| = 1. Using Langrage \/\
multiplier, maximize: / Xp,
N/

ul'Su; + A\(1 —ufuy) /

« Setting the derivative with respect to u, to zero: >

Su1 = )\1111.
* Hence u, must be an eigenvector of S.

* The maximum variance of the projected data is given by:
ulTSul = )\1.

e Optimal u, is principal component (eigenvector with maximal eigenvalue).



Minimum Error Formulation

e Introduce a complete orthonormal set of D-dimensional basis vectors:
{ui,...,up}:

T — 5.,
U' uj i 57/].

o~

» Without loss of generality, we can write:

D

_ § : _ T

— ApiUi, Qpi — X, Ug.
1=1 \

Rotation of the coordinate system to a
new system defined by u,.

e Our goal is to represent data points by the projection into M-dimensional
subspace (plus some distortion):

» Represent M-dim linear subspace by the first M of the basis vectors:
M

X, szuz+ Z b;u;.

=1 1=M-+1



Minimum Error Formulation

e Represent M-dim linear subspace by the first M of the basis vectors:

M D
in = E Zni W —+ bzuz
1=1 =M1

where z; depend on the particular data point and b,

are constants.

N

» Objective: minimize distortion with respect to u;, z;, e
and b.. 1 N , /
. . Znj — X:',Z;uj'
* Minimizing with respect to z;, b;: T
b; = X uj;
J J
e Hence, the objective reduces to:
1 N D D
T ST \2 T
J:Ny: y: (x;u; — X u;)* = Z u; Su;.
n=1i=M+1 i=M+1



Minimum Error Formulation

e Minimize distortion with respect to u;: constraint minimization problem:

1 N D
J=5 D ke —%al?= ) ufSu.
n=1 1=M-+1

e The general solution is obtained by choosing u; to
be eigenvectors of the covariance matrix:

Sui = )\7111Z
D

Xn

N
\//
/

//'u1
N

Ne

« The distortion is then given by: J = Z Aj.
i=M+1

v

* The objective is minimized when the remaining D-M components are the

eigenvectors of S with lowest eigenvalues — same result.

* We will later see a generalization: deep autoencoders.



Applications of PCA

e Run PCA on 2429 19x19 grayscale images (CBCL database)

Pl S tlrisba gt e et s

e Data compression: We can get good reconstructions with only 3 components.

» Pre-processing: We can apply a standard classifier to latent representation --
PCA with 3 components obtains 79% accuracy on face/non-face discrimination in
test data vs. 76.8% for mixture of Gaussians with 84 components.

e Data visualization: by projecting the data onto the first two principal
components.



Learned Basis

e Run PCA on 2429 19x19 grayscale images (CBCL database)
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PCA vs. Fisher’'s LDA

» A comparison of PCA with Fisher’s LDA for linear dimensionality reduction.
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» PCA chooses direction of maximum variance (magenta curve) leading to
strong class overlap (unsupervised).

» LDA takes into account the class labels (supervised), leading to a
projection into the green curve.



PCA for High-Dimensional Data

 In some applications of PCA, the number of data points is smaller than the
dimensionality of the data space, i.e. N<D.

* In so far, we need to find the eigenvectors of the D x D data covariance
matrix S, which scales as O(D3).

 Direct application of PCA will often be computationally infeasible.

e Solution: Let X be the N x D centered data matrix. The corresponding
eigenvector equation becomes:

1 T
X" Xu u

e Pre-multiply by X:

1
NXXT(XuZ-) = )\ (Xuy).



PCA for High-Dimensional Data

* Define v, = Xu;, and hence we have:

1
N XXTVi = )\ivi .

 This is an eigenvector equation for the N x N matrix

e It has the same N-1 eigenvalues as the original data covariance matrix S
(which itself has an additional D-N+1 zero eigenvalues).

« Computational cost scales as O(N?3) rather than O(D3).

» To determine eigenvectors, we multiply by XT:

1

(—XTX> (XTv;) = i XTv;.

N

« Hence XT v, is an eigenvector of S with eigenvalue \..

