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Evaluation

3 Assighnments worth 40%.

Midterm worth 20%.

Undergrads: Final worth 40%

Graduate: 10% oral presentation, 30% final



Text Books

* Christopher M. Bishop (2006)
Pattern Recognition and Machine Learning, Springer.

Additional Books
* Kevin Murphy, Machine Learning: A Probabilistic Perspective.

* Trevor Hastie, Robert Tibshirani, Jerome Friedman (2009)
The Elements of Statistical Learning

* David MacKay (2003)
Information Theory, Inference, and Learning Algorithms

* Most of the figures and material will come from these books.



Statistical Machine Learning

Statistical machine learning is a very dynamic field that lies at
the intersection of Statistics and computational sciences.

The goal of statistical machine learning is to develop
algorithms that can learn from data by constructing stochastic
models that can be used for making predictions and decisions.



Machine Learning’s Successes

* Biostatistics / Computational Biology.

* Neuroscience.

* Medical Imaging:
— computer-aided diagnosis, image-guided therapy.
— image registration, image fusion.

* Information Retrieval / Natural Language Processing:
— Text, audio, and image retrieval.
— Parsing, machine translation, text analysis.

* Speech processing:
— Speech recognition, voice identification.

* Robotics:
— Autonomous car driving, planning, control.



Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.
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Example: Boltzmann Machine

Latent (hidden)
Model parameters variables
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P(x,y) = = Z exp [XTW(l)h +y ' W®h
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Input data (e.g. pixel Target variables
intensities of an image, (response) (e.g. class
words from webpages, labels, categories,
speech signal). phonemes).

Markov Random Fields, Undirected Graphical Models.



Finding Structure in Data

7

Vector of word counts
on a webpage

CNYIUSD

REUTERS == -

PIMCO: Treasuries reflect The SEC shouldn’t
likelihood of recession push index funds. e

BofA cutting 3,500 jobs this
quarter: memo

804,414 newswire stories

P(x) = %Zexp [XTWh]

Latent variables:
hidden topics

European Community
Monetary/Economic

Interbank Markets

.. Disasters and
... fvv Accidents

Leading
Economic
Indicators

CLl . 3 > -

o A N I

LR -*'.'-c""°-

¢ '_. .g. . .v.r,:
oo Government

Accounts/ - Y0y

Earnings k3 Borrowings



Matrix Factorization
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Collaborative FiItering/ NETELIN helping you find the right movies i Koeve| P y B B e
Matrix Factorization/ amazon i P | sorr]rn] P laan
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Hierarchical Bayesian Model
Rating value of Latent user feature Latent item
user i for item j (preference) vector feature vector
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rij| Wi, vji, o NN(uz‘TVj702>a
wlo, ~ N(0,021), i=1,...,N.
vilo, ~ N(0,021), j=1,.., M.

Prediction: predict a rating r’jj for user i and query movie j.

Latent variables that
we infer from

observed ratings.

P(rj;|R) = // P(rfj\ui,vj)ﬁ(ui,Vj\fi)duidvj

Y, .
Posterior over Latent Variables

Infer latent variables and make predictions using Markov chain Monte Carlo.




Finding Structure in Data
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Collaborative Filtering/
Matrix Factorization/
Product Recommendation

Learned "‘genre”

Netflix dataset: Fahrgnheit 9/11 ' Independence Day
Bowling for Columbine The Day After Tomorrow
480,189 users :> The People vs. Larry Flynt Con Air
Canadian Bacon Men in Black Il

17,770 movies

_— . La Dolce Vit Men in Black
Over 100 million ratings. a polce Vit

Friday the 13th

The Texas Chainsaw Massacre
Children of the Corn

Child's Play

The Return of Michael Myers

* Part of the wining solution in the Netflix contest (1 million dollar prize).



Tentative List of Topics

Linear methods for regression, Bayesian linear regression
Linear models for classification

Probabilistic Generative and Discriminative models
Regularization methods

Model Comparison and BIC

Neural Networks

Radial basis function networks

Kernel Methods, Gaussian processes, Support Vector Machines
Mixture models and EM algorithm

Graphical Models and Bayesian Networks



Types of Learning

Consider observing a series of input vectors:
X1y X2, X3, X4y ...

e Supervised Learning: We are also given target outputs (labels,
responses): y,,Y,,..., and the goal is to predict correct output given a
new input.

e Unsupervised Learning: The goal is to build a statistical model of x,
which can be used for making predictions, decisions.

e Reinforcement Learning: the model (agent) produces a set of actions:
a,, a,,... that affect the state of the world, and received rewards r,,
r,... The goalis to learn actions that maximize the reward (we will not
cover this topic in this course).

e Semi-supervised Learning: We are given only a limited amount of
labels, but lots of unlabeled data.



