
Integrating Domain-Knowledge into
Deep Learning

Russ	Salakhutdinov	

Machine Learning Department
Carnegie Mellon University

Canadian Institute for Advanced Research!

Domain knowledge

�  Two key ingredients of a Statistical Machine Learning system!
�  Model architecture/class!
�  Learning algorithms to learn from data!

�  How do we incorporate domain knowledge into either or both these ingredients?!

�  We can consider three classes of domain knowledge:!
�  Relational!
�  Logical!
�  Scientific!

2!

Ravikumar, Salakhutdinov, 2019

Relational Knowledge

�  Simple relations among entities!
�  (father, Bob, Alice)!

�  Available via relational databases, or knowledge graphs!

�  Statistical Relational Models!
�  Probabilistic Graphical Models (PGMs) to model relationships amongst entities !
�  Probabilistic Relational Models (via Bayes Nets), Relational Dependency Networks!

�  Embeddings!
�  Instead of distributional semantics, represent entities via vectors in some vector space!
�  Learn these vector representations via predicting an entity given its “context”!

�  We show how to incorporate relational information in Deep Learning via
knowledge graph propagation !

3!

Ravikumar, Salakhutdinov, 2019

Logical Knowledge

�  Propositional and First Order Logic (FOL) based knowledge !
�  In contrast to simpler tuple based relational knowledge !
�  E.g. if object has a wing, and a beak, it is a bird !

�  Encode logical knowledge into Probabilistic Graphical Models!
�  Bayesian Networks from Horn clauses, Probabilistic Context Free Grammars,

Markov Logic Networks!

�  We incorporate logical information (and more general constraints) into Deep
Learning via distillation (student-teacher) framework!

4!

Ravikumar, Salakhutdinov, 2019

Scientific Knowledge

�  Partial and Stochastic Differential Equations!
�  Newton Laws of Motion!
�  Navier-Stokes fluid dynamics equations!
�  …!

�  Conservation laws and principles, Invariances!

�  Learning PDEs from data!
�  Regularizing dynamical system (e.g. state space models) via PDEs!

5!

Ravikumar, Salakhutdinov, 2019

Her plain face broke into a huge smile when she saw Terry.
“Terry!” she called out.
She rushed to meet him and they embraced.
“Hon, I want you to meet an old friend, Owen McKenna.
Owen, please meet Emily.''
She gave me a quick nod and turned back to X

 LAMBADA dataset, Paperno et al., 2016

6!

Reading Comprehension

Her plain face broke into a huge smile when she saw Terry.
“Terry!” she called out.
She rushed to meet him and they embraced.
“Hon, I want you to meet an old friend, Owen McKenna.
Owen, please meet Emily.''
She gave me a quick nod and turned back to X

 LAMBADA dataset, Paperno et al., 2016

7!

Reading Comprehension

Her plain face broke into a huge smile when she saw Terry.
“Terry!” she called out.
She rushed to meet him and they embraced.
“Hon, I want you to meet an old friend, Owen McKenna.
Owen, please meet Emily.''
She gave me a quick nod and turned back to X

X = Terry

 LAMBADA dataset, Paperno et al., 2016

8!

Reading Comprehension

Her plain face broke into a
huge smile when she saw
Terry. “Terry!” she called
out. She rushed to meet
him and they embraced.
“Hon, I want you to meet
an old friend, Owen
McKenna. Owen, please
meet Emily.'’ She gave
me a quick nod and turned
back to X!

Coreference!
Dependency Parses!

Entity relations!

Word relations!

Core NLP!

Freebase!

WordNet!

Deep Learning Model (e.g. RNN, Transformers)!

Text Representation!

9!

Incorporating Prior Knowledge

there ball the left She

kitchen the to went She

football the got Mary

Coreference!
Hyper/Hyponymy!

RNN!

 Dhingra, Jin, Yang, et al, NAACL 2018

10!

Explicit Memory

RN
N
!

xt

Mt

h0
h1
...

ht�1

e1 e|E|. . .

ht

Mt+1gt

Memory as Acyclic Graph
Encoding (MAGE) - RNN!

there ball the left She

kitchen the to went She

football the got Mary

Coreference!
Hyper/Hyponymy!