* These eigenvectors may not be normalized.



Probabilistic PCA

e Probabilistic, generative view of data.
» Key advantages of probabilistic PCA (PPCA):

- It represents a constrained form of the Gaussian distribution.

- We can derive EM algorithm for PCA which is computationally efficient.
- PPCA allows us to deal with missing values in the data set.

- We can formulate mixture of PPCAs in a principled way.

- PPCA forms the basis for a Bayesian PCA, in which the dimensionality of
the principal subspace can be determined from the data.

- The existence of a likelihood function allows direct comparisons with
other probabilistic density models

- PPCA can be used to model class conditional densities and hence it can
be applied to classification problems.



Probabilistic PCA

e Key assumptions:

- underlying latent M-dim variable z has a r )
Gaussian distribution.

2
g
- linear relationship between M-dim latent z \

and D-dim observed x variables.

- isotropic Gaussian noise in observed

dimensions £ X, W
A\ NJ
p(z) = N(z[0,I)
p(x|z) = N(x|Wz+ p,o°T)

* Hence the mean of x is a linear function of z governed by the D x M matrix W
and the D-dim vector .

* We will see that the columns of W span the principal subspace of the data
space (Columns of W are the principal components, o2 is sensor noise).



Generative View of PPCA

e Generative view of the PPCA for a 2-d data space and 1-d latent space:

Density contours for the
marginal distribution p(x).

e Draw a value of the latent variable from its prior distribution:
2~ p(2)

e Draw a value for x from from an isotropic Gaussian distribution:

T~ p(x|2) = N(x|w2z + p,o%1).



Marginal Data Density

* The joint p(z,x), the marginal data distribution p(x), and the posterior
distribution p(z|x) are also Gaussian.

e Marginal data density (also known as predictive distribution):

p(x) = [, p(z)p(x|z)dz = N (x|p, WWT + o°T)

e Can derive this result directly by computing the mean and covariance given
that it is Gaussian:

FElx] = Elp+Wz+¢€ =pu+ WE][z] + El¢]
C = Cov[x] =
= El(u+Wz+e—p)(p+Wz+e—p)']
= E[(Wz+ ) (Wz + ¢)T]

WW1L + 521



Redundancy in Parameterization

e The marginal distribution is governed by parameters W, p, o2

= |, p(2)p(x|z)dz = N (x|p, WWT 4 0°T)

* Redundancy in parameterization: rotation of the latent space coordinates.

 Let R be an orthogonal matrix, then define a new matrix:

W = WR, RR” =1
e Then
WWT = WRRTWT = wwT7.

* There is a whole family of matrices all of which give rise to the same
marginal distribution.

* Rotations within the latent space.



Joint Density for PPCA

e Joint density for PPCA, where x is D-dim and z is M-dim is given:

oF - ]

where cross covariance term forms:

Cov[z,x] = E[(z—0)(x— )] = Elz(u+ Wz +e— )]
E[z(Wz 4 )] = W7

* When evaluating marginal distribution, we need to invert a D x D matrix C,
which can be expensive.

» Reduce O(D?) to O(M3) by applying matrix inversion lemma:

Cl=0c"1-0""WWIW +2I)"tWT



Posterior Distribution for PPCA

e Inference in PPCA amounts to computing posterior distribution over latent

variables:
p(zx) = N(zlm,V) ” \
m = M_le(X o I’l’)?
V=0"M"",

poo——

M=W'W + ¢I.

o

* Mean of inferred z is the projection of centered x:
linear operation.

» Posterior variance does not depend on the input x at all.

* Remember:
C=WW7' + 021
Cl=01- W(WTW + 021) Iw?

M matrix

Zny,

n




Constrained Covariance

e Marginal density for PPCA has the following form:

Zp
p(x|0) = N(x|p, WW' +5°T) ;2
Y
where 6 ={W,u, o2). Covariance C \

e The covariance is low-rank outer product of

two long skinny matrices plus a constant H e—
diagonal matrix: Xn
WT
Cov[x] — (W —+ Ji

e Hence PPCA is a constrained Gaussian model.

