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Linear Least Squares

From last class: Minimize the sum of the squares of the errors between
the predictions y(x,,w) for each data point x, and the corresponding
real-valued targetst,.

10} :
| ¢ _®Data Loss function: sum-of-squared error
| function:

N
Bw) = =3 (fw—t,)

(Xw —t)T(Xw — t).

N — N~

Source: Wikipedia



Linear Least Squares

If XTX is nonsingular, then the unique solution is given by:

optjimal vector of

T P— ‘/welghts target values
9:_ — curve fit | /

o w* = (XTX)" X"t

\

6; the design matrix has one
5F input vector per row

2L 1

Source: Wikipedia

e At an arbitrary input xo, the prediction is y(xo, W) = x{ w*.

e The entire model is characterized by d+1 parameters w".



Example: Polynomial Curve Fitting

Consider observing a training set consisting of N 1-dimensional observations:
X = (1, T2, ..., CCN)T, together with corresponding real-valued targets:

t = (t1,t, ..., tn)"

Or

0 T
Goal: Fit the data using a polynomial function of the form:
M

y(r,w) = wy + wix + worx? + ... +wy ™ = ijxj.
j=0
Note: the polynomial function is a nonlinear function of x, but it is a linear
function of the coefficients w — Linear Models.



Example: Polynomial Curve Fitting

As for the least squares example: we can minimize the sum of the

squares of the errors between the predictions y(z,,w) for each data

P

t

oint x,, and the corresponding target values t ..
'y
Pin Loss function: sum-of-squared
f / error function:
/ y(mnaw) N

/ E(W> — %Z(y(xnav‘f) - tn>2°

=1
°

x

wln
e Similar to the linear least squares: Minimizing sum-of-squared error
function has a unique solution w”.



Probabilistic Perspective

e So far we saw that polynomial curve fitting can be expressed in terms
of error minimization. We now view it from probabilistic perspective.

e Suppose that our model arose from a statistical model:
t =y(x,w) + €,

where € is a random error having Gaussian distribution with zero
mean, and is independent of x.

4 Thus we have:

y(z, w)
- p(tlx, w,B) = N(tly(x,w),57"),

L

9% Where (is a precision parameter,
p(t|zo, w, B) corresponding to the inverse variance.

yY(xo, w)

| will use probability distribution and
—» probability density interchangeably. It
N should be obvious from the context.




Maximum Likelihood

If the data are assumed to be independently and identically
distributed (i.i.d assumpt'ion) the likelihood function takes form:

p(tjx, w, ) = HN n|Y(Xn, W 6_1>°

It is often convenient to maximize the log of the likelihood function:

I p(tfx, w. ) = 2 S (y(xmsw) — £a)? + Mg - S,
U=l J
Y
BE(w)

e Maximizing log-likelihood with respect to w (under the assumption of a
Gaussian noise) is equivalent to minimizing the sum-of-squared error
function.

e Determine Wxm L by maximizing log-likelihood. Then maximizing
w.r.t. G 1 1

G N > (Y W) — tn)”.

n



Predictive Distribution

Once we determined the parameters w and 3, we can make prediction
for new values of x:

p(t[x, Warr, Barr) = N (t|y(x, war), By )-

1t o< 0
tﬁ\
0F ‘XN 1
O )
o
. 1

0

Later we will consider Bayesian linear regression.



Bernoulli Distribution

e Consider a single binary random variable x & {O, 1}. For example, x
can describe the outcome of flipping a coin:

Coin flipping: heads = 1, tails = 0.
* The probability of x=1 will be denoted by the parameter u, so that:
plx=1u)=p 0<u<l.

e The probability distribution, known as Bernoulli distribution, can be
written as:

Bern(z|p) = p*(1—p)' ™"
Elz] = p
varjz] = u(l—p)



Parameter Estimation

* Suppose we observed a dataset D = {:L‘l, Cees :CN}

* We can construct the likelihood function, which is a function of L.

