STA 414/2104: Machine Learning

Russ Salakhutdinov

Department of Computer Science Department of Statistics rsalakhu@cs.toronto.edu http://www.cs.toronto.edu/~rsalakhu/

Lecture 6

Gaussian Processes

• So far, we have considered linear regression models of the form:

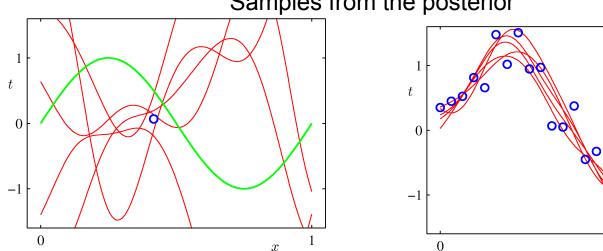
$$f(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$$

where **w** is a vector of parameters and $\phi(\mathbf{x})$ is a vector of fixed nonlinear basis functions.

x

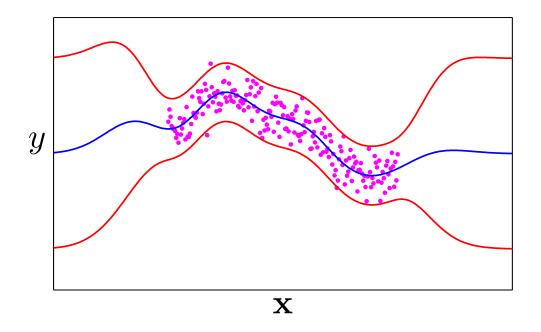
• A prior distribution over \mathbf{w} induces a prior distribution over functions $f(\mathbf{x}, \mathbf{w})$.

• Given a training dataset, we compute the posterior distribution over **w**, which induces a posterior distribution over functions $f(\mathbf{x}, \mathbf{w})$.



Gaussian Processes

• You want to learn a function f with error bars from data D.



• A Gaussian process defines a distribution over functions p(f) which can be used for Bayesian regression:

$$p(f|\mathcal{D}) = \frac{p(f)p(\mathcal{D}|f)}{p(\mathcal{D})}$$

Gaussian Processes

• In the Gaussian process viewpoint, we define a prior probability distributions over functions directly.

• May seem difficult: How can we define a distribution over the uncountably infinite space of functions?

• Insight: for a finite training set, we only need to consider the values of the functions at discrete set of input values x_n .

• Hence in practice, we work in a finite space.

• Many related models: In geostatistics literature, GP regression is known as kriging. See also a recent book on GPs by Rasmussen & Williams (2006).

Linear Regression Revisited

• Consider the following linear model, defined in terms of M linear combinations of fixed basis functions:

$$f(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$$

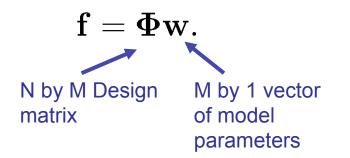
• We place a Gaussian prior over model parameters:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

• For any given fixed value of **w**, we have a corresponding linear function. A probability distribution over **w** defines a probability distribution over functions.

• Given a dataset $\mathbf{X} = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N}$, we will denote the values of the function as $\mathbf{f} = [f(\mathbf{x}_1), f(\mathbf{x}_2), ..., f(\mathbf{x}_N)]^T$.

• Hence:



Linear Regression Revisited

 $\mathbf{f} = \mathbf{\Phi}\mathbf{w}, \ p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$

 Observe that y is a linear combination of Gaussian random variables, and hence is itself Gaussian:

$$\mathbb{E}[\mathbf{f}] = \mathbf{\Phi}\mathbb{E}[\mathbf{w}] = 0$$
$$\operatorname{cov}(\mathbf{f}) = \mathbb{E}[\mathbf{f}\mathbf{f}^T] = \mathbf{\Phi}\mathbb{E}[\mathbf{w}\mathbf{w}^T]\mathbf{\Phi}^T = \frac{1}{\alpha}\mathbf{\Phi}\mathbf{\Phi}^T = \mathbf{K}$$

Here, **K** is known as the Gramm matrix with elements:

$$\mathbf{K}_{nm} = k(\mathbf{x}_n, \mathbf{x}_m) = \frac{1}{\alpha} \boldsymbol{\phi}(\mathbf{x}_n)^T \boldsymbol{\phi}(\mathbf{x}_m),$$

where $k(\mathbf{x}, \mathbf{x}')$ is the kernel function.

• This model provides a particular example of a Gaussian process.

