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Domain knowledge

» Two key ingredients of a Statistical Machine Learning system
» Model architecture/class

» Learning algorithms to learn from data

» How do we incorporate domain knowledge into either or both these ingredients?

» We can consider three classes of domain knowledge:
» Relational
» Logical

» Scientific

Ravikumar, Salakhutdinov, 2019
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Relational Knowledge

» Simple relations among entities
» (father, Bob, Alice)

» Available via relational databases, or knowledge graphs

» Statistical Relational Models
» Probabilistic Graphical Models (PGMs) to model relationships amongst entities
» Probabilistic Relational Models (via Bayes Nets), Relational Dependency Networks

» Embeddings
» Instead of distributional semantics, represent entities via vectors in some vector space

» Learn these vector representations via predicting an entity given its “context”

» We show how to incorporate relational information in Deep Learning via

knowledge graph propagation
Ravikumar, Salakhutdinov, 2019
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Logical Knowledge

» Propositional and First Order Logic (FOL) based knowledge
» In contrast to simpler tuple based relational knowledge

» E.g. if object has a wing, and a beak, it is a bird

» Encode logical knowledge into Probabilistic Graphical Models
» Bayesian Networks from Horn clauses, Probabilistic Context Free Grammars,
Markov Logic Networks

» We incorporate logical information (and more general constraints) into Deep
Learning via distillation (student-teacher) framework

Ravikumar, Salakhutdinov, 2019
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Scientific Knowledge

» Partial and Stochastic Differential Equations
» Newton Laws of Motion
» Navier-Stokes fluid dynamics equations

> ...

» Conservation laws and principles, Invariances

» Learning PDEs from data
» Regularizing dynamical system (e.g. state space models) via PDEs

Ravikumar, Salakhutdinov, 2019
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Reading Comprehension

Her plain face broke into a huge smile when she saw Terry.
“Terry!” she called out.

She rushed to meet him and they embraced.

“Hon, I want you to meet an old friend, Owen McKenna.
Owen, please meet Emily."

She gave me a quick nod and turned back to X

LAMBADA dataset, Paperno et al., 2016
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Reading Comprehension

Her plain face broke into a huge smile when she saw Terry.
“Terry!” she called out.

She rushed to meet him and they embraced.

“Hon, I want you to meet an old friend, Owen McKenna.
Owen, please meet Emily."

She gave me a quick nod and turned back to X

X = Terry

LAMBADA dataset, Paperno et al., 2016



huge smile when she saw
Terry. “Terry!” she called
out. She rushed to meet
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“Hon, | want you to meet
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Incorporating Prior Knowledge
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Dependency Parses

Entity relations

[ Deep Learning Model (e.g. RNN, Transformers)

Text Representation
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Explicit Memory

Mary got == the =—— football
e’
_—
ShEe = WENI = {0 = the kitchen
—
She = |off == the = ball —— there
RNN
Coreference
Hyper/Hyponymy

Dhingra, Jin, Yang, et al, NAACL 2018
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Open Domain Question Answering

» Finding answers to factual questions posed in Natural Language:

Who voiced Meg in Family Guy?
A. Lacey Chabert, Mila Kunis

Who first voiced Meg in Family Guy?
A. Lacey Chabert

Dhingra, Sun, et al., EMNLP 2018
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Knowledge Base as a Knowledge Source

12/26/1999
g Mlla Kunis
&=

cast series appear in

Lacey Chabert
4

character

KB

Query Graph

Who first voiced|Meg|in [Family Gu_)}?'
I

Meg Griffin
>

5,
O/b (:(\3‘@

Semantic Parsing w»@ftA@




Unstructured Text as a Knowledge Source

Q: How many of Warsaw's inhabitants
spoke Polish in 19337

Carnegie Mellon University

BT Document
o L Retriever
¢ Q V‘ ‘;‘
Row oo
WiKIPEDIA

The Free Encyclopedia O
/

Document
Reader

> 833,500

Step 1 (Information Retrieval):

Retrieve passages relevant to the Question using shallow methods

Step 2 (Reading Comprehension):

Perform deep reading of passages to extract answers
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Text Augmented Knowledge Graph (Dhingra, Sun, et al., 2018)

Who first voiced Meg in Family Guy?

