Integrating Domain-Knowledge into Deep Learning

Russ Salakhutdinov

Machine Learning Department Carnegie Mellon University Canadian Institute for Advanced Research

Carnegie Mellon University

Domain knowledge

- ► Two key ingredients of a Statistical Machine Learning system
 - Model architecture/class
 - Learning algorithms to learn from data
- ► How do we incorporate domain knowledge into either or both these ingredients?
- ► We can consider three classes of domain knowledge:
 - Relational
 - Logical
 - Scientific

Relational Knowledge

- Simple relations among entities
 - ▶ (father, Bob, Alice)
- Available via relational databases, or knowledge graphs
- Statistical Relational Models
 - Probabilistic Graphical Models (PGMs) to model relationships amongst entities
 - Probabilistic Relational Models (via Bayes Nets), Relational Dependency Networks
- Embeddings
 - ► Instead of distributional semantics, represent entities via vectors in some vector space
 - Learn these vector representations via predicting an entity given its "context"
- We show how to incorporate relational information in Deep Learning via knowledge graph propagation

Ravikumar, Salakhutdinov, 2019

Logical Knowledge

- Propositional and First Order Logic (FOL) based knowledge
 - In contrast to simpler tuple based relational knowledge
 - E.g. if object has a wing, and a beak, it is a bird
- Encode logical knowledge into Probabilistic Graphical Models
- Bayesian Networks from Horn clauses, Probabilistic Context Free Grammars, Markov Logic Networks
- We incorporate logical information (and more general constraints) into Deep Learning via distillation (student-teacher) framework

Scientific Knowledge

5

- Partial and Stochastic Differential Equations
 - Newton Laws of Motion

> ...

- Navier-Stokes fluid dynamics equations
- Conservation laws and principles, Invariances

- ► Learning PDEs from data
- ► Regularizing dynamical system (e.g. state space models) via PDEs

Reading Comprehension

Her plain face broke into a huge smile when she saw Terry. "Terry!" she called out.

She rushed to meet him and they embraced.

"Hon, I want you to meet an old friend, Owen McKenna.

Owen, please meet Emily."

She gave me a quick nod and turned back to \mathbf{X}

Reading Comprehension

Her plain face broke into a huge smile when she saw **Terry**. "Terry!" she called out.

She rushed to meet him and they embraced.

"Hon, I want you to meet an old friend, Owen McKenna.

Owen, please meet **Emily**."

She gave me a quick nod and turned back to ${\bf X}$

Reading Comprehension

Her plain face broke into a huge smile when she saw **Terry**. "Terry!" she called out.

She rushed to meet him and they embraced.

"Hon, I want you to meet an old friend, Owen McKenna.

Owen, please meet **Emily**."

She gave me a quick nod and turned back to X

X = Terry

8

LAMBADA dataset, Paperno et al., 2016

Incorporating Prior Knowledge

Explicit Memory

RNN

orererence

Hyper/Hyponymy

Dhingra, Jin, Yang, et al, NAACL 2018

Explicit Memory

Dhingra, Jin, Yang, et al, NAACL 2018

Open Domain Question Answering

► Finding answers to factual questions posed in Natural Language:

Who voiced Meg in Family Guy?

A. Lacey Chabert, Mila Kunis

Who first voiced Meg in Family Guy?

A. Lacey Chabert

12

Dhingra, Sun, et al., EMNLP 2018

Knowledge Base as a Knowledge Source

Unstructured Text as a Knowledge Source

Step 1 (Information Retrieval):

Retrieve passages relevant to the Question using shallow methods **Step 2 (Reading Comprehension):** Perform deep reading of passages to extract answers

Text Augmented Knowledge Graph (Dhingra, Sun, et al., 2018)

Reading Graphs

Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and a natural language question $q = (w_1, \ldots, w_T)$ learn a function $y_v = f(v) \forall v \in \mathcal{V}$, s.t. $y_v \in \{0, 1\}$ and $y_v = 1$ if and only if v is an answer for q.