Gaussian Process

• A Gaussian process (GP) is a random function **f**: $X \to R$, such that for any finite set of input points $\{x_1, x_2, ..., x_N\}$,

$$\begin{bmatrix} f(\mathbf{x}_1) \\ \vdots \\ f(\mathbf{x}_N) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} m(\mathbf{x}_1) \\ \vdots \\ m(\mathbf{x}_N) \end{bmatrix}, \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}_N, \mathbf{x}_1) & \cdots & k(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix} \right)$$

where the parameters are the mean function $m(\mathbf{x})$ and covariance kernel $k(\mathbf{x},\mathbf{x'})$.

• Note that a random function is a stochastic process. It is a collection of random variables $\{f(\mathbf{x})\}_{\mathbf{x} \in \mathcal{X}}$, one for each possible value \mathbf{x} (see Rasmussen and Williams, 2006).

• Key point about Gaussian Processes: Given a dataset $\{x_1, x_2, ..., x_N\}$, the marginal distribution over $[f(x_1), f(x_2), ..., f(x_N)]$ is completely specified by the second-order statistics: the mean and covariance.

Gaussian Process

• In many applications, we will have no prior knowledge about the mean function f(**x**). By symmetry, we take it be zero.

• The specification of a Gaussian Process is then completed by specifying the covariance function, evaluated at any two input points x_n and x_m :

$$\mathbb{E}[f(\mathbf{x}_n f(\mathbf{x}_m)] = k(\mathbf{x}_n, \mathbf{x}_m).$$

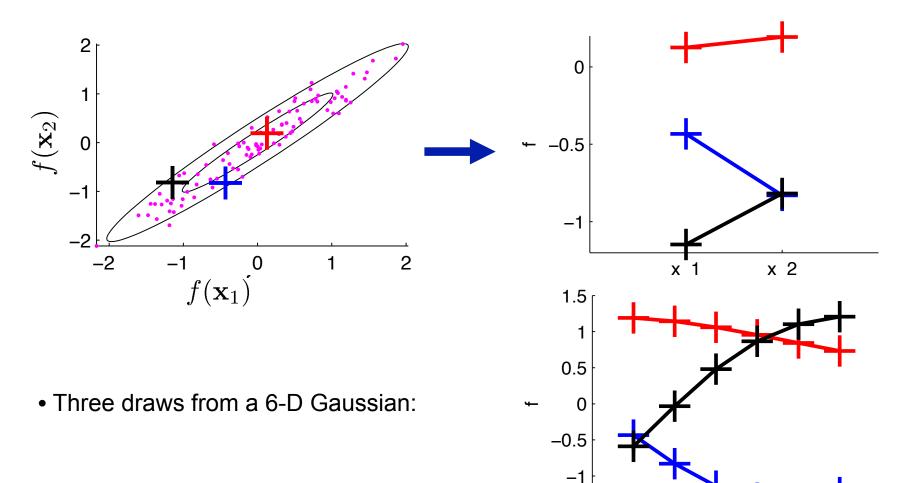
• One commonly used covariance function is squared exponential:

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left(-\frac{\theta}{2}||\mathbf{x}_n - \mathbf{x}_m||^2\right)$$

• Covariance (kernel) function is typically chosen to express the property that, for inputs x_n and x_m that are similar, the corresponding values $f(x_n)$ and $f(x_m)$ will be more strongly correlated than for dissimilar points.

Visualizing Draws from GPs

• Visualizing draws from 2-D Gaussian:



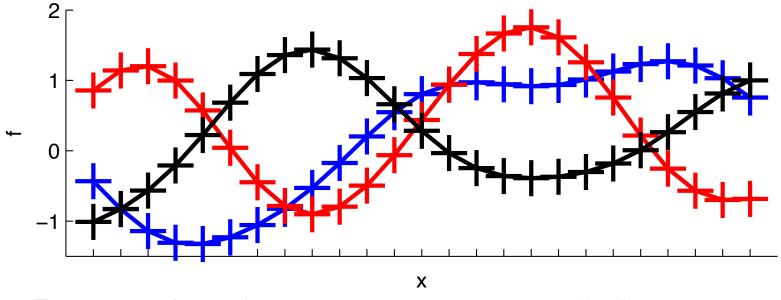
-1.5

x_1 x_2 x_3 x_4 x_5 x_6

Slide Credit: Iain Murray

Visualizing Draws from GPs

• Three draws from 25-D Gaussian

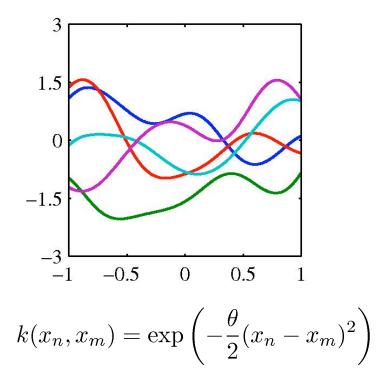


- To generate these, the mean was set to zero: zeros(25,1)
- The covariance was set using a covariance function: $\Sigma_{nm} = k(\mathbf{x_n}, \mathbf{x_m})$.
- The x's are the positions that are planted the tics on the axis.

