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Final Review 
•  Polynomial curve fitting – generalization, overfitting 

•  Decision theory:  

•  Minimizing misclassification rate / Minimizing the expected loss 

•  Loss functions for regression  



Final Review 
•  Bernoulli, Multinomial random variables (mean, variances)  

•  Multivariate Gaussian distribution (form, mean, covariance) 

•  Maximum likelihood estimation for these distributions.    

•  Exponential family / Maximum likelihood estimation / sufficient 
statistics for exponential family.  

•  Linear basis function models / maximum likelihood and least 
squares:  



Final Review 
•  Regularized least squares: 

Ridge 
regression 

•  Bias-variance decomposition.  

Low bias 

High variance 

•  Bayesian interpretation  



Final Review 
•  Bayesian Inference: likelihood, prior, posterior:   

•  Marginal likelihood / predictive distribution.  

•  Bayesian linear regression / parameter estimation / posterior 
distribution / predictive distribution  

•  Bayesian model comparison / Evidence approximation  

Matching data and  
model complexity 

Marginal likelihood 
(normalizing constant): 



Final Review 
•  Classification models:  

•  Discriminant functions 
•  Fisher’s linear discriminant 

•  Probabilistic Generative Models / Gaussian class conditionals / 
Maximum likelihood estimation: 



Final Review 
•  Discriminative Models / Logistic regression / maximum likelihood 
estimation  



Final Review 
•  Gaussian processes, definition:  

•  GPs for regression. 

•  Marginal/predictive distributions. Making predictions using GPs.   

•  Covariance functions, automatic relevance determination, role of 
hyperparameters   

Nonlinear regression

Consider the problem of nonlinear regression:

You want to learn a function f with error bars from data D = {X,y}

x

y

A Gaussian process defines a distribution over functions p(f) which can be used for
Bayesian regression:

p(f |D) =

p(f)p(D|f)

p(D)
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Final Review 
•  Mixture Models, k-means, Mixture of Gaussians 

•  EM algorithm:  definition of E-step, 
definition of M-step, relationship to k-means.  

•  Mixture of Gaussians: Maximum likelihood 
estimation. 

•  Alternative view of EM: expected complete 
data log-likelihood:  

•  E-step: Compute posterior over latent variables: p(Z|X,µold).   
•  M-step: Find the new estimate of parameters µnew:   

   where 



Final Review 
•  Continuous latent variable models: Probabilistic PCA, Factor Analysis  

•  PCA, PCA for high-dimensional data  
•  Probabilistic PCA: definition of probabilistic model, Joint/Marginal 
density, posterior over latent variables, relationship to standard PCA, 
EM for PPCA.  

•  Probabilistic PCA: Maximum likelihood estimation, zero noise limit.   

•  Factor analysis, definition, marginal/joint/posterior. Relationship to PPCA.  

•  Autoencoders: definition  



Final Review 
•  Sequential data: Markov models, maximum likelihood estimation  
•  State Space models: definition, transition model, observation model.   

•  Hidden Markov models: definition, transition model, observation model.   
•  Maximum likelihood estimation for HMMs, basics of EM algorithm.   

•  Dynamic programming (understanding of alpha-beta recursions) 

•  Basics of EM algorithm for HMMs: interring posterior over latent paths and 
parameter estimation for the transition and observation model.  

•  Viterbi decoding.  