N
p(Dlu) = H p(@nlp) = || wo (1 =)=
n=1

e Equivalently, we can maximize the log of the likelihood function:

N
Inp(Dlu) = Zlnp T lp) = Z{xnln,u—l—(l—a:n)ln(l—u)}

n=1

* Note that the likelihood function depends on the N observations x, only

through the sum E xn
—— Sufficient

n Statistic



Parameter Estimation

* Suppose we observed a dataset D = {:L‘l, Cees :CN}

N
Inp(Dlp) = Zlnp T |p) = Z{xnlnu+(l—xn)ln(l—u)}

n=1

* Setting the derivative of the log-likelihood function w.r.t i to zero, we
obtain:

UML:%Z%@:%

n=1

where m is the number of heads.



Binomial Distribution

e We can also work out the distribution of the number m of observations
of x=1 (e.g. the number of heads).

* The probability of observing m heads given N coin flips and a
parameter p is given by:

p(m heads|N, u) =

Bin(m|N, p) = (fD um(1 — )N-m

 The mean and variance can be easily derived as:

N
Elm] = Z mBin(m|N,u) = Nu
var[m| = : (m — E[m])* Bin(m|N, ) = Nu(1 — p)

m=0



Example

* Histogram plot of the Binomial distribution as a function of m for N=10
and p =0.25.

0.3

0.2
Bin(m|10, 0.25)

0.1t




Beta Distribution

* We can define a distribution over p € |0, 1] (e.g. it can be used a prior
over the parameter u of the Bernoulli distribution).

Beta(u|a,b) = g(tl);‘_(l;))“a_l(l_“)b_l
El] = —
varlu] = ab

(a+b)2(a+b+1)

where the gamma function is defined as:
®.@)
['(x) = / u*te v du.
0

and ensures that the Beta distribution is normalized.



Beta Distribution

3
a=0.1 a=1
b=0.1 b=1
2.
1
1 0 1
0.5 L 1 0.5
3
a—2 a—=28&
b=3 b=4
2.
1-
1 0 L
0.5 1 0 0.5




Multinomial Variables

e Consider a random variable that can take on one of K possible mutually
exclusive states (e.g. roll of a dice).

e We will use so-called 1-of-K encoding scheme.

e |f a random variable can take on K=6 states, and a particular
observation of the variable corresponds to the state x;=1, then x will be
resented as:

1-of-K coding scheme: x =(0,0,1,0,0, O)T

* If we denote the probability of x,=1 by the parameter p,, then the
distribution over x is defined as:

p(x‘u):Hui’* Vk :pur =20 and Z,ukzl



Multinomial Variables

e Multinomial distribution can be viewed as a generalization of Bernoulli
distribution to more than two outcomes.

p(x|p) = Hu

e |t is easy to see that the distribution is normalized:

D pxlp) = =1
X k=1

and
E[x|p] = Zp x|p)x K



Maximum Likelihood Estimation

* Suppose we observed a dataset D = {x1, ..., X }

* We can construct the likelihood function, which is a function of L.

p(ol) = T ] s = [ w> " H iy

e Note that the likelihood function depends on the N data points only
though the following K quantities:

mi — Z:Unk, k = 1, ...,K.

n
which represents the number of observations of x,=1

* These are called the sufficient statistics for this distribution.



Maximum Likelihood Estimation

K
pwm):HH S | Hu
n=1 k=1 k=1

* To find a maximum likelihood solution for i, we need to maximize the
log-likelihood taking into account the constraint that >, ux =1

e Forming the Lagrangian:

K K
kaln,u;g + A (Z,U,k — 1)
k=1 k=1

pr = —mg /X M%L:W A=—N

which is the fraction of observations for which x,=1



Multinomial Distribution

* We can construct the joint distribution of the quantities {m,,m,,...,m}
given the parameters 1 and the total number N of observations:

N =
Mult(mq,mo, ..., mg|pu, N) = ( ) H:u’;cnk
mimsg...mg) .-~
Emg] = Npug
varfmg] = Npk(l — px)
covimymg| = —Npug

e The normalization coefficient is the number of ways of partitioning N
objects into K groups of size m;,m,,...,m,.

ka = N.
k

* Note that



Dirichlet Distribution

* Consider a distribution over p,, subject to constraints:

K
VEk : >0 and =1
124 Mk ;Uk

e The Dirichlet distribution is defined as:

=

F<05 or—1
F(Ql) .. .OF<@K) H P

K
oo — E e
k=1

where a,...,;. are the parameters of the
distribution, and I{x) is the gamma function.

Dir(p|a) =

3

e The Dirichlet distribution is confined to a simplex as a consequence of
the constraints.



Dirichlet Distribution

* Plots of the Dirichlet distribution over three variables.

ap = 10!

ai = 10°

ap = 1071



Gaussian Univariate Distribution

* |In the case of a single variable x, the Gaussian distribution takes form:

N(z|p,o?) 1

N (z|p,0%) =

A (270

which is governed by two parameters:

1 2
2)1/2 exp {_20_2 (:L o ,Ll) }

- i (mean)

+ —- - o2 (variance)

e The Gaussian distribution satisfies:
N (x|p,0%) >0

/ N (z|u,0%) doz =1

— OO



Multivariate Gaussian Distribution

* For a D-dimensional vector x, the Gaussian distribution takes form:

N, B) = e {3 - )T x|

.’Ez‘
which is governed by two parameters:

@ — wis a D-dimensional mean vector.

— Jis a D by D covariance matrix.

and | Y| denotes the determinant of 2.

* Note that the covariance matrix is a symmetric positive definite
matrix.



Central Limit Theorem

* The distribution of the sum of N i.i.d. random variables becomes
increasingly Gaussian as N grows.

e Consider N variables, each of which has a uniform distribution over the
interval [0,1].

e Let us look at the distribution over the mean:

r1 +To + .... + TN
N :

e As N increases, the distribution tends towards a Gaussian distribution.




Geometry of the Gaussian Distribution

* For a D-dimensional vector x, the Gaussian distribution takes form:

1 1 1 _

e Let us analyze the functional dependence of the Gaussian on x through
the quadratic form:

A% = (x — ) S (x — )

e Here A is known as Mahalanobis distance.

Lok
2 * The Gaussian distribution will be constant on

@ surfaces in x-space for which A is constant.




Geometry of the Gaussian Distribution

* For a D-dimensional vector x, the Gaussian distribution takes form:

1 1 1
N<X‘Il'72) — (QW)D/Q |2|1/2 eXp {_§(X o I‘L)Tz_l(x o “)}

e Consider the eigenvalue equation for the covariance matrix:

Yu; = \;u;, where 1=1,....D.

e The covariance can be expressed in terms of its eigenvectors:

D
> = Z )\iuiuT
1=1

e The inverse of the covariance:

P o1
PPt



Geometry of the Gaussian Distribution

* For a D-dimensional vector x, the Gaussian distribution takes form:

_ 1 1 P s

e Remember:
D
A? = (x— )T (x — i ul

(x — ) (x — 1) Z:A u;
e Hence:

D

Z‘f’\— v = (x — p)

* We can interpret {y.} as a new coordinate system defined by the
orthonormal vectors u. that are shifted and rotated .



T2

Geometry of the Gaussian Distribution

N(X‘uv 2) —

\1/2

Y2

1 1
(2m)P2 [=[72 7

2 Dy?
A :;/\_@-

T
Yi = 4,
Uz
\/ul
Y1

—%(X—M)TE_l(X—u)}

(x — )

T

e Red curve: surface of
constant probability density

e The axis are defined by the
eigenvectors u, of the
covariance matrix with
corresponding eigenvalues.