Supervised Learning

4 '

Classification: target outputs y,
are discrete class labels. The goal
is to correctly classify new inputs.

Regression: target outputs y, are
continuous. The goal is to predict o
the output given new inputs. - o

0



Handwritten Digit Classification

D29 2AS527

3¢ 7949404659

la £

C 7

N/ T427

D8 T3 4997



Unsupervised Learning

The goal is to construct statistical ‘~’ S

model that finds useful representation |

of data: @ .
e Clustering M o 2
 Dimensionality reduction R T
* Modeling the data density e

e Finding hidden causes (useful
explanation) of the data

Unsupervised Learning can be used for:
e Structure discovery
e Anomaly detection / Outlier detection
e Data compression, Data visualization

e Used to aid classification/regression
tasks




DNA Microarray Data

Expression matrix of 6830 genes (rows)
and 64 samples (columns) for the human
tumor data.

The display is a heat map ranging from
bright green (under expressed) to bright
red (over expressed).

T .‘ Questions we may ask:

e i * Which samples are similar to other
: : samples in terms of their expression levels
across genes.

e Which genes are similar to each other in
terms of their expression levels across

samples.



Linear Least Squares

e Given a vector of d-dimensional inputs x = (21,22, ...,zq)", we want

to predict the target (response) using the linear model:
d

y(xr,w) = wg + w11 + wels + ... + Waxqy = wo + ijxj.
j=1
* The term w, is the intercept, or often called bias term. It will be
convenient to include the constant variable 1 in x and write:

y(x,w) = x'w.

T

)

* Observe a training set consisting of N observations X = (x1, %2, ..., Xx)
together with corresponding target values t = (¢,t,...,tn)".

* Note that Xisan N x (d + 1) matrix.



Linear Least Squares

One option is to minimize the sum of the squares of the errors between
the predictions y(x,,w) for each data point x, and the corresponding
real-valued targetst,.

10} :
| ¢ _®Data Loss function: sum-of-squared error
| function:

N
Bw) = =3 (fw—t,)

(Xw —t)T(Xw — t).

N — N~

Source: Wikipedia



Linear Least Squares

If XTX is nonsingular, then the unique solution is given by:

optjimal vector of

T P— ‘/welghts target values
9:_ — curve fit | /

o w* = (XTX)" X"t

\

6; the design matrix has one
5F input vector per row

2L 1

Source: Wikipedia

e At an arbitrary input xo, the prediction is y(xo, W) = x{ w*.

e The entire model is characterized by d+1 parameters w".



Example: Polynomial Curve Fitting

Consider observing a training set consisting of N 1-dimensional observations:
X = (1, T2, ..., CCN)T, together with corresponding real-valued targets:

t = (t1,t, ..., tn)"

* The green plot is the true function sin(27x).
o | e The training data was generated by taking

o ol X,spaced uniformly between [0 1].

0f 1 ¢ The target set (blue circles) was obtained

° o by first computing the corresponding values

all © | of the sin function, and then adding a small

Gaussian noise.

0 _—
Goal: Fit the data using a polynomial function of the form:
M
y(r,w) = wy + wix + wox? + ... + wy M = ij:cj.
j=0
Note: the polynomial function is a nonlinear function of x, but it is a linear
function of the coefficients w — Linear Models.



Example: Polynomial Curve Fitting

As for the least squares example: we can minimize the sum of the

squares of the errors between the predictions y(z,,w) for each data

P

t

oint x,, and the corresponding target values t ..
'y
Pin Loss function: sum-of-squared
f / error function:
/ y(mnaw) N

/ E(W) — %Z(y(xnav‘f) - tn>2°

=1
°

x

wln
e Similar to the linear least squares: Minimizing sum-of-squared error
function has a unique solution w”.

* The model is characterized by M+1 parameters w’.
e How do we choose M? — Model Selection.