Entity Linking
Personalized Pagerank

TF-IDF based
sentence retrieval

character-in

|| Meg Griffi
voiced-by ! | BRe8 LTI

| | From Wikipedia, the free encyclopedia

. | I

Meg Griffin I I Meg Griffin is a character from
: :‘>O d 1 the animated television
: | series Family Guy
| |
Family Guy Lacey Chabert I d Originally voiced by Lacey Chabert
2

during the first season, she has been
voiced by Mila Kunis since season 2

Mila Kunis

O

Dhingra, Sun, et al., EMNLP 2018
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Reading Graphs

Given a graph G = (V,£) and a natural language question ¢ = (w1, ..., wr)
learn a function y, = f(v)Vv € V, s.t. y, € {0,1} and y, = 1 if and only if
v is an answer for q.

exp hg Py

P(y, = 1|G,q) =
(Yo =119, 9) S exphlhy

hq -- Question Representation from an LSTM

h,, — Node Representation from a Graph Convolution Network

Dhingra, Sun, et al., EMNLP 2018
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Graph Convolution Network

Q-

Initialize héo)

B = fWRE D +We Y auhliY)
v’ €N (v)
Repeat for t =1,...,T

For each v:

Kipfetal., 2016
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Relational Graph Convolution Network

Graphs with edge types

— rell1 — —rel_.N —

self-loop
° =
i) = f ZWlh(t Dapws Y aphl Y

v/’ €N, (v)

Schlichtkrull et al. 2017
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Graph Propagation / Graph Convolution

Entities Documents
ON& od
Meg Griffin Meg Griffin is a character from the

animated television series Family Guy

Lookup Table
v BiDirectional

h((gO) _ L(e) c RP LSTM

\4

WY = LSTM(dy, .. ., dy, ) € RTXP

Dhingra, Sun, et al., EMNLP 2018
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Graph Propagation / Graph Convolution

Entities Documents
O € > O d
Meg Griffin Meg Griffin is a character from the

animated television series Family Guy

h(t) LSTM(h(t 1)H (t 1) h(t 1)H6(t 1))

oe < o d

Meg Griffin Meg Griffin is a character from the
animated television series Family Guy

WO = fFWihED 43 ST wrhlmY e Y YY)

r v E€N,(v) d:ecd

» Relational information via KB propagation Dhingra, Sun, et al., EMNLP 2018
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Domain knowledge

» We consider three classes of domain knowledge:
» Relational
» Logical (constraints)

» Scientific



Carnegie Mellon University

Incorporating Constraints

» Consider a statistical model X ~ pg(X)

» Consider a constraint function, f4(x) € R parameterized by ¢
» Higher qu (X) value, better x w.r.t the knowledge

Pose-conditional Human Image Generation
target true
pose target

Generative
—1 Model pg(x) —

source generated
image image

DeepFashion, Liu et.al., CVPR 2016
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Incorporating Constraints

» Consider a statistical model X ~ pg(X)

» Consider a constraint function, f4(x) € R parameterized by ¢
» Higher f¢ (X) value, better x w.r.t the knowledge Constraint

Pose-conditional Human Image Generation
target true
pose target

Generative
—1 Model pg(x) —

source generated
image image
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~
=
c
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~
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()
Q.