$$P(y_v = 1 | \mathcal{G}, q) = \frac{\exp h_q^T h_v}{\sum_{v'} \exp h_q^T h_{v'}}$$

 h_q -- Question Representation from an LSTM

 h_v -- Node Representation from a Graph Convolution Network

16

Dhingra, Sun, et al., EMNLP 2018

Graph Convolution Network

For each
$$v$$
:
Initialize $h_v^{(0)}$
 $h_v^{(t)} = f(W_1 h_v^{(t-1)} + W_2 \sum_{v' \in N(v)} \alpha_{v'} h_{v'}^{(t-1)})$
Repeat for $t = 1, \dots, T$

Kipf et al., 2016

Relational Graph Convolution Network

Graphs with edge types

Schlichtkrull et al. 2017

Graph Propagation / Graph Convolution

Dhingra, Sun, et al., EMNLP 2018

Graph Propagation / Graph Convolution

Relational information via KB propagation

Dhingra, Sun, et al., EMNLP 2018

Domain knowledge

- ► We consider three classes of domain knowledge:
 - Relational
 - Logical (constraints)
 - Scientific

Incorporating Constraints

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function, $f_{\phi}(\mathbf{x}) \in \mathbb{R}$ parameterized by ϕ
 - Higher $f_{\phi}(\mathbf{x})$ value, better **x** w.r.t the knowledge

Pose-conditional Human Image Generation

DeepFashion, Liu et.al., CVPR 2016

Incorporating Constraints

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function, $f_{\phi}(\mathbf{x}) \in \mathbb{R}$ parameterized by ϕ
 - Higher $f_{\phi}(\mathbf{x})$ value, better **x** w.r.t the knowledge Constraint

DeepFashion, Liu et.al., CVPR 2016

Hu, Yang, et al., NeurIPS 2018

Learning with Constraints

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function, $f_{\phi}(\mathbf{x}) \in \mathbb{R}$ parameterized by ϕ
 - Higher $f_{\phi}(\mathbf{x})$ value, better **x** w.r.t the knowledge

DeepFashion, Liu et.al., CVPR 2016

Hu, Yang, et al., NeurIPS 2018

Constraint

Learning with Constraints

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function, $f_{\phi}(\mathbf{x}) \in \mathbb{R}$ parameterized by ϕ
 - Higher $f_{\phi}(\mathbf{x})$ value, better \mathbf{x} w.r.t the knowledge
- Sentiment prediction:
 - ▶ This was a terrific movie, but the director could have done better
- ► Logical Rules:
 - ► Sentence *S* with structure *A*-*but*-*B*: => sentiment of *B* dominates

Learning with Constraints

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function, $f_{\phi}(\mathbf{x}) \in \mathbb{R}$ parameterized by ϕ
 - Higher $f_{\phi}(\mathbf{x})$ value, better \mathbf{x} w.r.t the knowledge
- One way to impose the constraint is to maximize: $\mathbb{E}_{p_{\theta}}[f_{\phi}(\mathbf{x})]$
- ► Objective:

 $\min_{\theta} \left(\mathcal{L}(\theta) - \alpha \mathbb{E}_{p_{\theta}}[f_{\phi}(\mathbf{x})] \right)$ Regular objective (e.g. cross-entropy loss, etc.) Regular objective (e.g. cross-entropy loss are constrained by the second s

Regularization: imposing constraints – difficult to compute

Posterior Regularization (Ganchev et al., 2010)

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function, $f_{\phi}(\mathbf{x}) \in \mathbb{R}$ parameterized by ϕ

$$\min_{\theta} \left(\mathcal{L}(\theta) - \alpha \mathbb{E}_{p_{\theta}}[f_{\phi}(\mathbf{x})] \right)$$
$$\mathcal{L}(\theta, q) = \mathrm{KL}(q(\mathbf{x})||p_{\theta}(\mathbf{x})) - \lambda \mathbb{E}_{q}[f_{\phi}(\mathbf{x})]$$

- Introduce variational distribution q, which is encouraged to stay close to p
- ► Objective:

$$\min_{\theta,q} \left(\mathcal{L}(\theta) + \alpha \mathcal{L}(\theta,q) \right)$$