» We can fit model parameters using maximum likelihood.



Maximum Likelihood

* Model parameters can be determined using maximum likelihood (by
integrating our latent variables):

L(6;X) = logp(X]|0) =) logp(xn|6)
N 1 _
— —Elog IC| — EZ(X" —u)C 1(Xn B M)T
N 1 ~1 T
= 5 log |C| — §TT[C Z(Xn — p)(xp — p)" ] +-const

» Maximizing with respect to the mean: up;r, = X.

* We then have:

N 1
log p(X|0) = —5 log |C| — §T7“ [C'S] + const.

e Maximizing with respect to W and o2 can be solved directly.



Maximum Likelihood

e Objective:
N

1
log p(X|0) = 5 log |C| — §Tr [C™'S] + const.

» C is model covariance; S is sample data covariance.

* In other words, we are trying to make the constrained model covariance as
close as possible to the observed covariance, where “close” means the
trace of the ratio.

1
e Sufficient statistics: mean x = N Z X, and sample covariance S.



Maximum Likelihood

e Objective:
N

1
log p(X|0) = 5 log |C| — §T7“ [C™'S] + const.

e Maximizing with respect to W:

WML — UM(LM — 0'21)1/2R,

where
« Uy isaD x M matrix whose columns are given by the M principal
eigenvectors of the data covariance matrix S.
 Lyisthe M x M diagonal matrix containing M largest eigenvalues.
 Ris an arbitrary M x M orthogonal matrix.

* If the eigenvectors have been arranged in the order of decreasing values of the
corresponding eigenvalues, then the columns of W define the principal subspace
of standard PCA.



Maximum Likelihood

e Objective:
N

1
log p(X|0) = 5 log |C| — §T7’ [C™'S] + const.

e Maximizing with respect to o2:

which is the average variance associated with the discarded dimensions.



EM for PPCA

e Instead of solving directly, we can use EM. The EM can be scaled to very
large high-dimensional datasets.

* The complete-data log-likelihood takes form:

log p(X, Z|p, W,0?%) = > [log p(xy,|2r) + log p(z,,)]

e E-step: compute expectation of complete log likelihood ~ .
with respect to posterior of latent variables z, using

2
g
current parameters. \

« We need to derive E|z,,], E[z,z. ] with respect to

the true posterior: p(z | X). Hoo—— — W

e M-step: maximize with respect to parameters W and o>. g Ny

 Appealing property: EM avoids direct O(ND?) construction of covariance matrix!

* Instead EM involves sums over data cases: O(NDM). It can also be
implemented online, without storing data.



Zero Noise Limit

* We can derive standard PCA as a limit of probabilistic PCA as the noise
term goes to zero: o> — 0.

e ML parameters are the same.

e Inferring the distribution over latent variables is easier: The posterior mean
reduces to:

lim (WIW +oI) "Wl (x — p) = (WIW)'WT (x — p),

g2—0

which represents an orthogonal projection of the data point onto the latent
space — standard PCA.

» Posterior covariance goes to zero:



EM for PPCA

e EM algorithm for PCA.

2t (a) ® (b) (©)
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Bayesian PCA

* |t is easy to take a Bayesian viewpoint and place priors over model
parameters.

& D

* One option is to employ the evidence “ «

2
approximation (empirical Bayes) framework. ? \

* We can define an independent Gaussian prior
over each column of W.

Ho——
» Each such Gaussian has an independent Xn
variance: M . - /
p(Wla) = H (;—;) exp [— §OAiW;’TWi]a

1=

where w; is the it" column of W.

» The values of o, are re-estimated during training by maximizing the marginal
likelihood:
p(Xja,1,0%) = [ PXIW, 1,02)p(W]a)dW,



Example of Bayesian PCA

e Hinton diagram of the matrix W: each element of W is depicted as a square
(white for positive and black for negative).

PPCA Bayesian PCA

» The synthetic dataset contains 300 points in D=10 space with the intrinsic
dimensionality set to D=3.

e Bayesian PCA discovers appropriate dimensionality.