Some Fits to the Data

M=0 A 1 o0

0

M=9

T 1 0

For M=9, we have fitted the training data perfectly.

—




Overfitting

e Consider a separate test set containing 100 new data points generated
using the same procedure that was used to generate the training data.

—©— Training
—O— Test

0L— - - :

e For M=9, the training error is zero — The polynomial contains 10
degrees of freedom corresponding to 10 parameters w, and so can be
fitted exactly to the 10 data points.

e However, the test error has become very large. Why?



Overfitting

M=0 M=1 M=3 M =9
wy 0.19 0.82 0.31 0.35
wy -1.27 7.99 232.37 Lr M=9
w) -25.43 -5321.83 {
w3 17.37 48568.31 0
wh -231639.30 0f 1
ws 640042.26
Wwe -1061800.52
w3 1042400.18 1t
wg -557682.99
we 125201.43 (‘)

e As M increases, the magnitude of coefficients gets larger.
e For M=9, the coefficients have become finely tuned to the data.

e Between data points, the function exhibits large oscillations.

More flexible polynomials with larger M tune to the random noise
on the target values.



Varying the Size of the Data

9th order polynomial

e For a given model complexity, the overfitting problem becomes less
severe as the size of the dataset increases.

e However, the number of parameters is not necessarily the most
appropriate measure of the model complexity.




OF

Generalization

e The goal is achieve good generalization by making accurate predictions
for new test data that is not known during learning.

e Choosing the values of parameters that minimize the loss function on
the training data may not be the best option.

e We would like to model the true regularities in the data and ignore the
noise in the data:

— It is hard to know which regularities are real and which are accidental
due to the particular training examples we happen to pick.

M

* Intuition: We expect the model to generalize
if it explains the data well given the complexity
of the model.

e If the model has as many degrees of freedom
as the data, it can fit the data perfectly. But this

is not very informative.
e Some theory on how to control model

complexity to optimize generalization.



A Simple Way to Penalize Complexity

One technique for controlling over-fitting phenomenon is regularization,
which amounts to adding a penalty term to the error function.

penalized error target value regularization

function parameter
\ 1 N \ )\/
~ 5 5
B(w) =3 3 {v(encw) = ta} + 5w’

T 2 2 2 .
where ||W|| = W' w = wi + w3 + ... + wy, called the regularization term.

Note that we do not penalize the bias term w,.

e The idea is to “shrink” estimated parameters
towards zero (or towards the mean of some other
weights).

e Shrinking to zero: penalize coefficients based on
their size.

e For a penalty function which is the sum of the

i squares of the parameters, this is known as a
“weight decay”, or “ridge regression”.



Regularization

I i i ] _ InNA=-00 InA=-18 InA=0
Training w 0.35 0.35 0.13

Test w} 232.37 474 -0.05

w} -5321.83 -0.77  -0.06

. w} 48568.31 -31.97  -0.05
Z 05 1 wi| -231639.30 -3.89 -0.03
h / wi | 640042.26 55.28 -0.02
/ wg | -1061800.52 4132 -0.01

wk | 1042400.18 -45.95  -0.00

e . ‘ wg | -557682.99 -91.53 0.00
- 30 s S0 ws | 125201.43 72.68 0.01

Graph of the root-mean-squared training and test errors vs. In\
for the M=9 polynomial.

How to choose \?



Cross Validation

If the data is plentiful, we can divide the dataset into three subsets:

* Training Data: used to fitting/learning the parameters of the model.

» Validation Data: not used for learning but for selecting the model, or
choosing the amount of regularization that works best.

e Test Data: used to get performance of the final model.

For many applications, the supply of data for training and testing is limited.
To build good models, we may want to use as much training data as possible.
If the validation set is small, we get noisy estimate of the predictive performance.

S fold cross-validation * The data is partitioned into S groups.

run 1  ® Then S-1 of the groups are used for training

the model, which is evaluated on the

Un 2 remaining group.

run 3 *® Repeat procedure for all S possible choices

of the held-out group.

run 4

e Performance from the S runs are averaged.




Basics of Probability Theory

e Consider two random variables X and Y:

— Xtakes any values x,, where i=1,..,M.
- Y takes any valuesy;, j=1,...,L.

* Consider a total of N trials and let the number of trials in which X = x.
and Y =y; is n.