RNN!

11!

Explicit Memory

 Dhingra, Jin, Yang, et al, NAACL 2018

�  Finding answers to factual questions posed in Natural Language:!

Who first voiced Meg in Family Guy?

A. Lacey Chabert

Who voiced Meg in Family Guy?

A. Lacey Chabert, Mila Kunis

12!

Open Domain Question Answering

Dhingra, Sun, et al., EMNLP 2018

Who first voiced Meg in Family Guy?!

KB!
Query Graph!

Lacey Chabert!

Semantic Parsing!

13!

Knowledge Base as a Knowledge Source

Step 1 (Information Retrieval): !
Retrieve passages relevant to the Question using shallow methods!
Step 2 (Reading Comprehension): !
Perform deep reading of passages to extract answers!

14!

Unstructured Text as a Knowledge Source

Meg Griffin is a character from!
the animated television !

series Family Guy!

Originally voiced by Lacey Chabert !
during the first season, she has been !
voiced by Mila Kunis since season 2!

d1

d2

Who first voiced Meg in Family Guy?!

Meg Griffin!

Lacey Chabert!Family Guy!

character-in!
voiced-by!

Mila Kunis!

Entity Linking! TF-IDF based !
sentence retrieval!Personalized Pagerank!

Dhingra, Sun, et al., EMNLP 2018

15!

Text Augmented Knowledge Graph (Dhingra, Sun, et al., 2018)

Given a graph G = (V, E) and a natural language question q = (w1, . . . , wT)
learn a function yv = f(v)8v 2 V, s.t. yv 2 {0, 1} and yv = 1 if and only if
v is an answer for q.

-- Question Representation from an LSTM!

-- Node Representation from a Graph Convolution Network!

P (yv = 1|G, q) =
exphT

q hvP
v0 exphT

q hv0

hq

hv

16!

Reading Graphs

Dhingra, Sun, et al., EMNLP 2018

Kipf et al., 2016

For each v:

Initialize h(0)
v

h(t)
v = f(W1h

(t�1)
v +W2

X

v02N(v)

↵v0h(t�1)
v0)

Repeat for t = 1, . . . , T

17!

Graph Convolution Network

Schlichtkrull et al. 2017

Graphs with edge types!

h(t)
v = f

0

@
X

r

W1h
(t�1)
v +W r

2

X

v02Nr(v)

↵v0h(t�1)
v0

1

A

18!

Relational Graph Convolution Network

e
Entities!

Meg Griffin!

h(0)
e = L(e) 2 Rp

Lookup Table!

Documents!

Meg Griffin is a character from the
animated television series Family Guy!

d

BiDirectional!
LSTM!

h(0)
d = LSTM(dw1 , . . . , dwT) 2 RT⇥p

19!

Graph Propagation / Graph Convolution

Dhingra, Sun, et al., EMNLP 2018

e
Entities!

Meg Griffin!

Documents!

Meg Griffin is a character from the
animated television series Family Guy!

d

h(t)
d = LSTM(h(t�1)

d1
||e(t�1)

w1
, . . . , h(t�1)

dT
||e(t�1)

wT
)

e
Meg Griffin! Meg Griffin is a character from the

animated television series Family Guy!

d

h(t)
e = f(W1h

(t�1)
e +

X

r

X

v02Nr(v)

W r
2 h

(t�1)
v0 +W3

X

d:e2d

h(t�1)
dw

)

20!

�  Relational information via KB propagation!

Graph Propagation / Graph Convolution

Dhingra, Sun, et al., EMNLP 2018

Domain knowledge

�  We consider three classes of domain knowledge:!
�  Relational!
�  Logical (constraints)!
�  Scientific!

21!

Incorporating Constraints

�  Consider a statistical model !
�  Consider a constraint function, parameterized by!

�  Higher value, better x w.r.t the knowledge !

DeepFashion, Liu et.al., CVPR 2016

source	
image	

generated	
image	

 !

Structured
consistency!

Constraint

target	
pose	

true	
target	

Generative
Model!

22!

Pose-conditional Human Image Generation!

