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Parametric Distributions

« We want model the probability distribution p(x|@) of a random
variable x given a finite set of observations: {xy,...,xn}

Need to determine @ given {x1,...,xn}

e We will also assume that the data points are i.i.d

: . - . . *
e We will focus on the maximum likelihood estimation €

WA -
of 0\// p(t|x, Warr, Bamr) = N(Hy(x, warr), Bayr)-
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e Remember curve fitting example.
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Linear Basis Function Models

e Remember, the simplest linear model for regression:
d

Y(X, W) = wo + w121 + wako + ... + WqTqg = wo + g W;T;,
j=1
where x = (21, T2, ..., azd)Ta d-dimensional input vector (covariates).

Key property: linear function of the parameters wo, w1, ..., wq .

e However, it is also a linear function of input variables.
Instead consider: M1

y(x, W) = wopo(X) + w1¢1(X) + ... + wrpr—10nm-1(X) = w;$;(x),

.
|
-

where ¢;(x) are known as basis functions.

e Typically ¢o(x) = 1 so that w, acts as a bias (or intercept).

* In the simplest case, we use linear bases functions: ¢;(x) = ;.

e Using nonlinear basis allows the functions y(x, w) to be nonlinear functions of
the input space.



Linear Basis Function Models

Polynomial basis functions: Gaussian basis functions:
1
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Basis functions are global: small Basis functions are local: small changes in x
changes in x affect all basis functions.  only affect nearby basis functions.
p;and s control location and scale (width).



Linear Basis Function Models

Sigmoidal basis functions

) , where 7(a) = — o (—a)

Basis functions are local: small changes
in X only affect nearby basis functions.
p;and s control location and scale
(slope).
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* Decision boundaries will be linear in the feature space ¢, but would
correspond to nonlinear boundaries in the original input space x.

* Classes that are linearly separable in the feature space ¢(x) need not
be linearly separable in the original input space.



Linear Basis Function Models

Original input space Corresponding feature space using
two Gaussian basis functions
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» We define two Gaussian basis functions with centers shown by the green crosses
and with contours shown by the green circles.

* Linear decision boundary (right) is obtained by using logistic regression, and
corresponds to the nonlinear decision boundary in the input space (left, black curve).



Maximum Likelihood

* As before, assume observations arise from a deterministic function with an
additive Gaussian noise:

t =y(x,w) +e,

which we can write as:

p(tlx, w,B) = N(tly(x, w), 57).

e Given observed inputs X = {x1, X2, ..., X}, and corresponding target
values t = [tq, 1o, ..., tN]T under i.i.d assumption, we can write down the
likelihood function:

N

p(t|X,W,5> — HN(tn|WT¢(Xn>75)7

=1

where qb(X) — (gbO(X)? P1 <X>7 e ¢M—1<X>>T°



Maximum Likelihood
Taking the logarithm, we obtain°

Inp(t| X, w, ) = Zln]\/ tn|W! P(xp), )

(tn — WTqb(Xn)) + glnﬁ — %IH(QW).

J
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Y
sum-of-squares error function

Differentiating and setting to zero yields:

N
Vwlnp(tlw,3) =73 Z {th — W' o(xn)} d(x)" =0
n=1



Maximum Likelihood

Differentiating and setting to zero yields:

N
Ve np(tw, 8) = 85 {tn — wTé(xn)} $(x)" = 0.
n=1

Solving for w, we get:

' l \ The Moore-
T\"1 o Penrose pseudo-
WML = <(I) (I)) Pt inverse, 1 .
where ® is known as the design matrix:
[ do(x1) d1(x1) -+ dm-1(x1) \
Po(x2)  P1(x2) -+ Odm—1(x2)

\qﬁo(;KN) ¢1(;<N) C,bM—l.(XN)/



Geometry of Least Squares

e Consider an N-dimensional space, so
that t = [t1,ts,...,tn]" isavectorin
that space.

e Each basis function ¢;(x,,), evaluated
at the N data points, can be represented
as a vector in the same space.

e [f M is less than N, then the M basis
function ¢;(xy,), will span a linear
subspace S of dimensionality M.

e Define: y = ®wmr..