Ci e Joint Probability:
Mg
(X =z, Y =y;) =
Yi Thij } 'S e Marginal Probability:
_ ey G



Basics of Probability Theory

e Consider two random variables X and Y:

— Xtakes any values x,, where i=1,..,M.

- Y takes any valuesy;, j=1,...,L.

* Consider a total of N trials and let the number of trials in which X = x.

and Y =y; is n.
&)
~=
Y Mij
L

}m’

e Marginal probability can be
written as:

(X =) = Zp(X =x;,Y = yj)

g=1

e Called marginal probability because
it is obtained by marginalizing, or
summing out, the other variables.



Basics of Probability Theory

&)
e Conditional Probability:
nz-j
Y =y;| X =2x;) =
ni; }rj p( Y| i) .
L

e We can derive the following relationship:

nij C;

ij
N C; N
p(Y =y;|X = z))p(X = ;)

p(X =z;,Y =y;) =

which is the product rule of probability.




The Rules of Probability

Sum Rule

Product Rule




Bayes’ Rule

* From the product rule, together with symmetric property:

p(X,Y) = p(Y, X)
p(Y[X)P(X) = p(X]Y)P(Y)

p(X|Y)P(Y)

p(Y]X) = PIX)

e Remember the sum rule:
p(X) =) p(X,Y)
Y

* We will revisit Bayes’ Rule later in class.



lllustrative Example

e Distribution over two variables: X takes on 9 possible values, and
Y takes on 2 possible values.

p(X,Y) p(Y)

p(X) p(X|Y =1)




Probability Density

e |f the probability of a real-valued variable x falling in the interval

(x,z + dx) isgivenby p(z)dx for dz — 0, then p(x) is called the
probability density over x.

b

p(x € (a,b)) = / p(x) da

a

e The probability density must
satisfy the following two
conditions

p(z) =0




Probability Density

e Cumulative distribution function is defined as:

which also satisfies:

P'(z) = p(x)

e The sum and product rules
take similar forms:

p(xr) = / p(x,y)dy

p(z,y) = p(ylz)p(x)




Expectations

e The average value of some function f(x) under a probability distribution
(density) p(x) is called the expectation of f(x):

Elf =S p@)f@)  E[f] - / p(2)f () da

e |f we are given a finite number N of points drawn from the probability
distribution (density), then the expectation can be approximated as:

Blf]~ + > f(an)

e Conditional Expectation with respect to the conditional distribution:



Variances and Covariances

e The variance of f(x) is defined as:

varf] = E |(f(2) ~ E[f @) | = E[f(2)’] - E[f(«))

which measures how much variability there is in f(x) around its mean
value E[f(x)].

e Note that if f(x) = x, then
var[z] = E[z?] — E[x]?



Variances and Covariances

e For two random variables x and y, the covariance is defined as:

coviz,y| = Ez,[{z —Elz]}{y —Ely|}]
= Ex,y[x?/] — E[z]|E[y]

which measures the extent to which x and y vary together. If x and y are
independent, then their covariance vanishes.

e For two vectors of random variables x and y, the covariance is a matrix:

covix,y] = Exy [{x—ExXxHy —Ely'|}]
= Exylxy | -EXE[y"]



The Gaussian Distribution

e For the case of single real-valued variable x, the Gaussian distribution is
defined as:

, 1 1
N (z|p, 0%) = (2702)1/2 exp {—ﬁ(i’? - M)Q}

N (z|p,0?) .
which is governed by two parameters:

- 1 (mean)
— 0?2 (variance)

B = 1/02 is called the precision.

7

* Next class, we will look at various distributions as well as at
multivariate extension of the Gaussian distribution.



The Gaussian Distribution

e For the case of single real-valued variable x, the Gaussian distribution is
defined as:

, 1 1
N (z|p,07) = (2702)1/2 exp {—ﬁ(i’? - M)Q}

N(z|p, o)

* The Gaussian distribution satisfies:

2% N (x|, 0?) > 0

/OO N (z|p,0%) dz =1

— OO

which satisfies the two requirements
for a valid probability density



Mean and Variance

e Expected value of x takes the following form:

Elz] = /_OO N (zlp,0?) zdz = p

Because the parameter i represents the average value of x under the
distribution, it is referred to as the mean.

e Similarly, the second order moment takes form:
¢ CX) ¢
E[z?] = / N (z|u,0°) z° dz = p° + o7
— 00
e |t then follows that the variance of x is given by:

var[z] = E[z?] — E[z]* = o”



Sampling Assumptions

e Suppose we have a dataset of observations x = (xy,...,xy)', representing
N 1-dimensional observations.

e Assume that the training examples are drawn independently
from the set of all possible examples, or from the same underlying
distribution

e We also assume that the training examples are identically
distributed — i.i.d assumption.

e Assume that the test samples are drawn in exactly the same way
-- i.i.d from the same distribution as the training data.

e These assumptions make it unlikely that some strong regularity
in the training data will be absent in the test data.