Factor Analysis

e Linear Gaussian latent variable model that is closely related to PPCA.
e Key assumptions:
- underlying latent M-dim variable z has a Gaussian distribution

- linear relationship between M-dim latent z and D-dim observed x
variables.

- diagonal Gaussian noise in observed dimensions.
p(z) N(z[0,I)
p(x]z) = N(x|Wz+ p, ©)

e Wis aD x M factor loading matrix.
* ¥is a M x M diagonal matrix (or axis-aligned).

» The only difference between PPCA and FA is that in Factor Analysis the
conditional distribution of the observed variable x has diagonal rather than
isotropic covariance.



Factor Analysis: Distributions

* As in PPCA, the joint p(z,x), the marginal data distribution p(x), and the
posterior p(z|x) are also Gaussian.

» Marginal distribution (predictive distribution):

= [, p(z)p(x|z)dz = N (x|, WW' + )

* The joint distribution:



Factor Analysis: Optimization

e Parameters are coupled, which makes it impossible to solve for ML parameters
directly, unlike in probabilistic PCA.

e Because FA is a latent variable model, we can use EM, or other nonlinear
optimization

e E-step: compute posterior p(z|x): Use matrix inversion to convert D x D matrix
inversions to M x M.

» M-step: take derivatives of the expected complete log likelihood with respect to
parameters.

e Bayesian treatment of the factor analysis can be obtained by a straightforward
extension of standard FA (as we did for PPCA).



FAvs. PCA

e intuition: Gaussians are hyperellipsoids.

 Mean == center of football.
Eigenvectors of covariance matrix == axes of football.
Eigenvalues == lengths of axes.

 In FA our football is an axis aligned cigar.
In PCA our football is a sphere of radius o2.

i

PCA

el

=
—
N
NI




Rotation Invariance in PCA

* In PPCA the rotation of the data is unimportant: we can multiply the data x by a
rotation matrix Q without changing anything:

po— Qu
W «— QW
VU «— Vv

 However, the scale is important.

e PCA looks for directions of large variance,
so it will chase big noise directions.




Scale Invariance in FA

* In FA, the data can be re-scaled without changing anything.
e Multiply x; by a:

N
2

* However, rotation in data space is important.

» FA looks for directions of large correlation
in the data, so it will not model large
variance noise.




Model Identifiability

e Factors in FA are non-identifiable: not guaranteed to find the same set of
parameters — not just local minimum but invariance.

» Rotate W by any unitary Q and model stays the same — W only appears in
model as outer product WWT

(WQ)(WQ)"' = WW'.

» This means that there is no “one best” setting of the parameters. An infinite
number of parameters all give the same ML score.

» Degeneracy makes unique interpretation of learned factors impossible.



Mixture of Dimensionality Reducers

» The next logical step is to consider a model that has two kinds latent variables:
one discrete cluster, and one vector of continuous causes.

e Such models simultaneously do clustering, and within each cluster,
dimensionality reduction.

» Example: Mixture of Factor Analyzers:

p(z) = N(z|0,I), p(k)=mg, ﬁ
\

p(x|z, k,0) = N (x|u), + Wiz, V),

p(x|0) = Z/ p(x|z, k,0)dz %
— Zﬂ'k/\/ X|[,Lk,WkaT—|—\If)- %ﬂ
k

which is constrained mixture of Gaussians.

e Fitting is done via EM algorithm.



Independent Components Analysis

e ICA is another continuous latent variable model, like FA, but it has a non-
Gaussian and factorized prior on the latent variables.

 This is good in situations where most of the factors are small most of
the time, and do not interact with each other.

e Example: Mixture of speech signals.

* The learning problem is the same: find the weights from the factors to the
outputs and infer the unknown factor values.

* |CA: the factors are sometimes called “sources”, and the learning is sometimes
called “unmixing”.



Geometric Intuition

 Since latent variables are assumed to be independent, we are trying to find
linear transformation of data that recovers independent causes.