DeepFashion, Liu et.al., CVPR 2016 Hu, Yang, et al., NeurlPS 2018
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Learning with Constraints

» Consider a statistical model X ~ pg(X)
» Consider a constraint function, f4(x) € R parameterized by ¢

» Higher f¢ (X) value, better x w.r.t the knowledge Constraint
Pose-conditional Human Image Generation :‘ T eamatle T T TTTTTT TS
|
target true ' module |
pose target I !
: —> 1
<) I
i |
. I
Human | :
art Structured I
P consistency :
Generative parser i !
S MOdel p9 (X) . ! :
> I
source generated !
|

image image
DeepFashion, Liu et.al., CVPR 2016 Hu, Yang, et al., NeurlPS 2018



Learning with Constraints

» Consider a statistical model X ~ pg(X)

» Consider a constraint function,fqg(x) c R parameterized by ¢
» Higher f¢ (X) value, better x w.r.t the knowledge

» Sentiment prediction:

» This was a terrific movie, but the director could have done better

» Logical Rules:
» Sentence S with structure A-but-B: => sentiment of B dominates

Carnegie Mellon University




Learning with Constraints

» Consider a statistical model X ~ pg(X)

» Consider a constraint function,fqg(x) c R parameterized by ¢
» Higher qu (X) value, better x w.r.t the knowledge

» One way to impose the constraint is to maximize: [, [f¢ (X)]
» Objective:

Regular objective (e.g. cross-entropy Regularization: imposing
loss, etc.) constraints — difficult to

compute

Carnegie Mellon University
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Posterior Regularization (Ganchev et al., 2010)

» Consider a statistical model X ~ pg(X)

» Consider a constraint function,fqg(x) c R parameterized by ¢

(

i (L00) = e s (<))

__________

£(8,q) = KL(q(x)Ips(x)) — \Eq[£o(x)]

» Introduce variational distribution q, which is encouraged to stay close to p

» Objective:

min (£(0) + «L(9,q))

0,q



Posterior Regularization (Ganchev et al., 2010)

min (£(9) + aL(6, )

L(0,q) = KL(g(x)|Ipo(x)) — AEq[fs(x)]
» Optimal solution for q:

q* (x) = po(x) exp (Mfy(x))/ 2

~

Higher value -- higher probability
under q — “soft constraint”

» How do we fit our model parameters 0 7

Carnegie Mellon University
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Logical Rule Formulation (Zhiting Hu et al., 2016)

» Consider a supervised learning: py(y|X) , e.g. deep neural network
» Input-Target space (X,Y)
» First-order logic rules: (7, \)

> r(X) Y) c [07 1] - could be soft

» M\ is the confidence level of the rule

» Within PR framework given [ rules

" (y|x) = po(y|x) exp ( > Ay, X)) /Z
[

» How to train a neural network: Knowledge Distillation [Hinton et al., 2015;
Bucilu et al., 2006].
Zhiting Hu et.al., ACL 2016
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Knowledge Distillation

Match soft predictions of the teacher
q<y|X) network and student network  pg(y|x)
O

Teacher Student
(Ensemble)

Knowledge Distillation [Hinton et al., 2015;
Bucilu et al., 2006].
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Rule Knowledge Distillation

» Deep neural network pg(y|x)
» Train to imitate the outputs of the rule-regularized teacher network

» At iteration t: .
true hard soft prediction of

D N TS
Pl — argm@in N Z U(Yn, o0 (X))

"~ +a€(s,§f),a (x))
AN 9

balancing soft prediction of the
parameter teacher network q.

7" (¥1%) = po(ylx) exp (Z Am<y,x>)/z
l

Zhiting Hu et.al., ACL 2016
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Rule Knowledge Distillation (Zhiting Hu et al., 2016)

» Deep neural network pg(y|x)

loss ]
Y
back
propagation student
-
pe (¥[x)

‘ labeled data

Zhiting Hu et.al., ACL 2016
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Rule Knowledge Distillation (Zhiting Hu et al., 2016)

» Deep neural network pg(y|x)

)
7 po (Vlx)

i

logic rules

loss ]
Y
back
propagation student
-
pe (¥[x)

‘ labeled data

Zhiting Hu et.al., ACL 2016
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Rule Knowledge Distillation (Zhiting Hu et al., 2016)

» Deep neural network pg(y|x)
» At each iteration:

» Construct a teacher network q(y|x) with “soft constraints”