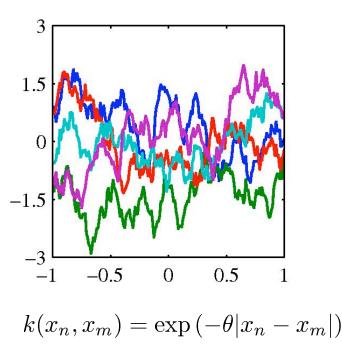
We can visualize draws from a GP iterative sampling $f(x_n) | f(x_1),...,f(x_{n-1})$ on a sequence of input points $x_1, x_2, ..., x_n$.

Samples from GPs

Squared-exponential kernel



Exponential kernel



• Ornstein-Uhlenbeck process that describes Brownian motion.

GPs for Regression

• We need to account for noise on the observed target values:

$$t_n = f_n + \epsilon_n,$$

where $f_n = f(\mathbf{x}_n)$, and ϵ_n is an independent random noise variable. We will assume Gaussian noise:

$$p(t_n|f_n) = \mathcal{N}(t_n|f_n, \beta^{-1}).$$

• Given a dataset $\mathbf{X} = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N}$, and corresponding target values $\mathbf{t} = {t_1, t_2, ..., t_N}$, the conditional takes form:

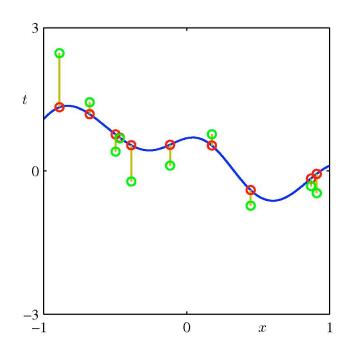
$$p(\mathbf{t}|\mathbf{f}) = \mathcal{N}(\mathbf{t}|\mathbf{f}, \beta^{-1}\mathbf{I}_N).$$

• From the definitions of a Gaussian process, the marginal distribution p(f) is given by the Gaussian:

$$p(\mathbf{f}) = \mathcal{N}(\mathbf{f}|\mathbf{0}, \mathbf{K}).$$

Illustration

• Illustration of sampling of targets $\{t_n\}$ from a Gaussian process.



• The blue curve shows a sample from a GP prior:

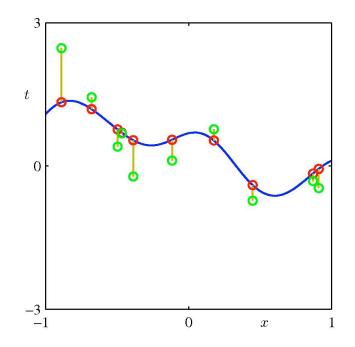
 $f \sim \mathcal{GP}$

- The red points show the values of f_n , obtained by evaluating the function at a set of input values $\{x_n\}$.
- The green points show the corresponding values of $\{t_n\}$:

$$p(t_n|f_n) = \mathcal{N}(t_n|f_n, \beta^{-1}).$$

Marginal Distribution

• The marginal distribution p(t), conditioned on the set of inputs X, can be obtained by integrating over f:



$$p(\mathbf{t}) = \int p(\mathbf{t}|\mathbf{f}) p(\mathbf{f}) d\mathbf{f} = \mathcal{N}(\mathbf{t}|\mathbf{0}, \mathbf{C}),$$

where the covariance matrix is given by:

$$C(\mathbf{x}_n, \mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m) + \beta^{-1} \delta_{nm}.$$

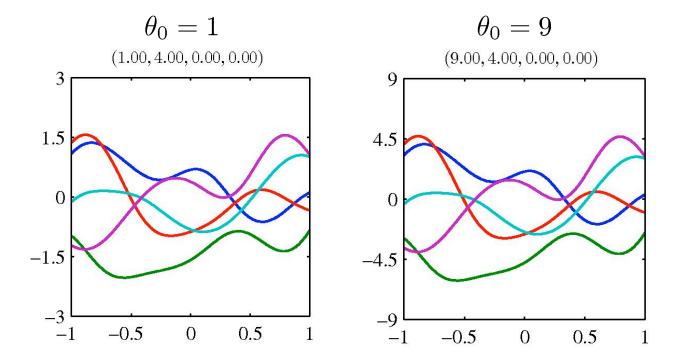
• The two Gaussian sources of randomness, one associated with f(x) and the other with noise, are independent, and so their covariances add.

