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Mixture Models 
•  We will look at the mixture models, including Gaussian mixture models.  

•  The key idea is to introduce latent variables, which allows complicated 
distributions to be formed from simpler distributions.   

•  We will see that mixture models can be interpreted in terms of having 
discrete latent variables (in a directed graphical model).  

•  Later in class, we will also look at the continuous latent variables.  



K-Means Clustering 
•  Let us first look at the following problem: Identify clusters, or groups, of 
data points in a multidimensional space.  

•  We would like to partition the data into K clusters, where K is given.  

•  We observe the dataset                      consisting of N D-dimensional 
observations  

•  We next introduce D-dimensional vectors, prototypes,  
•  We can think of µk as representing cluster centers.  

•  Our goal:  

-  Find an assignment of data points to clusters. 
-  Sum of squared distances of each data 
point to its closest prototype is at the 
minimum.  



K-Means Clustering 
•  For each data point xn we introduce a binary vector rn of length K (1-of-K 
encoding), which indicates which of the K clusters the data point xn is 
assigned to. 
•  Define objective (distortion measure): 

•  It represents the sum of squares of the distances of each data point to its 
assigned prototype µk.  

•  Our goal it find the values of  rnk and the 
cluster centers µk so as to minimize the 
objective J.  



Iterative Algorithm 
•  Define iterative procedure to minimize: 

•  Given µk, minimize J with respect to rnk (E-step):  

which simply says assign nth data point xn to its closest cluster center.  

•  Given rnk, minimize J with respect to µk (M-step):  

Set µk equal to the mean of all the data points assigned to cluster k.  

Number of points 
assigned to cluster k. 

•  Guaranteed convergence to local minimum (not global minimum).   

Hard assignments of 
points to clusters. 



Example 
•  Example of using K-means (K=2) on Old Faithful dataset. 



Convergence  
•  Plot of the cost function after each E-step (blue points) and M-step (red 
points) 

The algorithm has converged 
after 3 iterations.  

•  K-means can be generalized by introducing a more general dissimilarity 
measure: 



Image Segmentation 
•  Another application of K-means algorithm.  
•  Partition an image into regions corresponding, for example, to object parts.  
•  Each pixel in an image is a point in 3-D space, corresponding to R,G,B 
channels. 

•  For a given value of K, the algorithm represent an image using K colors.  

•  Another application is image compression. 



Image Compression 
•  For each data point, we store only the identity k of the assigned cluster.  
•  We also store the values of the cluster centers µk.  
•  Provided K ¿ N, we require significantly less data.  

•  Requires 43,200 £ 24 = 1,036,800 bits to transmit directly.   

•  With K-means, we need to transmit K code-book vectors µk -- 24K bits.  

•  The original image 
has 240 £ 180 = 
43,200 pixels.  

•  Each pixel contains 
{R,G,B} values, each of 
which requires 8 bits.  

•  For each pixel we need to transmit log2K bits (as there are K vectors).  
•  Compressed image requires 43,248 (K=2), 86,472 (K=3), and 173,040 (K=10) 
bits, which amounts to compression rations of 4.2%, 8.3%, and 16.7%. 

Original image K=3 K=10 



Mixture of Gaussians 
•  We will look at mixture of Gaussians in terms of discrete latent variables.  

•  The Gaussian mixture can be written as a linear superposition of 
Gaussians: 

•  Introduce K-dimensional binary random 
variable z having a 1-of-K representation: 

•  We will specify the distribution over z in terms 
of mixing coefficients: 



Mixture of Gaussians 
•   Because z uses 1-of-K encoding, we have: 

•  We can now specify the conditional distribution: 

or 

•  We have therefore specified the joint distribution: 

•  The marginal distribution over x is given by: 

•  The marginal distribution over x is given by a Gaussian mixture. 



Mixture of Gaussians 
•  The marginal distribution:  

•  If we have several observations x1,…,xN, it follows that 
for every observed data point xn, there is a corresponding 
latent variable zn.    
•  Let us look at the conditional p(z|x), responsibilities, which 
we will need for doing inference:  

•  We will view ¼k as prior probability that zk=1, and °(zk) is the 
corresponding posterior once we have observed the data.  

responsibility that 
component k takes for 
explaining the data x 



Example 
•  500 points drawn from a mixture of 3 Gaussians.  

Samples from the joint 
distribution p(x,z). 

Samples from the 
marginal distribution p(x). 

Same samples where 
colors represent the 
value of responsibilities.   



Maximum Likelihood 
•  Suppose we observe a dataset {x1,…,xN}, and we model the data using 
mixture of Gaussians.  
•  We represent the dataset as an N by D matrix X.  

•  The corresponding latent variables will be represented and an N by K 
matrix Z. 

•  The log-likelihood takes form: 

Graphical model for a Gaussian mixture 
model for a set of i.i.d. data point {xn}, and 
corresponding latent variables {zn}.    