Incorporating Constraints

�  Consider a statistical model !
�  Consider a constraint function, parameterized by!

�  Higher value, better x w.r.t the knowledge !

source	
image	

generated	
image	

 !

Structured
consistency!

Constraint

target	
pose	

true	
target	

Generative
Model!

23!

Hu, Yang, et al., NeurIPS 2018 !

Pose-conditional Human Image Generation!

DeepFashion, Liu et.al., CVPR 2016

Learning with Constraints

�  Consider a statistical model !
�  Consider a constraint function, parameterized by!

�  Higher value, better x w.r.t the knowledge !

source	
image	

generated	
image	

 !

Structured
consistency!

Human		
part		
parser	

Learnable	
module		

Constraint

target	
pose	

true	
target	

Generative
Model!

24!

Pose-conditional Human Image Generation!

DeepFashion, Liu et.al., CVPR 2016 Hu, Yang, et al., NeurIPS 2018 !

Learning with Constraints

�  Consider a statistical model !
�  Consider a constraint function, parameterized by!

�  Higher value, better x w.r.t the knowledge !

�  Sentiment prediction: !
�  This was a terrific movie, but the director could have done better !
!

�  Logical Rules:!
�  Sentence S with structure A-but-B: => sentiment of B dominates!

!

25!

Learning with Constraints

�  Consider a statistical model !
�  Consider a constraint function, parameterized by!

�  Higher value, better x w.r.t the knowledge !

�  One way to impose the constraint is to maximize:!
�  Objective: !

Regular objective (e.g. cross-entropy
loss, etc.)!

Regularization: imposing
constraints – difficult to
compute!

26!

Posterior Regularization (Ganchev et al., 2010)

�  Consider a statistical model !
�  Consider a constraint function, parameterized by!

�  Introduce variational distribution q, which is encouraged to stay close to p !

�  Objective:!

27!

Posterior Regularization (Ganchev et al., 2010)

�  Optimal solution for q:!

Higher value -- higher probability
under q – “soft constraint”!

28!

�  How do we fit our model parameters ?!

Logical Rule Formulation (Zhiting Hu et al., 2016)

�  Consider a supervised learning: , e.g. deep neural network !
�  Input-Target space (X,Y)!
�  First-order logic rules: !

�  , could be soft !
�  is the confidence level of the rule !

�  How to train a neural network: Knowledge Distillation [Hinton et al., 2015;
Bucilu et al., 2006]. !

!

�  Within PR framework given rules !

!

29!

Zhiting Hu et.al., ACL 2016

Knowledge Distillation

Knowledge Distillation [Hinton et al., 2015;
Bucilu et al., 2006].!

Teacher!
(Ensemble)!

Student!

30!

Match soft predictions of the teacher
network and student network !

Rule Knowledge Distillation

�  Deep neural network!
�  Train to imitate the outputs of the rule-regularized teacher network !
�  At iteration t:!

31!

true hard
label!

soft prediction of!

soft prediction of the
teacher network q. !

balancing
parameter !

Zhiting Hu et.al., ACL 2016

Rule Knowledge Distillation (Zhiting Hu et al., 2016)

�  Deep neural network!

32!

Zhiting Hu et.al., ACL 2016

Rule Knowledge Distillation (Zhiting Hu et al., 2016)

�  Deep neural network!

33!

Zhiting Hu et.al., ACL 2016

Rule Knowledge Distillation (Zhiting Hu et al., 2016)

�  Deep neural network!
�  At each iteration:!

�  Construct a teacher network q(y|x) with “soft constraints”!
�  Train DNN to emulate the teacher network !

34!

Zhiting Hu et.al., ACL 2016

Rule Knowledge Distillation (Zhiting Hu et al., 2016)

�  Deep neural network!
�  At each iteration:!

�  Construct a teacher network q(y|x) with “soft constraints”!
�  Train DNN to emulate the teacher network !

�  Sentiment classification,!
�  Named entity

recognition !

35!

Zhiting Hu et.al., ACL 2016

Learning Rules / Constraints

�  We can also learn the ”confidence” values for logical rules!

�  More generally, we can optimize parameters of the constraint function !
!