» Avoid degeneracies in Gaussian latent variable models: Assume non-Gaussian
prior distribution for latent variables (sources).

» Recall that in PPCA (and FA) the model cannot distinguish between two
different choices for the latent variables: These differ simply by a rotation in latent
space!

» Often we use heavy-tailed source priors, e.g.:

__ 1 — 1
p(’z]) ~ mwcosh(z;)  w(exp(z;)+exp(—=z;))

Learned basis vectors

e Geometric intuition: finding spikes in e
histograms.
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|ICA Model

» The simplest form of ICA has as many outputs as sources (square) and no

sensor noise on the outputs: 7
p(z) = ][p(z)
k
X = Vz

e Learning in this case can be done with gradient descent (plus some
tricks to make the updates faster and more stable).

* If we keep V square, and assume isotropic Gaussian noise on the outputs,
there is a simple EM algorithm.

 Much more complex cases have been studied also: nonsquare, convolutional,
time delays in mixing, etc..



Autoencoders

* Neural networks can also be used for nonlinear dimensionality reduction.

 This is achieved by having the same number of outputs as inputs. These
models are called autoencoders.

» Consider a multilayer perceptron that has D inputs, D outputs, and M hidden
units, with M<D.

e |t is useful if we can squeeze the
information through some kind of bottleneck.

- If we use a linear network this is very similar
to Principal Components Analysis.




Autoencoders and PCA

e Given an input x, its corresponding reconstruction is given by:
M D
2 1
Yr(X, W) = Zw,(gj)a (Z wj(z)xz> , k=1,..,D.

* We can determine the network parameters zD .
w by minimizing the reconstruction error:

N
1
E(w) = 2 E |y(xn, W) — XnHQ- inputs
n=1

e If the hidden and output layers are linear,

it will learn hidden units that are a linear 1
function of the data and minimize the

squared error.

* The M hidden units will span the same space as the first m principal
components. The weight vectors may not be orthogonal.



Deep Autoencoders

* We can put extra nonlinear hidden layers between the input and the bottleneck
and between the bottleneck and the output.

 This gives nonlinear generalization
of PCA.

e |t should be very good for non-linear
dimensionality reduction.

* The network can be trained by the
minimization of the reconstruction
error function.

e Much harder to train.



Geometrical Interpretation

o Geometrical interpretation of the mappings performed by the network with 2
hidden layers for the case of D=3 and M=2 units in the middle layer.

T3a P <0 A 3
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« The mapping F, defines a nonlinear projection of points in the original D-space
into the M-dimensional subspace.

e The mapping F, maps from an M-dimensional space into D-dimensional
space .



Deep Autoencoders

* We can consider very deep autoencoders.

» There is an efficient way to learn these deep
autoencoders

i
.
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* By row: Real data, Deep autoencoder with a

bottleneck of 30 linear units, and 30-d PCA.




Deep Autoencoders

* We can consider very deep autoencoders.
e Similar model for the MNIST handwritten digits:

Real data

30-d deep autoencoder

30-d logistic PCA
30-d PCA

* Deep autoencoder produces much better reconstructions.



Class Structure of the Data

» Do the 30-D codes found by the deep autoencoder preserve the class
structure of the data?

» Take the 30-D activity patterns in the code layer and display them in 2-D
using a new form of non-linear multi-dimensional scaling (UNI-SNE).

» Will the learning find the natural classes?



Class Structure of the Data

» Do the 30-D codes found by the deep autoencoder preserve the class

structure

25
=0

15

of the data?

entirely
- unsupervised
except for the




Learning 2-D topic Space

» Latent Semantics Analysis (LSA) uses SVD to get a low-rank approximation
of the log of term-frequency matrix:

log(1 + M(doc,w)) ~USV
U=|doc| xd,S=dxd,V=dx|w|.

Autoencoder 2-D Topic Space
LSA 2-D Topic Space
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Reuters dataset

e Autoencoder: 2000-500-250-125-2

Autoencoder 2-D Topic Space LSA 2-D Topic Space
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