Posterior Regularization (Ganchev et al., 2010)

$$\min_{\theta,q} \left(\mathcal{L}(\theta) + \alpha \mathcal{L}(\theta,q) \right)$$

$$\mathcal{L}(\theta, q) = \mathrm{KL}(q(\mathbf{x}) || p_{\theta}(\mathbf{x})) - \lambda \mathbb{E}_{q}[f_{\phi}(\mathbf{x})]$$

► Optimal solution for q:

$$q^{*}(\mathbf{x}) = p_{\theta}(\mathbf{x}) \exp\left(\lambda f_{\phi}(\mathbf{x})\right) / \mathcal{Z}$$

Higher value -- higher probability
under q - "soft constraint"

• How do we fit our model parameters θ ?

Logical Rule Formulation (Zhiting Hu et al., 2016)

- Consider a supervised learning: $p_{\theta}(y|\mathbf{x})$, e.g. deep neural network
- ► Input-Target space (X,Y)
- First-order logic rules: (r, λ)
 - $\blacktriangleright \ r(X,Y) \in [0,1]$, could be soft
 - \blacktriangleright λ is the confidence level of the rule
- Within PR framework given l rules

$$q^*(y|\mathbf{x}) = p_{\theta}(y|\mathbf{x}) \exp\left(\sum_l \lambda_l r_l(y, \mathbf{x})\right) / \mathcal{Z}$$

 How to train a neural network: Knowledge Distillation [Hinton et al., 2015; Bucilu et al., 2006].

Knowledge Distillation

Student

Knowledge Distillation [Hinton et al., 2015; Bucilu et al., 2006].

Rule Knowledge Distillation

- Deep neural network $p_{\theta}(y|\mathbf{x})$
- ► Train to imitate the outputs of the rule-regularized teacher network
- ► At iteration t:

$$\begin{aligned} \theta^{(t+1)} &= \arg\min_{\theta} \frac{1}{N} \sum_{n=1}^{true hard} \sup_{\substack{b \in I \\ label}} \max_{\substack{b \in I \\ label}}$$

• Deep neural network $p_{\theta}(y|\mathbf{x})$

• Deep neural network $p_{\theta}(y|\mathbf{x})$

- Deep neural network $p_{\theta}(y|\mathbf{x})$
- ► At each iteration:
 - ► Construct a teacher network q(y|x) with "soft constraints"
 - Train DNN to emulate the teacher network

teacher network construction

34

- Deep neural network $p_{\theta}(y|\mathbf{x})$
- At each iteration:
 - ► Construct a teacher network q(y|x) with "soft constraints"
 - Train DNN to emulate the teacher network

- Sentiment classification,
- Named entity recognition

Learning Rules / Constraints

$$q^*(y|\mathbf{x}) = p_{\theta}(y|\mathbf{x}) \exp\left(\sum_l \lambda_l r_l(y, \mathbf{x})\right) / \mathcal{Z}$$

- We can also learn the "confidence" values λ_l for logical rules
- More generally, we can optimize parameters of the constraint function $f_{\phi}(\mathbf{x})$

$$q^*(\mathbf{x}) = p_{\theta}(\mathbf{x}) \exp\left(\lambda f_{\phi}(\mathbf{x})\right) / \mathcal{Z}$$

• Treat $f_{\phi}(\mathbf{x})$ as the reward function to be learned within the MaxEnt Inverse Reinforcement Learning

Zhiting Hu et.al., EMNLP 2016, NeurIPS2018
Pose-conditional Human Image Generation

Samples generated by the models. Enforcing learned human part constraint generates correct poses and better preserves human body structure

	Method	SSIM	Human
1	Ma et al. [38]	0.614	
2	Pumarola et al. [44]	0.747	
3	Ma et al. [37]	0.762	
4	Base model	0.676	0.03
5	With fixed constraint	0.679	0.12
6	With learned constraint	0.727	0.77

Results of image generation using Structural Similarity (SSIM) between generated and true images