Moments of the Gaussian Distribution

e The expectation of x under the Gaussian distribution:

! 1 1 P
Elx] = (om) D72 |2|1/2/exp{—§(x—p,) by (x—p,)}xdx
1 1 1 et
= Gnone |2|1/2/exp{—§z X z} (z+ p)dz
(\ ~ J

The term in z in the factor (z+pu)
will vanish by symmetry.

Elx| = p



Moments of the Gaussian Distribution

* The second order moments of the Gaussian distribution:
Exx'] = pp' + =
e The covariance is given by:

covx] = E [(x — E[x])(x — E[x])"] = =

Elx] =

e Because the parameter matrix 2’ governs the covariance of x under the
Gaussian distribution, it is called the covariance matrix.



Moments of the Gaussian Distribution

e Contours of constant probability density:

332‘ 5132‘ CUQ‘
T & T
> > ]
(a) (b) (<)
Covariance Diagonal, axis- Spherical
matrix is of aligned covariance (proportional to
general form. matrix. identity) covariance

matrix.



Partitioned Gaussian Distribution

* Consider a D-dimensional Gaussian distribution: p(x) = N (x|u, X)

* Let us partition x into two disjoint subsets x, and x,:

Xa M Eaa 2]ab
() () (5 50)

* |n many situations, it will be more convenient to work with the
precision matrix (inverse of the covariance matrix):

_ Aoa  Agp
A=x"! A= (e Aa
(Aba Abb)

 Note that A__ is not given by the inverse of } .



Conditional Distribution

e |t turns out that the conditional distribution is also a Gaussian
distribution:

p(xalxb) — N(Xa|l'l’a|b7 2]a|b)

Covariance does not

Sap = Mgy =Zaa — Zav ' Sta
Koy — 2lalb {Adatty — Nan(xp — p3)}

Linear function
of x,,.



Marginal Distribution

e |t turns out that the marginal distribution is also a Gaussian distribution:

p<Xa) — /p(Xa,aXb>de
— N(Xa|“’a72aa)

e For a marginal distribution, the mean and covariance are most simply
expressed in terms of partitioned covariance matrix.

Xa M Eaa Eab
<) =) (5 %)



Conditional and Marginal Distributions

zp = 0.7 P(zalze =0.7)

0.5¢

p(xaaxb)




Maximum Likelihood Estimation

* Suppose we observed i.i.d data X = {x1,...,Xn}.

e We can construct the log-likelihood function, which is a function of
wand M.

ND N 1 &

N _
Inp(X[p, 3) = ———=n(2m) — - In[X%] -5 D (= p)"E T (%0 — )

n=1

e Note that the likelihood function depends on the N data points only
though the following sums:

Sufficient Statistics

N N
g X, E Xp X}



Maximum Likelihood Estimation

e To find a maximum likelihood estimate of the mean, we set the
derivative of the log-likelihood function to zero:

0
o In p(X |, 2 Zz =0

and solve to obtain:

Havr — % an-

n=1

e Similarly, we can find the ML estimate of )"

ML = N Z — pr) (X0 — i) -



Maximum Likelihood Estimation

 Evaluating the expectation of the ML estimates under the true

distribution, we obtain: — Unbiased estimate
Elpme] = w
N —1
E[3 = ——3.
[ ML] N ~ Biased estimate

* Note that the maximum likelihood estimate of J./ is biased.

e We can correct the bias by defining a different estimator:
_ 1 XN
2= N _1 Z(Xn — pn) (X — Hr

n=1

)T



Sequential Estimation

e Sequential estimation allows data points to be processed one at a time
and then discarded. Important for on-line applications.

e Let us consider the contribution of the N data point x:
(N) RS
N
My, = N Z Xn
n=1

1 1 N-—-1
— NXN+N7;Xn

1 N—1 (n_1
= NXN+TIJ’1(\4L |
N—1 1 N—1
= ”1(\/1L )+N(XN_/J'1(\/IL ))

I

|—> correction given Xy

> correction weight
> old estimate




Student’s t-Distribution

e Consider Student’s t-Distribution

p(zlp,a,b) = / N (z|p, 77 1)Gam(7|a, b) dr

— / ( o\, (M)~ ) Gam(n|v/2,v/2)dn “«--o

O |

T(v/2+1/2) [ A\'? Mz —p)2] 7/

1+ |

I'(v/2) TV U i

= Stlzlu A v) Infinite mixture i

where of Gaussians ~~ """~ """~~~ ~~~~

A=a/b n=r7b/a v = 2a.