Covariance Function

• One widely used covariance (kernel) function for GP regression is given by the squared-exponential plus constant and linear terms:

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{\theta_1}{2}||\mathbf{x}_n - \mathbf{x}_m||^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m$$

• Note that the last term corresponds to a parametric model that is a linear function of the input variables.

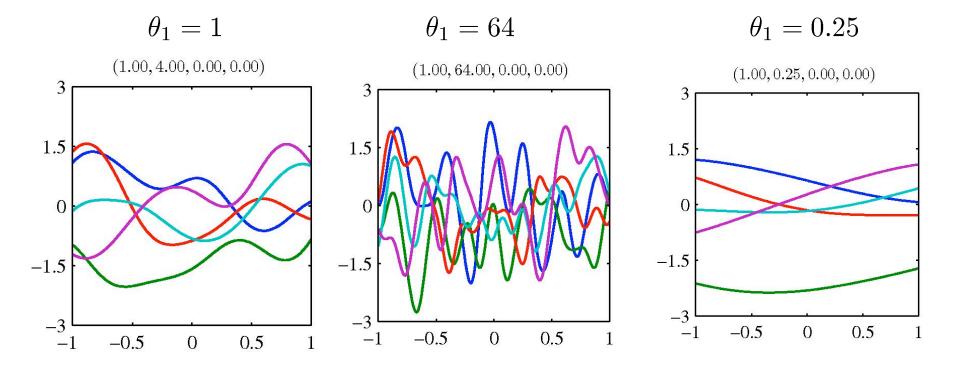


Covariance Function

• One widely used covariance (kernel) function for GP regression is given by the squared-exponential plus constant and linear terms:

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{\theta_1}{2}||\mathbf{x}_n - \mathbf{x}_m||^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m$$

• Note that the last term corresponds to a parametric model that is a linear function of the input variables.

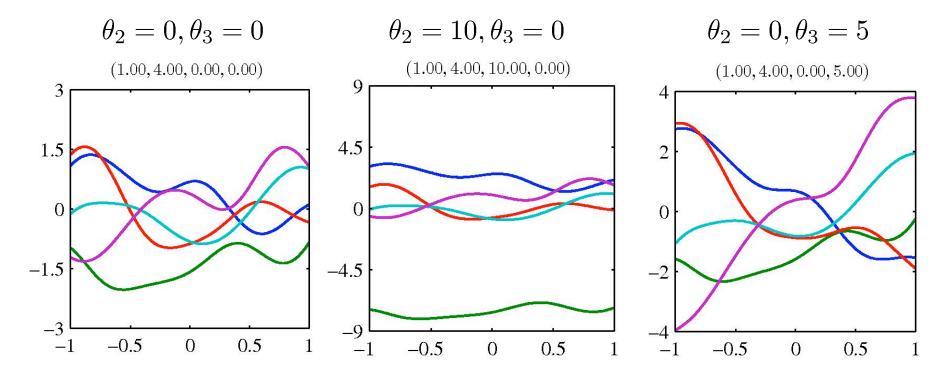


Covariance Function

• One widely used covariance (kernel) function for GP regression is given by the squared-exponential plus constant and linear terms:

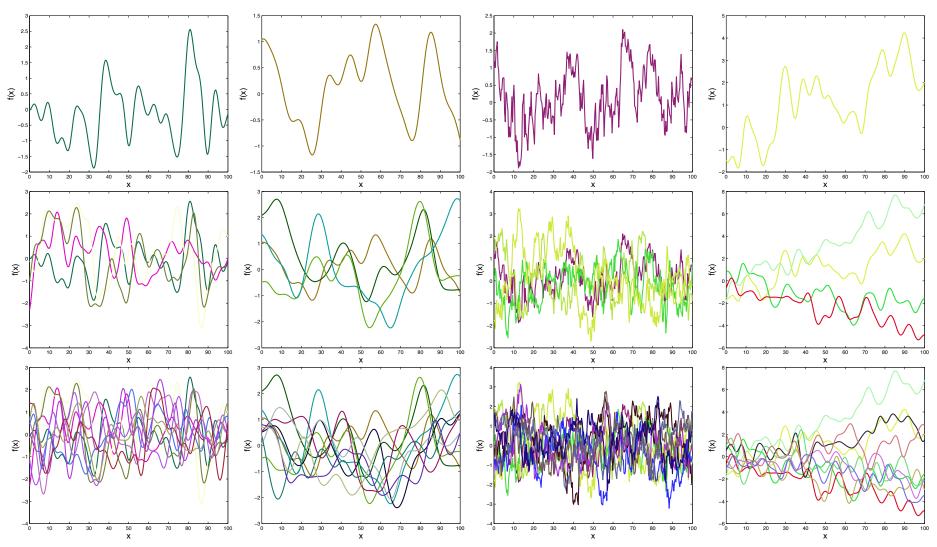
$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{\theta_1}{2}||\mathbf{x}_n - \mathbf{x}_m||^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m$$

• Note that the last term corresponds to a parametric model that is a linear function of the input variables.