Hu, Yang, et al., NeurIPS 2018

Template-guided Sentence Generation

- ► Task: Given a template, generate a complete sentence following the template
- Constraint: force to match between infilling content of the generated sentence with the true content

Hu, Yang, et al., NeurIPS 2018

Template-guided Sentence Generation

	Model	Perplexity	Human
1	Base model	30.30	0.19
2	With binary D	30.01	0.20
3	With constraint updated in M-step (Eq.5)	31.27	0.15
4	With learned constraint	28.69	0.24

Samples by the full model are considered as of higher quality in 24% cases.

acting		
<u>the</u> acting	is the acting.	
the acting	is also very good.	
	out of 10.	
	10 out of 10.	
I will give the movie 7 out of		

Two test examples, including the template, the sample by the base model, and the sample by the constrained model.

Hu, Yang, et al., NeurIPS 2018

Summary So Far

- Limitations: We considered very simple forms of domain knowledge: relational, logical, simple constraints
- Human Knowledge: abstract, fuzzy, build on high-level concepts
 - e.g. dogs have 4 legs

Marino et al., CVPR 2017

How do we encode this knowledge and how do we efficiently integrate this into deep learning models

MineRL

Towards Sample Efficient Reinforcement Learning

William H. Guss* , Brandon Houghton* , Nicholay Topin , Phillip Wang , Cayden Codel , Manuela Veloso and Ruslan Salakhutdinov

The growing problem of sample inefficiency in RL

The number of environment samples to train policies on domains of increasing complexity is growing exponentially

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

Dario Amodei & Danny Hernandez Open Al 2019.

The growing problem of sample inefficiency in RL

- The number of environment samples to train policies on domains of increasing complexity is growing exponentially
- Training complex policies in realworld environments is quickly becoming intractable, without significant infrastructure

Levine et. al. 2016

Demonstration as an Answer to Sample Inefficiency

- The number of samples required can be drastically reduced using expert demonstrations.
- No open, large-scale dataset of demonstrations across a variety of open/closed world tasks exists

Stéphane. Ross, Geoffrey J. Gordon, and J. Andrew. Bagnell. A reduction of imitation learning and structured prediction to no-regret online learning. In , 2011.

MineRL: A Large-Scale Dataset of Minecraft Demonstrations

William H. Guss* , Brandon Houghton* , Nicholay Topin , Phillip Wang , Cayden Codel , Manuela Veloso and Ruslan Salakhutdinov. IJCAI 2019.

We have created one of the largest imitation learning datasets with over **60 million frames of recorded** human player data across **6**+ complex tasks in Minecraft.

MineRL: Why Minecraft?

- Open-world, infinite/procedurally generated
- ► Sparse & dense rewards
- Many innate task hierarchies and subgoals
- Encompasses many of problems we must solve as we approach the problem of general AI.

A glimpse into the Minecraft item hierarchy

MineRL: Dataset Details

- Consists of over 500+ hours of human demonstrations over 1000+ unique player sessions.
- Rich set of annotations including: subtask completion, rewards, player meta-data, gamestate.
- Rerenderable! We record gamestate not just player-pixels

Plots of XY positions of players in several tasks (diversity & rich annotations)

MineRL: Hierarchality of Data

- Players complete sparsely rewarded tasks following a specific task hierarchy/dependence graph.
- Many ways to obtain an item, but data exhibits the existence of canonical pathways.

MineRL: Expert demonstrations help

- On the Navigate task, using the MineRL-v0 dataset helps drastically reduce the number of samples for standard algorithms.
- However, better algorithms still need to be developed, especially for the long-term, hierarchical tasks exhibited in Minecraft.

MineRL: NeurIPS 2019 Competition

- To foster research in this direction, we are hosting the MineRL Competition on Sample Efficient Reinforcement Learning at NeurIPS 2019!
- Competitors must learn to obtain a diamond in under 4-days of training.

https://www.youtube.com/watch?v=KFMuI4TfC7c

MineRL: Get started now!

http://minerl.io/

Thank you