Sometimes called Degrees of freedom

the precision
parameter.



Student’s t-Distribution

e Setting v = 1 recovers Cauchy distribution
* The limit v — oo corresponds to a Gaussian distribution.

| v =1 UV — OO

St(x|u, A, v) ‘ Cauchy N (z|pu,\™1)

0.5
0.4} u —1.0
0.3} .
0.2}

0.1t




Student’s t-Distribution

* Robustness to outliners: Gaussian vs. t-Distribution.




Student’s t-Distribution

* The multivariate extension of the t-Distribution:

Stixiw ) = [ " N (g, (nA) ) Gam(nlv/2, v/2) di

F(D/Q—I—V/Q) |A|1/2 { AQ]D/QV/Q

Tw/2)  @)p2 P T

where A% = (x— p) A(x — p)
* Properties:
Elx] = p, ifv>1

o 14
COV | X| =

T )
= p

mode|x]|

A7 ifr>2




Mixture of Gaussians

e When modeling real-world data, Gaussian assumption may not be
appropriate.

e Consider the following example: Old Faithful Dataset

100 - ; - : 100
30 | 0 |
60 | 60 |
1 2 3 4 5 6 1 2 3 4 5
Single Gaussian Mixture of two

Gaussians



Mixture of Gaussians

e We can combine simple models into a complex model by defining a
superposition of K Gaussian densities of the form:

K
p(x) =Y TN (X, k) p(z)y

b—1 L ' J
Component

Mixing coefficient

K
k : > —1
\vd Tk 0 I;ﬂ'k v

* Note that each Gaussian component has its own mean p,; and
covariance ;. The parameters m, are called mixing coefficients.

e Mote generally, mixture models can comprise linear combinations of
other distributions.



Mixture of Gaussians

e |[lustration of a mixture of 3 Gaussians in a 2-dimensional space:

05¢

(a) Contours of constant density of each of the mixture components,
along with the mixing coefficients

K

(b) Contours of marginal probability density p(x) = Z TN (x|, 2k
k=1

(c) A surface plot of the distribution p(x).



Maximum Likelihood Estimation

* Given a dataset D, we can determine model parameters p,. 2/, m, by
maximizing the log-likelihood function:

N K
Inp(X|m, p, B) =) Inq D mpN (xn| b, Tp)
n=1 k=1

\§ J
Y

Log of a sum: no closed form solution

e Solution: use standard, iterative, numeric optimization methods or the
Expectation Maximization algorithm.



The Exponential Family

* The exponential family of distributions over x is defined to be a set of
destructions for the form:

p(x|n) = h(x)g(n) exp {n " u(x)}

where
— s the vector of natural parameters

— u(x) is the vector of sufficient statistics

 The function g(n) can be interpreted the coefficient that ensures
that the distribution p(x|7) is normalized:

o(m) / h(x) exp {nTu(x)} dx = 1



Bernoulli Distribution

e The Bernoulli distribution is a member of the exponential family:

1—x

p(z|p) = Bern(z|p) = p*(1 — p)
= exp{rlnpy+ (1 —2)In(l —p)}

= (1—p)exp {ln (ﬁ) x}

e Comparing with the general form of the exponential family:
p(x|n) = h(x)g(n) exp {n " u(x)}

we see that

1
n = In ( ) and so p=o(n) 1+ exp(—17)
. J
Y

Logistic sigmoid




Bernoulli Distribution
e The Bernoulli distribution is a member of the exponential family:
p(zlp) = Bern(z|p)=p"(1—p) "
= exp{rlnpy+ (1 —2)In(l —p)}