. o(x1) | ¢1(x1) -+ Om—1(x1)
e The sum-of-squares error is equal to do(xa) | d1(x2) - Sar_1(x2)
the squared Euclidean distance &=\ . | . |
between y and t (up to a factor of 1/2). o o S
y P $o(xn) | o1(xn) - dm—1(Xn)

The solution corresponds to the orthogonal projection of t onto the subspace S.



Sequential Learning

e The training data examples are presented one at a time, and the model
parameter are updated after each such presentation (online learning):

wt) —w® _ o B

/ Vs ™

weights after learning vector of derivativgs of the squared
seeing training rate error w.r.t. the weights on t‘he
case t+1 training case presented at time ¢.

e For the case of sum-of-squares error function, we obtain:
T
witt) = w®) _p (tn _w® ¢(Xn)> b(xn).

e Stochastic gradient descent: if the training examples are picked at random
(dominant technique when learning with very large datasets).

e Care must be taken when choosing learning rate to ensure convergence.



Regularized Least Squares

e Let us consider the following error function:
A is called the

Ep(w) + AEw (w) regularization

coefficient.

Data term + Regularization term

e Using sum-of-squares error function with a quadratic penalization
term, we obtain:

AT

| N
T 9
5;{tn—w o (x,)} —|—§W \" %

Ridge

which is minimized by setting: regression

/
w = ()\I + <I>T<I>) Tt

The solution adds a positive constant to the diagonal of ®T & . This makes the
problem nonsingular, even if ®T® is not of full rank (e.g. when the number
of training examples is less than the number of basis functions).



Effect of Regularization

* The overall error function is the sum
of two parabolic bowls. W2

* The combined minimum lies on the
line between the minimum of the

squared error and the origin. @
e The regularizer shrinks model

parameters to zero.

£
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Other Regularizers

Using a more general regularizer, we get:

1 & pyg
5 D At = WTo(xa)}* + 5 D
n=1 7=1
| | |
| | |
q=1 q =2 q=14
Lasso Quadratic



The Lasso

e Penalize the absolute value of the weights:

1 > A
w!° — aremin [5 Z (tn — W d(xn))” + 5 Z |w]|}

W

n=1 j=1

e For sufficiently large A, some of the coefficients will be driven to
exactly zero, leading to a sparse model.

* The above formulation is equivalent to:

N M—1
1
wlasso — argvinin 5 E (tn — WTqb(xn))Q, subject to g lw;| < 7.
n=1 7j=1
- /)
Y

unregularized sum-of-squares error

* The two approaches are related using Lagrange multiplies.

* The Lasso solution is a quadratic programming problem: can be
solved efficiently.



Lasso vs. Quadratic Penalty

Lasso tends to generate sparser solutions compared to a quadratic
regualrizer (sometimes called L; and L, regularizers).




Statistical Decision Theory

* We now develop a small amount of theory that provides a framework
for developing many of the models we consider.

e Suppose we have a real-valued input vector x and a corresponding

target (output) value t with joint probability distribution: p(x, t).

e Qur goal is predict target t given a new value for x:
- for regression: t is a real-valued continuous target.
- for classification: t a categorical variable representing class labels.

The joint probability distribution p(x, t) provides a complete summary of
uncertainties associated with these random variables.

Determining p(x,t) from training data is known as the inference problem.



Example: Classification

Medical diagnosis: Based on the X-ray image, we would like determine
whether the patient has cancer or not.

e The input vector x is the set of pixel intensities, and the output variable t will
represent the presence of cancer, class C,, or absence of cancer, class C,.

L

8

|

/ C,: Cancer present
\ C,: Cancer absent

X -- set of pixel intensities

* Choose t to be binary: t=0 correspond to class C,, and t=1 corresponds to C,.

Inference Problem: Determine the joint distribution p(x,Cx) or equivalently
p(x,t). However, in the end, we must make a decision of whether to give

treatment to the patient or not.



Example: Classification

Informally: Given a new X-ray image, our goal is to decide which of the two
classes that image should be assigned to.

e We could compute conditional probabilities of the two classes, given the input
image:

posterior probability of probability of observed  prior probability
C, given observed data. data given C, for class C,
p(x, Cg p(x|Cr)p(Cy
PR = ZK( ( >c ) ( |p<>><>( o
k=1 DP\% Tk Bayes’ Rule

e If our goal to minimize the probability of assigning x to the wrong class, then
we should choose the class having the highest posterior probability.