Samples from GPs

• Samples from GPs with different covariance functions:



Prediction

- Suppose we are given a dataset $\mathbf{X} = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N}$, with target values $\mathbf{t} = {t_1, t_2, ..., t_N}$.
- Our goal is predict t_{N+1} for a new input vector x_{N+1} .
- Note that the joint distribution over **t** and t_{N+1} is given by:

$$P\left(\left[\begin{array}{c}\mathbf{t}\\t_{N+1}\end{array}\right]\right) = \mathcal{N}\left(\mathbf{0}, \left[\begin{array}{cc}\mathbf{C_N} & \mathbf{k}\\\mathbf{k^T} & c\end{array}\right]\right)$$

where C_N is the N by N matrix with elements:

$$C_N(\mathbf{x}_n, \mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m) + \beta^{-1}\delta_{nm}.$$

c is the scalar:

$$c = k(\mathbf{x}_{N+1}, \mathbf{x}_{N+1}) + \beta^{-1}$$

and **k** is the **N** by 1 vector with elements $k(\mathbf{x}_n, \mathbf{x}_{N+1})$.

Prediction

- Suppose we are given a dataset $\mathbf{X} = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N}$, with target values $\mathbf{t} = {t_1, t_2, ..., t_N}$.
- Our goal is predict t_{N+1} for a new input vector x_{N+1} .
- Note that the joint distribution over t and t_{N+1} is given by:

$$P\left(\left[\begin{array}{c}\mathbf{t}\\t_{N+1}\end{array}\right]\right) = \mathcal{N}\left(\mathbf{0}, \left[\begin{array}{cc}\mathbf{C_N} & \mathbf{k}\\\mathbf{k^T} & c\end{array}\right]\right)$$

• Hence the conditional distribution is Gaussian:

with

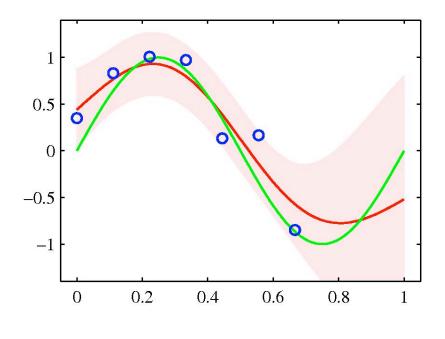
$$P(t_{N+1}|\mathbf{t}) = \mathcal{N}(m(\mathbf{x}_{N+1}), \sigma^{2}(\mathbf{x}_{N+1}))$$

$$m(\mathbf{x}_{N+1}) = \mathbf{k}^{T} \mathbf{C}_{N}^{-1} \mathbf{t}$$

$$\sigma^{2}(\mathbf{x}_{N+1}) = c - \mathbf{k}^{T} \mathbf{C}_{N}^{-1} \mathbf{k}$$
Positive: hence the reduction in uncertainty

Illustration

• Illustration of GP regression applied to the sinusoidal data set.



- The green curve shows the true function.
- The blue data points are samples from the true function plus some additive Gaussian noise
- The red curve shows the mean of the GP predictive distribution, with shaded region corresponding to +/- 2 standard deviations.
- Restriction on the kernel function: The covariance matrix:

$$C(\mathbf{x}_n, \mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m) + \beta^{-1} \delta_{nm}.$$

must be positive definite.