Gaussian Parameter Estimation

 Suppose we have a dataset of i.i.d. observations x = (x,,...,Xy)",
representing N 1-dimensional observations.

* Because out dataset x is i.i.d., we can write down the joint
probability of all the data points as given p and o?:

N
p(xlp,0%) = T[N (2alp. o)
n=1

Likelihood function * When viewed as a function of u

and o2, this is called the likelihood

N (2|, 02) function for the Gaussian.




Maximum (log) likelihood

e The log-likelihood can be written as:
N

1 N N

Inp (x|p,0?) = ~5.3 n:1(:1:n —p)? — 5} Ino” — 5} In(27)

Maximizi t . Sample mean

* Maximizing w.r.t u gives:
| N /
HUML — N Z Ln
A n=1
p(z) Likelihood function * Maximizing w.r.t o gives:
Sample variance

N(xnllua 02) /

| N
O-l%/IL:NZ — pun)




Properties of the ML estimation

e ML approach systematically underestimates the variance of the
distribution.

 This is an example of a phenomenon called bias.

e |t is straightforward to show that:

Bianl =4 Blofy] = (S5 ) o

e |t follows that the following estimate is unbiased:
~2 N
o = N _ 10ML

.
= N_1 Z(xn — i)’

n=1




Properties of the ML estimation

e Example of how bias arises in using ML to determine the variance of a
Gaussian distribution:

e The green curve shows the
true Gaussian distribution.

* Fit three datasets, each
consisting of two blue points.

e Averaged across 3 datasets,
the mean is correct.

e But the variance is under-
estimated because it is measured
relative to the sample (and not
the true) mean.




Probabilistic Perspective

e So far we saw that polynomial curve fitting can be expressed in terms
of error minimization. We now view it from probabilistic perspective.

e Suppose that our model arose from a statistical model:
t =y(x,w) + €,

where € is a random error having Gaussian distribution with zero
mean, and is independent of x.

4 Thus we have:

y(z, w)
- p(tlx, w,B) = N(tly(x,w),57"),

L

9% Where (is a precision parameter,
p(t|zo, w, B) corresponding to the inverse variance.

yY(xo, w)

| will use probability distribution and
—» probability density interchangeably. It
N should be obvious from the context.




Maximum Likelihood

If the data are assumed to be independently and identically
distributed (i.i.d assumpt'ion) the likelihood function takes form:

p(tjx, w, ) = HN n|Y(Xn, W 6_1>°

It is often convenient to maximize the log of the likelihood function:

I p(tfx, w. ) = 2 S (y(xmsw) — £a)? + Mg - S,
U=l J
Y
BE(w)

e Maximizing log-likelihood with respect to w (under the assumption of a
Gaussian noise) is equivalent to minimizing the sum-of-squared error
function.

e Determine Wxm L by maximizing log-likelihood. Then maximizing
w.r.t. G 1 1

G N > (Y W) — tn)”.

n



Predictive Distribution

Once we determined the parameters w and 3, we can make prediction
for new values of x:

p(t[x, Warr, Barr) = N (t|y(x, war), By )-

1t o< 0
tﬁ\
0F ‘XN 1
O )
o
. 1

0

Later we will consider Bayesian linear regression.



Statistical Decision Theory

e We now develop a small amount of theory that provides a
framework for developing many of the models we consider.

e Suppose we have a real-valued input vector x and a corresponding
target (output) value t with joint probability distribution: p(x, ?).

e Our goal is predict target t given a new value for x:
- for regression: t is a real-valued continuous target.
- for classification: t a categorical variable representing class labels.

The joint probability distribution p(x,t) provides a complete
summary of uncertainties associated with these random variables.

Determining p(x,t) from training data is known as the inference
problem.