36!

Zhiting Hu et.al., EMNLP 2016, NeurIPS2018

�  Treat as the reward function to be learned within the MaxEnt Inverse Reinforcement
Learning!

Pose-conditional Human Image Generation
5 Experiments

We demonstrate the applications and effectiveness of the algorithm in two tasks related to image and
text generation [24], respectively.

Method SSIM Human
1 Ma et al. [38] 0.614 —
2 Pumarola et al. [44] 0.747 —
3 Ma et al. [37] 0.762 —

4 Base model 0.676 0.03
5 With fixed constraint 0.679 0.12

6 With learned constraint 0.727 0.77

Table 2: Results of image generation on Structural
Similarity (SSIM) [52] between generated and true
images, and human survey where the full model
yields better generations than the base models (Rows
5-6) on 77% test cases. See the text for more results
and discussion.

Figure 2: Training losses of the three mod-
els. The model with learned constraint con-
verges smoothly as base models.

Figure 3: Samples generated by the models in Table 2. The model with learned human part constraint
generates correct poses and preserves human body structure much better.

5.1 Pose Conditional Person Image Generation

Given a person image and a new body pose, the goal is to generate an image of the same person under
the new pose (Figure 1, left). The task is challenging due to body self-occlusions and many cloth
and shape ambiguities. Complete end-to-end generative networks have previously failed [37] and
existing work designed specialized generative processes or network architectures [37, 44, 38]. We
show that with an added body part consistency constraint, a plain end-to-end generative model can
also be trained to produce highly competitive results, significantly improving over base models that
do not incorporate the problem structure.

Setup. We follow the previous work [37] and obtain from DeepFashion [35] a set of triples (source
image, pose keypoints, target image) as supervision data. The base generative model p� is an implicit
model that transforms the input source and pose directly to the pixels of generated image (and
hence defines a Dirac-delta distribution). We use the residual block architecture [51] widely-used in
image generation for the generative model. The base model is trained to minimize the L1 distance
loss between the real and generated pixel values, as well as to confuse a binary discriminator that
distinguishes between the generation and the true target image.

Knowledge constraint. Neither the pixel-wise distance nor the binary discriminator loss encode
any task structures. We introduce a structured consistency constraint f� that encourages each of the
body parts (e.g., head, legs) of the generated image to match the respective part of the true image.
Specifically, the constraint f� includes a human parsing module that classifies each pixel of a person
image into possible body parts. The constraint then evaluates cross entropies of the per-pixel part

7

Samples generated by the models. Enforcing
learned human part constraint generates
correct poses and better preserves human
body structure!

Results of image generation using Structural
Similarity (SSIM) between generated and true
images!

37!

Hu, Yang, et al., NeurIPS 2018 !

Template-guided Sentence Generation

�  Task: Given a template, generate a complete sentence following the template !
�  Constraint: force to match between infilling content of the generated sentence

with the true content!

“											meant	to											d	

	not	to														.”	

“It	was	meant	to	dazzle		
		not	to	make	it	.”	

“It	was	meant	to	dazzle		
		not	to	make	sense	.”	

true target:

generated:

 !

Infilling content!
matching!

Learnable	
module	𝜙		

template:

Generative
Model!

Constraint

38!

Hu, Yang, et al., NeurIPS 2018 !

Template-guided Sentence Generation

Model Perplexity Human
1 Base model 30.30 0.19
2 With binary D 30.01 0.20

3 With constraint updated 31.27 0.15in M-step (Eq.5)

4 With learned constraint 28.69 0.24

Table 3: Sentence generation results on test set per-
plexity and human survey. Samples by the full model
are considered as of higher quality in 24% cases.

acting
the acting is the acting .
the acting is also very good .

out of 10 .
10 out of 10 .

I will give the movie 7 out of 10 .

Table 4: Two test examples, including the
template, the sample by the base model, and
the sample by the constrained model.

distributions between the generated and true images. The average negative cross entropy serves as
the constraint score. The parsing module is parameterized as a neural network with parameters �,
pre-trained on an external parsing dataset [14], and subsequently adapted within our algorithm jointly
with the generative model.