Model parameters 



Maximum Likelihood 
•  The log-likelihood: 

•  Differentiating with respect to µk and setting to zero: 

•  We can interpret Nk as effective number of points assigned to cluster k.   

•  The mean µk is given by the mean of all the data points weighted by the 
posterior °(znk) that component k was responsible for generating xn.    

Soft assignment 



Maximum Likelihood 
•  The log-likelihood: 

•  Differentiating with respect to §k and setting to zero: 

•  Maximizing log-likelihood with respect to mixing 
proportions: 

•  Note that the data points are weighted by the 
posterior probabilities.  

•  Mixing proportion for the kth component is given by the average 
responsibility which that component takes for explaining the data.   



Maximum Likelihood 
•  The log-likelihood: 

•  Note that the maximum likelihood does not have a closed form solution.  

•  Parameter updates depend on responsibilities 
°(znk), which themselves depend on those 
parameters:  

•  Iterative Solution:  

E-step: Update responsibilities °(znk).  
M-step: Update model parameters ¼k, µk, §k, for k=1,…,K.   



EM algorithm 
•  Initialize the means µk, covariances §k, and mixing proportions ¼k.  
•  E-step: Evaluate responsibilities using current parameter values:  

•  M-step: Re-estimate model parameters using the current responsibilities: 

•  Evaluate the log-likelihood and check for convergence.  



Mixture of Gaussians: Example 
•  Illustration of the EM algorithm (much slower convergence 
compared to K-means)  



An Alternative View of EM 
•  The goal of EM is to find maximum likelihood solutions for models with 
latent variables.   
•  We represent the observed dataset as an N by D matrix X.  
•  Latent variables will be represented and an N by K matrix Z. 
•  The set of all model parameters is denoted by µ.  

•  The log-likelihood takes form: 

•  Note: even if the joint distribution belongs to 
exponential family, the marginal typically does not!  

•  We will call: 
as complete dataset. 
as incomplete dataset. 



An Alternative View of EM 
•  In practice, we are not given a complete dataset {X,Z}, but only 
incomplete dataset {X}. 
•  Our knowledge about the latent variables is given only by the posterior 
distribution p(Z|X,µ).   
•  Because we cannot use the complete data log-likelihood, we can 
consider expected complete-data log-likelihood:  

•  In the E-step, we use the current parameters µold to compute the 
posterior over the latent variables p(Z|X,µold).   
•  We use this posterior to compute expected complete log-likelihood.  
•  In the M-step, we find the revised parameter estimate µnew by 
maximizing the expected complete log-likelihood:  

Tractable 



The General EM algorithm 
•  Given a joint distribution p(Z,X|µ) over observed and latent variables 
governed by parameters µ, the goal is to maximize the likelihood function 
p(X|µ) with respect to µ.  

•  E-step: Compute posterior over latent variables: p(Z|X,µold).   
•  Initialize parameters µold. 

•  M-step: Find the new estimate of parameters µnew:   

   where 

•  Check for convergence of either log-likelihood or the parameter values. 
Otherwise: 

   and iterate. 



Gaussian Mixtures Revisited 
•  We now consider the application of the latent variable view of EM the 
case of Gaussian mixture model.  
•  Recall: 

-- complete dataset. -- incomplete dataset. 



Maximizing Complete Data 
•  Consider the problem of maximizing the likelihood for the complete 
data: 

-- complete dataset. 

•  Maximizing with respect to mixing proportions 
yields:  

•  And similarly for the means and covariances.  

Sum of K independent 
contributions, one for each 
mixture component. 



Posterior Over Latent Variables 
•  Remember: 

•  The posterior over latent variables takes form: 

•  Note that the posterior factorizes over n points, 
so that under the posterior distribution {zn} are 
independent.  



Expected Complete Log-Likelihood 
•   The expected value of indicator variable znk under the posterior 
distribution is: 

•  This represent the responsibility of component k for data point xn.  

•  The expected complete data log-likelihood is:  

•  The complete-data log-likelihood:  



Expected Complete Log-Likelihood 
•   The expected complete data log-likelihood is:  

•  Maximizing the respect to model parameters we obtain:  



Relationship to K-Means 
•  Consider a Gaussian mixture model in which covariances are shared 
and are given by ²I.  

•  Consider EM algorithm for a mixture of K Gaussians, in which we treat ² 
as a fixed constant. The posterior responsibilities take form: 

•  Consider the limit ² ! 0. 
•  In the denominator, the term for which                      is smallest will go 
to zero most slowly. Hence °(znk) ! rnk, where            



Relationship to K-Means 
•   Consider EM algorithm for a mixture of K Gaussians, in which we treat 
² as a fixed constant. The posterior responsibilities take form: 

•  Finally, in the limit ² ! 0, the expected complete log-likelihood 
becomes: 

•  Hence in the limit, maximizing the expected complete log-likelihood is 
equivalent to minimizing the distortion measure J for the K-means 
algorithm.  