» Train DNN to emulate the teacher network

teacher network construction

Y po (v]x) 952
| projection _ - = =|= ===~ _ _ -
S e EE——— ’, \ \N —/—
back
teacher propagation student
il q(y|x) "l po (¥I%)
logic rules

labeled data

Zhiting Hu et.al., ACL 2016
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Rule Knowledge Distillation (Zhiting Hu et al., 2016)

» Deep neural network pg(y|x)
» At each iteration:

» Construct a teacher network q(y|x) with “soft constraints”

» Train DNN to emulate the teacher network

teacher network construction rule knowledge distillation
Y pelx) [ Lless T | L
____________________________ projection_ - = =|= ===~ __ » Sentiment classification,
RS ’/ N — .
ook » Named entity
teacher propagation student .
{} o) " o 1) recognition
logic rules

unlabelled data labeled data

Zhiting Hu et.al., ACL 2016
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Learning Rules / Constraints
0610 = i) exo (Y Ny ) /2
l
» We can also learn the "confidence” values \; for logical rules

» More generally, we can optimize parameters of the constraint function f(x)
q"(x) = po(x) exp (Mfy(x))/ 2

» Treat fy (X) as the reward function to be learned within the MaxEnt Inverse Reinforcement
Learning

Zhiting Hu et.al., EMNLP 2016, NeurIPS2018
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Pose-conditional Human Image Generation

source image target pose target image

| Method SSIM  Human
b o 1 Maetal. [38] 0.614 —
J 2 Pumarola et al. [44] 0.747 —

- 3 Maetal. [37] 0.762 —

ﬂ ﬁ‘ 4 Base model 0.676  0.03

‘ " 5  With fixed constraint 0.679 0.12

\

o ; 6  With learned constraint ~ 0.727  0.77
Samples generated by the models. Enforcing Results of image generation using Structural
learned human part constraint generates Similarity (SSIM) between generated and true
correct poses and better preserves human images

body structure

Hu, Yang, et al., NeurlPS 2018
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Template-guided Sentence Generation

» Task: Given a template, generate a complete sentence following the template

» Constraint: force to match between infilling content of the generated sentence
with the true content

template: true target: Constraint
LT
“ meant to “It was meanttodazzle _+ Learnable
not to " not to make sense .” '

. module ¢

i
I

[

: Infilling content
I matching
I

I

[

|

I

generated:

Generative

Model g (x) F———

“It was meant to dazzle
not to make it .” e ;

Hu, Yang, et al., NeurlPS 2018
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Template-guided Sentence Generation

acting
Model Perplexity ~Human the acting 1s the acting .
1 Base model 30.30 0.19 the acting 1is also very good .
2 With binary D 30.01 0.20
3 With constraint updated 31.27 0.15 out of 10 .

in M-step (Eq.5)
4  With learned constraint  28.69 0.24

10 outof 10.
I will give the movie 7 out of 10 .

Samples by the full model are
considered as of higher quality in 24%
cases.

Two test examples, including the template, the
sample by the base model, and the sample by
the constrained model.

Hu, Yang, et al., NeurlPS 2018
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Summary So Far

» Limitations: We considered very simple forms of domain knowledge: relational,
logical, simple constraints

» Human Knowledge: abstract, fuzzy, build on high-level concepts
» e.g. dogs have 4 legs

= Detection

- ::: attribute Pred |Ct|0n :

= Looks like

# |egS:4 — Foundin Elephant Shrew

Example of how semantic knowledge about the world aids classification.

Marino et al., CVPR 2017

» How do we encode this knowledge and how do we efficiently integrate this
into deep learning models
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MineRL

Towards Sample Efficient Reinforcement Learning

William H. Gussx , Brandon Houghtonx , Nicholay Topin , Phillip Wang , Cayden Codel , Manuela Veloso
and Ruslan Salakhutdinov
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The growing problem of sample inefficiency in RL

» The number of environment
samples to train policies on
domains of increasing complexity is
growing exponentially