Results. Table 2 compares the full model (with the learned constraint, Row 6) with the base model
(Row 4) and the one regularized with the constraint that is fixed after pre-training (Row 5). Human
survey is performed by asking annotators to rank the quality of images generated by the three models
on each of 200 test cases, and the percentages of ranked as the best are reported (Tied ranking is
treated as negative result). We can see great improvement by the proposed algorithm. The model
with fixed constraint fails, partially because pre-training on external data does not necessarily fit to
the current problem domain. This highlights the necessity of the constraint learning. Figure 3 shows
examples further validating the effectiveness of the algorithm.

In sec 4, we have discussed the close connection between the proposed algorithm and (energy-based)
GANs. The conventional discriminator in GANs can be seen as a special type of constraint. With this
connection and given that the generator in the task is an implicit generative model, here we can also
apply and learn the structured consistency constraint using GANs, which is equivalent to replacing
q(x) in Eq.(8) with p✓(x). Such a variant produces a SSIM score of 0.716, slightly inferior to the
result of the full algorithm (Row 6). We suspect this is because fake samples by q (instead of p) can
help with better constraint learning. It would be interesting to explore this in more applications.

To give a sense of the state of the task, Table 2 also lists the performance of previous work. It is worth
noting that these results are not directly comparable, as discussed in [44], due to different settings
(e.g., the test splits) between each of them. We follow [37, 38] mostly, while our generative model is
much simpler than these work with specialized, multi-stage architectures. The proposed algorithm
learns constraints with moderate approximations. Figure 2 validates that the training is stable and
converges smoothly as the base models.

5.2 Template Guided Sentence Generation

The task is to generate a text sentence x that follows a given template t (Figure 1, right). Each missing
part in the template can contain arbitrary number of words. This differs from previous sentence
completion tasks [9, 57] which designate each masked position to have a single word. Thus directly
applying these approaches to the task can be problematic.

Setup. We use an attentional sequence-to-sequence (seq2seq) [3] model p✓(x|t) as the base
generative model for the task. Paired (template, sentence) data is obtained by randomly masking out
different parts of sentences from the IMDB corpus [8]. The base model is trained in an end-to-end
supervised manner, which allows it to memorize the words in the input template and repeat them
almost precisely in the generation. However, the main challenge is to generate meaningful and
coherent content to fill in the missing parts.

Knowledge constraint. To tackle the issue, we add a constraint that enforces matching between
the generated sentence and the ground-truth text in the missing parts. Specifically, let t� be the
masked-out true text. That is, plugging t� into the template t recovers the true complete sentence.
The constraint is defined as f�(x, t�) which returns a high score if the sentence x matches t� well.
The actual implementation of the matching strategy can vary. Here we simply specify f� as another
seq2seq network that takes as input a sentence x and evaluates the likelihood of recovering t�—This

8

Samples by the full model are
considered as of higher quality in 24%
cases.

Model Perplexity Human
1 Base model 30.30 0.19
2 With binary D 30.01 0.20

3 With constraint updated 31.27 0.15in M-step (Eq.5)

4 With learned constraint 28.69 0.24

Table 3: Sentence generation results on test set per-
plexity and human survey. Samples by the full model
are considered as of higher quality in 24% cases.

acting
the acting is the acting .
the acting is also very good .

out of 10 .
10 out of 10 .

I will give the movie 7 out of 10 .

Table 4: Two test examples, including the
template, the sample by the base model, and
the sample by the constrained model.

distributions between the generated and true images. The average negative cross entropy serves as
the constraint score. The parsing module is parameterized as a neural network with parameters �,
pre-trained on an external parsing dataset [14], and subsequently adapted within our algorithm jointly
with the generative model.

Results. Table 2 compares the full model (with the learned constraint, Row 6) with the base model
(Row 4) and the one regularized with the constraint that is fixed after pre-training (Row 5). Human
survey is performed by asking annotators to rank the quality of images generated by the three models
on each of 200 test cases, and the percentages of ranked as the best are reported (Tied ranking is
treated as negative result). We can see great improvement by the proposed algorithm. The model
with fixed constraint fails, partially because pre-training on external data does not necessarily fit to
the current problem domain. This highlights the necessity of the constraint learning. Figure 3 shows
examples further validating the effectiveness of the algorithm.