= (1—p)exp {ln (ﬁ) x}

p(x|n) = h(x)g(n) exp {n" u(x)}
* The Bernoulli distribution can therefore be written as:

p(z|n) = o(—n) exp(nz)

where



Multinomial Distribution

e The Multinomial distribution is a member of the exponential family:

M

M
p(x|p) = H j* = exp {Z r In uk} = h(x)g(n) exp (n" u(x))
k=1

where X = (21,...,2m)" N =01,-..,0m)"
and
NOTE: The parameters 7,
e = Inpug are not independent since
u(X) — X the corresponding p; must
satisf
hx) = 1 you
> =1
gn) = 1.

* |n some cases it will be convenient to remove the constraint by
expressing the distribution over the M-1 parameters.



Multinomial Distribution

e The Multinomial distribution is a member of the exponential family:

M

M
p(x|p) = H py* = exp {Z zy In ,Uk} = h(x)g(n) exp (" u(x))
k=1

clet pupr =1~ Zk 1 Mk

e This leads to:

M _ exp(nk)
Nk = In — and Mk = 1 :
(1 _ ijvi11 MJ) 1+ 23:1 exp(n);)
\\ ~ )

* Here the parameters 7, are independent. Softmax function

e Note that:
0< pup <1 and Zuk<1



Multinomial Distribution

e The Multinomial distribution is a member of the exponential family:

M

M
p(x|p) = H py" = exp {Z ) In ,Uk} = h(x)g(n) exp (n" u(x))
k=1
* The Multinomial distribution can therefore be written as:

p(x|p) = h(x)g(n) exp (n " u(x))

where
n = (m,...,nm—1,0)"
u(x) = x
h(ix) = 1

=
)

]
N
[—

_|_

0 <
Ngh
D
.
=

5
Y
N——
L



Gaussian Distribution

e The Gaussian distribution can be written as:

1 1
P($|M702) = (2%02)1/2 exp {—ﬁ(l’ - #)2}

1 1 . 14 1

— (2r02)1/2 exp {—ﬁx‘? + ﬁa: — ﬁ/ﬂ}

= h(z)g(n)exp {n u(z)}

where
o2 _
1= () H0=m) 3




ML for the Exponential Family
e Remember the Exponential Family:
p(x|n) = h(x)g(n) exp {n" u(x)}

* From the definition of the normalizer g(n):
g(n) / h(x) exp {'I’]TU(X)} dx =1

* We can take a derivative w.r.t n:

Vg(n) [ h(x)exp {n"u(} dx + gn) [ b exp {n"u(x)} uix) dx =0

[\ J g J
Y Y

1/g9(n) Elu(x)

e Thus
~Vlng(n) = Elu(x)



ML for the Exponential Family

e Remember the Exponential Family:
p(x|n) = h(x)g(n) exp {n" u(x)}

* We can take a derivative w.r.t n:

Vg(n) / h(x) exp {nTu(x)} dx + g(n) / h(x) exp {nTu(x)} u(x) dx = 0

. J . J
Y Y

1/g9(n) Elu(x)

e Thus
~Vlng(n) = Efu(x)]

e Note that the covariance of u(x) can be expressed in terms of the
second derivative of g(n), and similarly for the higher moments.



ML for the Exponential Family

* Suppose we observed i.i.d data X = {x1,...,Xn}.

e We can construct the log-likelihood function, which is a function of

the natural parameter 7.
p(xn) = h(x)g(n) exp {n " u(x)}

N
p(X]|n) = (H h(xy, ) N exp {nT Z u(xn)} :
* Therefore we have
| N
~Ving(ny) = + Z
O n=l

Y
Sufficient Statistic

J