Mean of Predictive Distribution

• Note that the mean of the predictive distribution

$$m(\mathbf{x}_{N+1}) = \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{t}$$

can be written as a function of \mathbf{x}_{N+1} : Linear combination

$$m(\mathbf{x}_{N+1}) = \sum_{n=1}^{N} a_n k(\mathbf{x}_n, \mathbf{x}_{N+1})$$

a_n is the nth component of $C_N^{-1} \mathbf{t}$

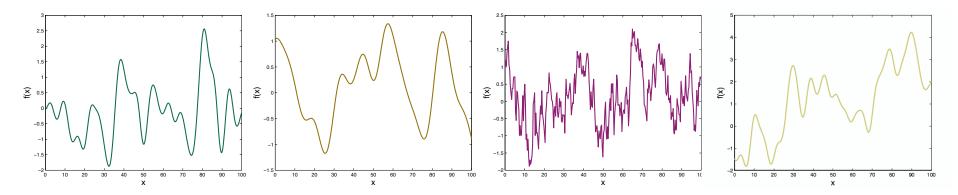
• Also, note that the mean and variance of the predictive distribution both depend on x_{N+1} .

$$m(\mathbf{x}_{N+1}) = \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{t}$$
$$\sigma^2(\mathbf{x}_{N+1}) = c - \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{k}$$

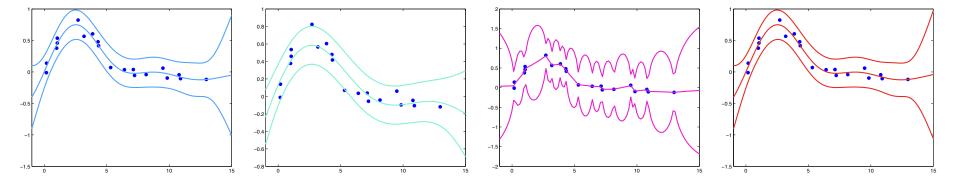
Remember: **k** is the N by 1 vector with elements $k(\mathbf{x}_n, \mathbf{x}_{N+1})$.

Prediction using GPs

• A sample from the prior using different covariance functions:



• Corresponding predictions: mean plus two standard deviations:



Computational Complexity

• The central computation in using GPs will involve the inversion of an N by N matrix C_N , which is of order O(N³):

$$m(\mathbf{x}_{N+1}) = \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{t}$$
$$\sigma^2(\mathbf{x}_{N+1}) = c - \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{k}$$

• By contrast, in the basis function model, we have to invert a matrix S_N of size M by M (where M is the number of basis functions).

• If the number of M basis functions is smaller than the number N of data points, then it will be computationally more efficient to work in the basis function framework (see the first few slides)

• The advantage of GPs is that we can consider covariance functions that can only be expressed in terms of an infinite number of basis functions.

Learning the Hyperparameters

• The predictions of a GP regression model will depend on the choice of the covariance function.

• Instead of fixing the covariance function, we may prefer to use a parametric family of functions and infer the parameter values from data.

• These parameters may govern the length scale of the correlations or the precision of the noise model and correspond to the hyperparameters in a standard parametric model.

hyperparameters

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{\theta_1}{2}||\mathbf{x}_n - \mathbf{x}_m||^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m$$

• How can we infer the values of these parameters?

Learning the Hyperparameters

• We can compute the marginal likelihood function:

$$p(\mathbf{t}|\boldsymbol{\theta}) = \int p(\mathbf{t}|\mathbf{f}), \boldsymbol{\theta}) p(\mathbf{f}|\boldsymbol{\theta}) d\mathbf{f} = \mathcal{N}(\mathbf{t}|\mathbf{0}, \mathbf{C_N}),$$

Hyperparameters of the GP model

• One option is to maximize the log of the marginal likelihood with respect to θ .

$$\ln p(\mathbf{t}|\theta) = -\frac{1}{2}\ln |\mathbf{C}_N| - \frac{1}{2}\mathbf{t}^T\mathbf{C}_N^{-1}\mathbf{t} - \frac{N}{2}\ln(2\pi).$$

• This corresponds to the type II maximum likelihood, or empirical Bayes:

• The maximization can be performed using gradient-based optimization techniques, such as conjugate gradients. The gradients take form:

$$\frac{\partial}{\partial \theta_i} \ln p(\mathbf{t}|\theta) = -\frac{1}{2} \operatorname{Tr} \left(\mathbf{C}_N^{-1} \frac{\partial \mathbf{C}_N}{\partial \theta_i} \right) + \frac{1}{2} \mathbf{t}^T \mathbf{C}_N^{-1} \frac{\partial \mathbf{C}_N}{\partial \theta_i} \mathbf{C}_N^{-1} \mathbf{t}.$$

Learning the Hyperparameters

$$\ln p(\mathbf{t}|\theta) = -\frac{1}{2}\ln |\mathbf{C}_N| - \frac{1}{2}\mathbf{t}^T\mathbf{C}_N^{-1}\mathbf{t} - \frac{N}{2}\ln(2\pi).$$

• Because $\ln p(t|\theta)$ will be a nonconvex function, it will have multiple maxima.