In sec 4, we have discussed the close connection between the proposed algorithm and (energy-based)
GANs. The conventional discriminator in GANs can be seen as a special type of constraint. With this
connection and given that the generator in the task is an implicit generative model, here we can also
apply and learn the structured consistency constraint using GANs, which is equivalent to replacing
q(x) in Eq.(8) with p✓(x). Such a variant produces a SSIM score of 0.716, slightly inferior to the
result of the full algorithm (Row 6). We suspect this is because fake samples by q (instead of p) can
help with better constraint learning. It would be interesting to explore this in more applications.

To give a sense of the state of the task, Table 2 also lists the performance of previous work. It is worth
noting that these results are not directly comparable, as discussed in [44], due to different settings
(e.g., the test splits) between each of them. We follow [37, 38] mostly, while our generative model is
much simpler than these work with specialized, multi-stage architectures. The proposed algorithm
learns constraints with moderate approximations. Figure 2 validates that the training is stable and
converges smoothly as the base models.

5.2 Template Guided Sentence Generation

The task is to generate a text sentence x that follows a given template t (Figure 1, right). Each missing
part in the template can contain arbitrary number of words. This differs from previous sentence
completion tasks [9, 57] which designate each masked position to have a single word. Thus directly
applying these approaches to the task can be problematic.

Setup. We use an attentional sequence-to-sequence (seq2seq) [3] model p✓(x|t) as the base
generative model for the task. Paired (template, sentence) data is obtained by randomly masking out
different parts of sentences from the IMDB corpus [8]. The base model is trained in an end-to-end
supervised manner, which allows it to memorize the words in the input template and repeat them
almost precisely in the generation. However, the main challenge is to generate meaningful and
coherent content to fill in the missing parts.

Knowledge constraint. To tackle the issue, we add a constraint that enforces matching between
the generated sentence and the ground-truth text in the missing parts. Specifically, let t� be the
masked-out true text. That is, plugging t� into the template t recovers the true complete sentence.
The constraint is defined as f�(x, t�) which returns a high score if the sentence x matches t� well.
The actual implementation of the matching strategy can vary. Here we simply specify f� as another
seq2seq network that takes as input a sentence x and evaluates the likelihood of recovering t�—This

8

Two test examples, including the template, the
sample by the base model, and the sample by
the constrained model.

39!

Hu, Yang, et al., NeurIPS 2018 !

Summary So Far

�  Limitations: We considered very simple forms of domain knowledge: relational,
logical, simple constraints!

�  Human Knowledge: abstract, fuzzy, build on high-level concepts!
�  e.g. dogs have 4 legs!
!

but also the extent of propagation through the edges is parameterized, and is all trained end-to-end
in a supervised fashion, which addresses both the lack of data (since end-to-end supervised train-
ing typically comes with sufficiently large data sets), as well as the theoretical foundation of the
embeddings (since supervised learning has a stronger theoretical foundation).

For example, let us consider the domain of visual object recognition. Indeed, our world con-
tains millions of visual concepts understood by humans. These often are ambiguous (tomatoes
can be red or green), overlap (vehicles includes both cars and planes) and have dozens or hun-
dreds of subcategories. While some visual concepts are very common such as person or car, most
categories have many fewer examples, forming a long-tail distribution. And yet, even when only
shown a few or even one example, humans have the remarkable ability to recognize these cate-
gories with high accuracy. In contrast, while modern learning-based approaches can recognize
some categories with high accuracy, it usually requires thousands of labeled examples for each
of these categories. Given how large, complex and dynamic the space of visual concepts is, this
approach of building large datasets for every concept is unscalable. Human learners on the other
hand are not merely appearance-based classifiers; but appear to gain structured knowledge of the
world from experience and language.

Figure 1: Example of how semantic knowledge about the world aids classification.