Minimizing Misclassification Rate

z

Goal: Make as few misclassifications as
possible. We need a rule that assigns each
value of x to one of the available classes.

p(.T,Cg)

Divide the input space into regions R ;
(decision regions), such that all points in
R j are assigned to class C; .

>
>
R4 R
red+green regions: input blue region: input belongs
belongs to class C,, but is to class C,, but is assigned
assigned to C, \ to G, /
p(mistake) = p(x € Rq1,C2) + p(x € Ra,Cq)

- / p(x,Co) dx + / p(x,Cy) dx.
R1

Ro



Minimizing Misclassification Rate

z

p(macl)

p($,62)




Minimizing Misclassification Rate

8
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p(macl)

p($,62)




Minimizing Misclassification Rate

A

p('TaCQ)
- R > R >
p(mistake) = p(x € R1,C2) + p(x € Ra,C1) = / p(x,Co)dx + / p(x,Cq)dx
Rl RQ

if p(x,C1) > p(x,C2) then we should assign x to class Cj.

Using p(x,Ck) = p(Cr|x)p(X) : To minimize the probability of making mistake, we
assign each x to the class for which the posterior probability p(Cr|x) is largest.



Expected Loss

* Loss Function: overall measure of loss incurred by taking any of the available
decisions.

* Suppose that for x, the true class is C,, but we assign x to class j
— incur loss of Ly; (k,j element of a loss matrix).

Consider medical diagnosis example: example of a loss matrix:

Decision
cancer normal

cancer ( 0 1000 >

Truth

normal 1 0

Expected Loss:

Liip(x,Ck) dx
k J R

Goal is to choose regions R ; as to minimize expected loss.



Reject Option

t p(cif2)

1.0

0.0

reject region



Regression

Let x € RY denote a real-valued input vector, and t € R denote a real-
valued random target (output) variable with joint the distribution p(x,1).
e The decision step consists of finding an estimate y(x) of t for each input x.

e Similar to classification case, to quantify what it means to do well or
poorly on a task, we need to define a loss (error) function: L(¢,y(x)).

e The average, or expected, loss is given by:

// (¢, y(x))p(x, t)dxdt. ,1.

e |f we use squared loss, we obtain: of

// (t—y Xt)dxdt O} Q

0



Squared Loss Function

e If we use squared loss, we obtain:

y(zo)

E[L] = / / (t — y(x)) p(x, £)dxdt.

e Qur goal is to choose y(x) so as to minimize the expected squared loss.

e The optimal solution (if we assume a completely flexible function) is the

conditional average:
yx) = [ tp(tix)t =Bl

The regression function y(x) that

y(z) minimizes the expected squared loss is
given by the mean of the conditional
distribution p(¢|x).

p(t|zo)

o X



Squared Loss Function

e If we use squared loss, we obtain:

(y(x) —t)* = (y(x) — E[t|x] + E[t|x] — ¢)°
= (y(x) — E[t|x])” + 2(y(x) — Et|x)) (E[t]x] — ¢) + (E[t|x] —t)°.

e Plugging into expected loss:

/ {y(x) — Eltx}2p(x) dx + / var [¢}x] p(x) dx

J (\ J
Y
expected loss is m|n|m|zed intrinsic variability of the
when y(x) = E[t|x]. target values.

Because it is independent noise, it
represents an irreducible minimum
value of expected loss.



Other Loss Function

e Simple generalization of the squared loss, called the Minkowski loss:

// (t—y “p(x, t)dxdt.

* The minimum of [E[L]is given by:

- the conditional mean for g=2,
- the conditional median when g=1, and
- the conditional mode for g — 0.



Bias-Variance Decomposition

e Introducing a regularization term can help us control overfitting. But how
can we determine a suitable value of the regularization coefficient?

e Let us examine the expected squared loss function. Remember:

BIL) = [ {u(x) ~ (Y s dx+ [ [ {hGx) — 11, t) axat

g J
for which the optimal prediction is given Y
by the conditional expectation: intrinsic variability of the target
values: The minimum achievable
h(x) = E[t|x] = /tp(t|x) dt. value of expected loss

* If we model h(x)using a parametric function y(x, w), then from a
Bayesian perspective, the uncertainly in our model is expressed
through the posterior distribution over parameters w.