- In the fully Bayesian approach, we can introduce a prior $p(\theta)$ and infer the posterior $p(\theta | \mathbf{t})$.
- In general, the posterior will not have a closed form solution, so we must resort of approximations (typically MCMC).
- Noise: We have assumed that the additive noise, governed by β , is constant.

$$p(t_n|f_n) = \mathcal{N}(t_n|f_n, \beta^{-1}).$$

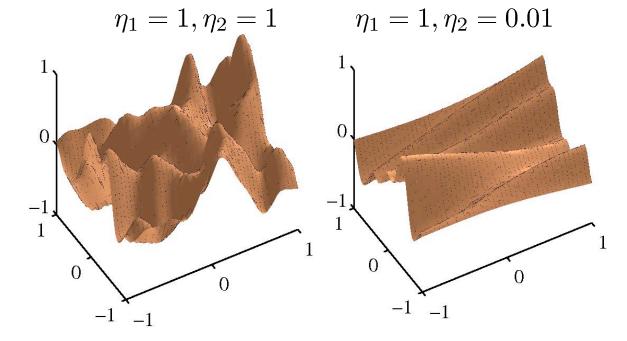
• For some models, known as heteroscedastic, the noise variance itself will depend on **x** (e.g. by introducing another GP that will model log β (**x**)).

Automatic Relevance Determination

• How can we detect inputs variables that have very little effect on the predictive distribution (irrelevant inputs).

• Consider a GP with 2-D input space $\mathbf{x} = (x_1, x_2)$ with the following covariance function:

$$k(\mathbf{x}, \mathbf{x}') = \theta_0 \exp\left(-\frac{\theta_1}{2} \sum_{i=1}^2 \eta_i (x_i - x'_i)^2\right)$$



• As η_i becomes small, the function becomes insensitive to the corresponding value of x_i (input x_i becomes less relevant).

Automatic Relevance Determination

• The ARD framework can be easily incorporated into exponential-quadratic kernel:

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{1}{2} \sum_{i=1}^D \eta_i (x_{ni} - x_{mi})^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m$$

Control relevance of input dimension i, where D is the dimensionality of the input space

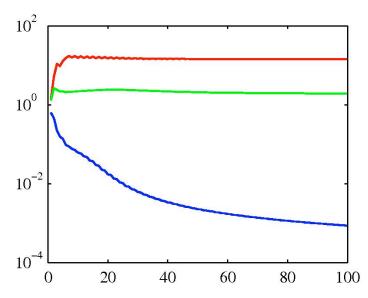
• We can optimize these parameters by performing type II maximum likelihood (by optimizing marginal log-likelihood)

$$\ln p(\mathbf{t}|\theta) = -\frac{1}{2}\ln |\mathbf{C}_N| - \frac{1}{2}\mathbf{t}^T\mathbf{C}_N^{-1}\mathbf{t} - \frac{N}{2}\ln(2\pi).$$

• The relative importance of different inputs can be inferred from data.

Illustration

- Example: We have a dataset with 3-D inputs (x_1, x_2, x_3) . The target variables t_n are sampled as follows:
 - Sample 100 values of x_1 from a Gaussian, evaluate the function $sin(2\pi x_1)$, and add Gaussian noise.
 - Let $x_2 = x_1$, and add Gaussian noise.
 - Sample 100 values of x_3 from an independent Gaussian distribution.
- Hence x_1 is a good predictor of t, x_2 is a more noisy predictor of t, and x_3 has only chance correlation with t.



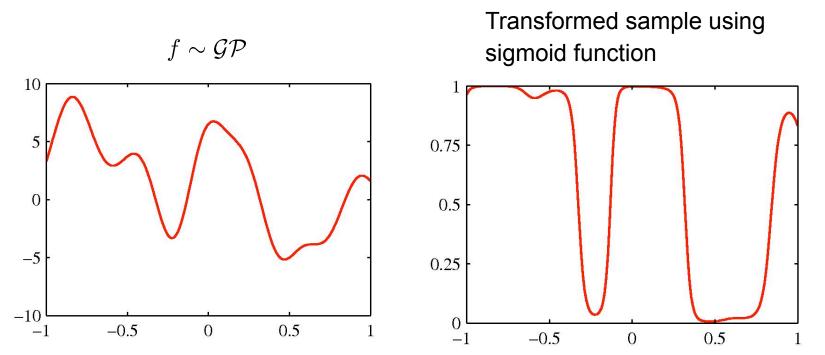
• Plot displays η_1 (red), η_2 (green), and η_3 (blue) as a function of the number of iterations when optimizing the marginal likelihood.