Consider an image classification task, shown in Figure 1. We might know that an elephant
shrew looks like a mouse, has a trunk and a tail, and is often found in bushes. With this information,
we could probably identify the elephant shrew if we saw one in the wild. We do this by first
recognizing (we see a small mouse-like object with a trunk in a bush), recalling knowledge (we
think of animals we have heard of and their parts, habitat, and characteristics) and then reasoning
(it is an elephant shrew because it has a trunk and a tail, and looks like a mouse.) With this
information, even if we have only seen one or two pictures of this animal, we would be able to
classify it [16].

There has been a line of work on end-to-end learning on graphs or neural network trained on
graphs. Most of these approaches either extract features from the graph or they learn a propagation
model that transfers evidence between nodes conditional on the type of edge. An example of this is
the Gated Graph Neural Network citeLi2016, which takes an arbitrary graph as input. Given some
initialization specific to the task, it learns how to propagate information and predict the output for
every node in the graph. This approach has been shown to solve basic logical tasks as well as

5

#legs=4!

dog!

�  How do we encode this knowledge and how do we efficiently integrate this
into deep learning models!
!

40!

Marino et al., CVPR 2017

MineRL

William H. Guss∗ , Brandon Houghton∗ , Nicholay Topin , Phillip Wang , Cayden Codel , Manuela Veloso
and Ruslan Salakhutdinov!
!

Towards Sample Efficient Reinforcement Learning!

The growing problem of sample inefficiency in RL

42!

�  The number of environment
samples to train policies on
domains of increasing complexity is
growing exponentially !
!

!
!

Dario Amodei & Danny Hernandez Open AI 2019.!

The growing problem of sample inefficiency in RL

43!

�  The number of environment
samples to train policies on
domains of increasing complexity is
growing exponentially!

�  Training complex policies in real-
world environments is quickly
becoming intractable, without
significant infrastructure!

!
!

Levine et. al. 2016!

Demonstration as an Answer to Sample Inefficiency

44!

�  The number of samples required can
be drastically reduced using expert
demonstrations.!

�  No open, large-scale dataset of
demonstrations across a variety of
open/closed world tasks exists!

!
!

!
!

MineRL: A Large-Scale Dataset of Minecraft Demonstrations

45!

!
�  We have created one of the largest

imitation learning datasets with over
60 million frames of recorded
human player data across 6+
complex tasks in Minecraft.!

!
!

William H. Guss∗ , Brandon Houghton∗ , Nicholay
Topin , Phillip Wang , Cayden Codel , Manuela Veloso
and Ruslan Salakhutdinov. IJCAI 2019.!
!

MineRL: Why Minecraft?

46!

�  Open-world, infinite/procedurally
generated!

�  Sparse & dense rewards!
�  Many innate task hierarchies and

subgoals!
�  Encompasses many of problems we

must solve as we approach the
problem of general AI.!

!
!

A glimpse into the Minecraft item hierarchy!

MineRL: Dataset Details

47!

�  Consists of over 500+ hours of
human demonstrations over 1000+
unique player sessions.!
!

�  Rich set of annotations including:
subtask completion, rewards,
player meta-data, gamestate.!
!

�  Rerenderable! We record game-
state not just player-pixels!

!
!

Plots of XY positions of players in several tasks
(diversity & rich annotations)!

MineRL: Hierarchality of Data

48!

�  Players complete sparsely rewarded
tasks following a specific task
hierarchy/dependence graph.!
!

�  Many ways to obtain an item, but
data exhibits the existence of
canonical pathways.!

!
!

MineRL: Expert demonstrations help

49!

�  On the Navigate task, using the
MineRL-v0 dataset helps drastically
reduce the number of samples for
standard algorithms.!
!

�  However, better algorithms still
need to be developed, especially
for the long-term, hierarchical tasks
exhibited in Minecraft.!

!
!

MineRL: NeurIPS 2019 Competition

50!

�  To foster research in this
direction, we are hosting the
MineRL Competition on
Sample Efficient Reinforcement
Learning at NeurIPS 2019!!

�  Competitors must learn to obtain
a diamond in under 4-days of
training.!

!
!

https://www.youtube.com/watch?v=KFMuI4TfC7c!

MineRL: Get started now!

51!

http://minerl.io/ !

Thank you!

52!