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

10,000
e AlphaGo Zero
1,000
e AlphaZero
100 o Neural Machine Translation
=) o Neural Architecture Search
c
< 10 . eTI7 Dotalvi
.@ e Xception
=
% 1
© VGG e DeepSpeech2
@2 1 e Seq2Seq e ResNets
Q
o
e 0 e GoogleNet
© .01
*CT) e AlexNet ® Visualizing and Understanding Conv Nets
a e Dropout
.001
.0001
eDQN
.00001
2013 2014 2015 2016 2017 2018 2019
Year

Dario Amodei & Danny Hernandez Open Al 2019.
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The growing problem of sample inefficiency in RL

» The number of environment
samples to train policies on
domains of increasing complexity is
growing exponentially

» Training complex policies in real-
world environments is quickly
becoming intractable, without
significant infrastructure

Levine et. al. 2016
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Demonstration as an Answer to Sample Inefficiency

All previous data

> The number of samples required can
be drastically reduced using expert Execute current policy and Query Expert
demonstrations. fffi'?f{n/ ;

» No open, large-scale dataset of g\.,.,_\
demonstrations across a variety of — —
open/closed world tasks exists i ‘ A=

==KC]
=0

Supervised Learning
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MineRL: A Large-Scale Dataset of Minecraft Demonstrations

William H. Gussx* , Brandon Houghtonx* , Nicholay
Topin , Phillip Wang , Cayden Codel , Manuela Veloso _
and Ruslan Salakhutdinov. 1JCAI 2019. Navigate:

Treechop:

» We have created one of the largest
imitation learning datasets with over btain
60 million frames of recorded Bed:
human player data across 6+ obtain
complex tasks in Minecraft. Meat:

ObtainIron
Pickaxe:

Obtain
Diamond:




MineRL: Why Minecraft?

» Open-world, infinite/procedurally
generated

» Sparse & dense rewards

» Many innate task hierarchies and
subgoals

» Encompasses many of problems we
must solve as we approach the
problem of general Al.

Carnegie Mellon University
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A glimpse into the Minecraft item hierarchy



MineRL: Dataset Details

» Consists of over 500+ hours of
human demonstrations over 1000+
unique player sessions.

» Rich set of annotations including:
subtask completion, rewards,
player meta-data, gamestate.

» Rerenderable! We record game-
state not just player-pixels

Carnegie Mellon University

Treechop Navigate

- T
-40 -30 -20 -10 0 20 30 40 —150 —100 =50 100

SD
ObtalnlronPlckaxe ObtalnDlamond
52 b A 7 i, P‘ = .,“’ s S ==
% TR LS NE S B W{'.—@A i ; )
n ‘1:3_:_ ; ‘“.Ap &v“\’\. —:_4 TRy AR 7 % >""," - : o A
g - "2’.,‘4 R e 0 N
! f{" i I o &N, “
b, % 2 R
Cap R = s, 28
.'T*' — C NN N ) IJ ”
1 . b~ ~= X

% T T T
-40 -30 -20 -10 0 -40 -30 -20 -10 0 10

Plots of XY positions of players in several tasks
(diversity & rich annotations)




MineRL: Hierarchality of Data

» Players complete sparsely rewarded
tasks following a specific task
hierarchy /dependence graph.

» Many ways to obtain an item, but
data exhibits the existence of
canonical pathways.

£

@]
(&)(4)

CookedMeat

Carnegie Mellon University
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MineRL: Expert demonstrations help

» On the Navigate task, using the
MineRL-v0 dataset helps drastically
reduce the number of samples for
standard algorithms.

» However, better algorithms still
need to be developed, especially
for the long-term, hierarchical tasks
exhibited in Minecraft.

120

100 A1

80

0 200 400 600 800 1000 1200 1400

Episodes
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MineRL: NeurlPS 2019 Competition

» To foster research in this
direction, we are hosting the
MineRL Competition on
Sample Efficient Reinforcement
Learning at NeurlPS 2019!

This challenge opens up a new frontier

of Machine Learning research.

\ .

» Competitors must learn to obtain
a diamond in under 4-days of
training.

https://www.youtube.com/watch?v=KFMul4T{C7c
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MineRL: Get started now!

http://minerl.io/
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Thank you