Classification with GPs

- Consider a two-class problem with targets $t \in \{0,1\}$.
- Define a Gaussian process over a function f(x).
- Transform the function using sigmoid function:

$$y(\mathbf{x}) = \sigma(f(\mathbf{x})) = \frac{1}{1 + \exp(-f(\mathbf{x}))}$$

• Hence
$$y(\mathbf{x}) \in (0,1)$$
.

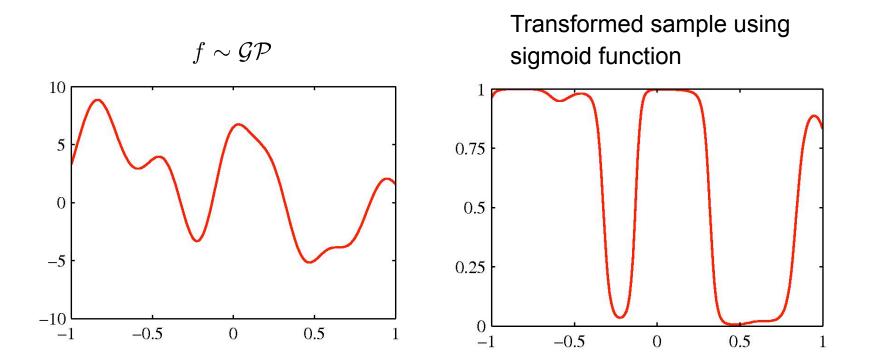


Classification with GPs

• After transformation, we obtain a non-Gaussian stochastic process over functions y(x).

• The probability distribution over t is given by the Bernoulli distribution:

$$p(t|f) = \sigma(f)^t (1 - \sigma(f))^{1-t}.$$



Classification with GPs

- Suppose we are given a dataset $\mathbf{X} = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N}$, with target values $\mathbf{t}_N = {t_1, t_2, ..., t_N}$.
- Our goal is predict t_{N+1} for a new input vector x_{N+1}
- Predictive distribution is given by:

$$p(t_{N+1} = 1 | \mathbf{t}_N) = \int p(t_{N+1} = 1 | f_{N+1}) p(f_{N+1} | \mathbf{t}_N) df_{N+1}$$

given by $\sigma(f(\mathbf{x}_{N+1}))$ Posterior is also intractable.

• This integral is analytically intractable. Can resort to MCMC by approximately sampling from the posterior, and performing Monte Carlo integration:

$$p(t_{N+1} = 1 | \mathbf{t}) = \frac{1}{M} \sum_{m} p(t_{N+1} = 1 | f_{N+1}^{(m)})$$

where $f_{N+1}^{(m)} \sim p(f_{N+1} | \mathbf{t}_N)$

Approximations

• Another option:

$$p(t_{N+1} = 1 | \mathbf{t}_N) = \int p(t_{N+1} = 1 | f_{N+1}) p(f_{N+1} | \mathbf{t}_N) df_{N+1}$$

Gaussian approximation

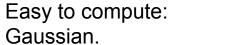
• Use approximate formula for the convolution of a logistic sigmoid and a Gaussian distribution.

- Three different approaches to obtaining a Gaussian approximation:
 - Variational Inference
 - Expectation Propagation
 - Laplace Approximation

Laplace Approximation

• We seek to obtain a Gaussian approximation to the posterior. Using Bayes rule we have:

$$p(f_{N+1}|\mathbf{t}_N) = \int p(f_{N+1}, \mathbf{f}_N|\mathbf{t}_N) d\mathbf{f}_N = \int p(f_{N+1}|\mathbf{f}_N) p(\mathbf{f}_N|\mathbf{t}_N) d\mathbf{f}_N$$



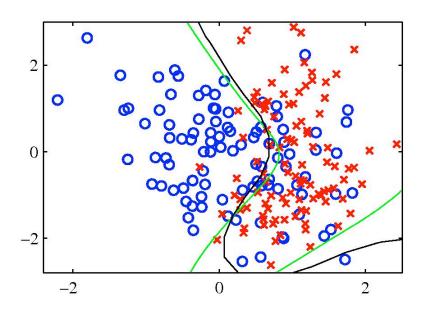
Laplace approximation

• Here $p(\mathbf{f}_N)$ is given by a zero-mean GP with covariance matrix \mathbf{C}_N , and the data term:

$$p(\mathbf{t}_N | \mathbf{f}_N) = \prod_{n=1}^N \sigma(f_n)^{t_n} (1 - \sigma(f_n))^{1 - t_n}$$

• Obtain the Laplace approximation by Taylor expanding log of the posterior: log $p(\mathbf{f}_N \mid \mathbf{t}_N)$.

Classification Results



Optimal decision boundary from the true distribution (green) and the decision boundary from GP classifier (black)

Predictive posterior probability together with GP decision boundary.