* We first look at the frequentist perspective.



Bias-Variance Decomposition

* From a frequentist perspective: we make a point estimate of w” based
on the dataset D.

* We next interpret the uncertainly of this estimate through the
following thought experiment:

- Suppose we had a large number of datasets, each of size N,
where each dataset is drawn independently from p(x,t).

- For each dataset D, we can obtain a prediction function y(x; D).
- Different datasets will give different prediction functions.

- The performance of a particular learning algorithm is then assessed
by taking the average over the ensemble of these datasets.

* Let us consider the expression:

{y(x; D) — h(x)}".

* Note that this quantity depends on a particular dataset D.



Bias-Variance Decomposition

e Consider:
{y(x;D) — h(x)}*.

* Adding and subtracting the term Ep[y(x; D)|, we obtain

{y(x; D) — h(x)}
= {y(x;D) — Eply(x; D)] + Eply(x; D)] — h(x)}*
= {y(x;D) —Eply(x; D)]}* + {Eply(x; D)] — h(x)}”
+2{y(x; D) — Epy(x; D) H{Ep[y(x; D)] — h(x)}.

» Taking the expectation overD, the last term vanishes, so we get:

Ep [{y(x; D) — h(x)}?]
= {Ep[y(x;D)] — h(x)}* +Ep [{y(x; D) —~ Eply(x; D)}}’] .

J/

"~

(bias)? variance



Bias-Variance Trade-off

expected loss = (bias)? + variance + noise

e T ™~

Average predictions over all Solutions for individual datasets Intrinsic variability
datasets differ from the vary around their averages -- how  f the target
optimal regression function. sensitive is the function to the values.
particular choice of the dataset.
ins)? = [ {Eply(ox D) - h())*p(x) dx
variance = /ED {y(x; D) — Ep[y(x; D)]}?] p(x) dx

noise = / {h(x) — t}°p(x, t) dx dt

* Trade-off between bias and variance: With very flexible models (high
complexity) we have low bias and high variance; With relatively rigid models
(low complexity) we have high bias and low variance.

* The model with the optimal predictive capabilities has to balance between bias
and variance.



Bias-Variance Trade-off

e Consider the sinusoidal dataset. We generate 100 datasets, each containing
N=25 points, drawn independently from h(x) = sin 27z.

High variance Low variance

Low bias High bias



Bias-Variance Trade-off

e Consider the sinusoidal dataset. We generate 100 datasets, each containing
N=25 points, drawn independently from h(x) = sin 27z.

High variance

Low bias

e Note that averaging many solutions to the
complex model with M=25 data points represents a
very good fit to the regression function

e Averaging may be a beneficial procedure.

e Let us examine the bias-variance trade-off
quantitatively.



Bias-Variance Trade-off

e Consider the sinusoidal dataset. We generate 100 datasets, each containing
N=25 points, drawn independently from h(x) = sin 27z.

* The average prediction is estimated as:
Z (s (vias)* = [ {Eoly(x:D)] — b} p(x) dx
=1 variance = /IED {y(x; D) — Eply(x; D)]}z\ p(x)d

* And the integrated squared bias and variance are given by:

(bias)2 = N Z [g(xn) - h(@”n)}2

L

variance = — Y y: () —?J@n)f

where the integral over x weighted by the distribution p(x) is approximated
by the finite sum over data points drawn from that distribution.



Bias-Variance Trade-off

0.15
(bias)*
0.12 variance
(bias)2 + variance
0.09 | test error /
0.06 |
0.03 -
0
-3 -2 —1 0 1 2

In A

From these plots note that over-regularized model (large \) has high bias, and
under-regularized model (low A) has high variance.



Beating the Bias-Variance Trade-off

e We can reduce the variance by averaging over many models trained on
different datasets:

- In practice, we only have a single observed dataset. If we had many
independent training sets, we would be better off combining them into
one large training dataset. With more data, we have less variance.

e Given a standard training set D of size N, we could generate new training
sets, N, by sampling examples from D uniformly and with replacement.

- This is called bagging and it works quite well in practice.

e Given enough computation, we would be better off resorting to the
Bayesian framework (which we will discuss next):

- Combine the predictions of many models using the posterior
probability of each parameter vector as the combination weight.



