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Statistical Generative Models

el | et | |
myo S AT T _I_ Model family, loss function,

optimization algorithm, etc.

LD SIRNg
PR BN Ry

Data % | @ Prior Knowledge
Learning

_ A probability N
Image x distribution > probability p(x)

p(x)

Sampling from p(x) generates new images: mL'm

Grover and Ermon, DGM Tutorial
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[ Unsupervised Learning }
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Probabilistic Generative)
Models

> Sparse Coding
» Autoencoders

Non-probabilistic Models

> Others (e.g. k-means)
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4 Tractable Models )

> Mixture of Gaussians
> Autoregressive Models
> Normalizing Flows

Q Many others

————————————————————————————————————————————————————————————
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/Non—TractabIe Models\
> Boltzmann Machines
> Variational

Autoencoders
> Helmholtz Machines
Many others...

Explicit Density p(x)

N

.

> Generative Adversarial

» Moment Matching
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Autoencoder
[ Feature Representation 1
Feed-back, Feed-forward
generative, Decoder Encoder !
top-down bottom-up
[ Input Image J

» Details of what goes insider the encoder and decoder matter

» Need constraints to avoid learning an identity.
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Autoencoder
[ Binary Features z }
Decoder filters D Encoder filters W.
Linear function Dz Z=G(WX) Sigmoid function

1

3 § o

[ Input Image J
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Autoencoder
Bi F
| Loy Leatrns 2 ] » An autoencoder with D inputs, D outputs,
@ ﬁ and K hidden units, with K<D
[ Dz } [ z=0(Wx) }
» Given an input x, its reconstruction is given
@ ﬁ by:
[ Input Image ]
(x, W, D) ZDJW (Z szfo) . j=1,...D.
\ J J
Y Y
Decoder Encoder
K

1=1

D
== ZDjkzk Ll — O (Z W]{;ZZCZ)
k=1
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Autoencoder
Bi Feat
| R ] » An autoencoder with D inputs, D outputs,
@ ﬁ and K hidden units, with K<D.
[ D5 } 7=0(Wx) » If the. K hidde.n anc.JI output layers are linear,
the hidden units will span the same space as
@ ﬁ the first k principal components
Input Image ]

» We can determine the network parameters W and D by minimizing the
reconstruction error:

E(W,D) = ZH?J Xp, W, D) — x| |*.

n=1
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Deep Autoencoder

Decoder |
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Encoder
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Pretraining Unrolling Fine-tuning
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Deep Autoencoder

» 25x25 — 2000 — 1000 — 500 — 30 autoencoder to extract 30-D real-valued codes for
Olivetti face patches.

F ‘4 ' 'rVR'I'Fr

» Top: Random samples from the test dataset

» Middle: Reconstructions by the 30-dimensional deep autoencoder
» Bottom: Reconstructions by the 30-dimentinoal PCA.
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Deep Autoencoder: Information Retrieval

European Community
Interbank Markets Monetary/Economic
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» The Reuters Corpus Volume Il contains 804,414 newswire stories (randomly split into
402,207 training and 402,207 test)

» Bag-of-words” representation: each article is represented as a vector containing the
counts of the most frequently used 2000 word
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Fully Observed Models

» Density Estimation by Autoregression

d d
P(X1, ..., Xq4) = Hp(x,-|x,-_1, LX) R Hp(x,-]g(x,-_l, X1))

—  [a=sOh)] — ] p(x)

Each conditional can be a

> [ I k
—y  [ha =g, BN , p(x2]x;) deep neural networ
I
— hs = (23, h2) — P(X3‘X2.X1)
I

) — [ha=gGarhan] — () p(xdlxq. ..., X1)

» Ordering of variables is crucial
NADE (Uria 2013), MADE (Germain 2017), MAF
(Papamakarios 2017), PixelCNN (van den Oord, et al, 2016)
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Fully Observed Models

» Density Estimation by Autoregression

PlerCNN (van den Oord et al, 2016)

NADE (Uria 2013), MADE (Germain 2017), MAF
(Papamakarios 2017), PixelCNN (van den Oord, et al, 2016)



WaveNet

» Generative Model of Speech Signals
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Quality: Mean Opinion Scores

3.67

4.21

4.55

L n
Concatenative Parametric

van den Oord et al, 2016

WaveNet Human Speech
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Restricted Boltzmann Machines

Pairwise Unary Unary
hiddariables A —A— —A
/‘&@t‘% Py(v,h) = Z00) exp E E Wijvih; + g v;b; + E hja;

T avoN

Image visible variables

» RBM is a Markov Random Field with

» Stochastic binary visible variables v € {0, 1}*.
» Stochastic binary hidden variables h € {0, I}F.

» Bipartite connections

Markov random fields, Boltzmann machines, log-linear models.
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Maximum Likelihood Learning

hidden variables P* (V)

@®. _
NI/ 20
T

\
P

visible variables

1 T T T
:mzh:exp [V Wh+a h+b' v

% » Maximize log-likelihood objective:

N
1
L(0) = = > log Py(v™)
n=1

Image

» Derivative of the log-likelihood:

OLMO) 1 <~ 9 )T - 3,
T 7 "TWh+a h+b'v(M] |- log Z
oW, N nz::l W log (;exp v +a h+b'vl"] W og Z(0)

= Epyo.0[Vihy] — Ep, [vih]
Pdata(V7 h; ‘9) — P(h|V7 Q)Pdata(v) \\ J

Y
Piata(V) = % Z o(v — v(")) Difficult to compute: exponentially many configurations
n
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Learning Features

Observed Data Learned W: “edges”
Subset of 25,000 characters Subset of 100 features

| i[5 ey B :

p(hy = 1|v)
New Image: l'

- (00 - [ B

1 Logistic Function: Suitable for
1+exp(—=) modeling binary images

o(z) =
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RBMs for Real-valued & Count Data

4 million unlabelled images Learned features (out of 10,000)

REUTERS P
AP associated Press Learned features: * " topics’
Reuters dataset: russian clinton computer trade stock
804 414 unlabeled russia house system country wall
L tori ﬁ moscow president product import street
NEWSWIre Stories yeltsin bill software world point
Bag—of—Words soviet congress develop economy dow




Carnegie Mellon University

Deep Boltzmann Machines

Low-level features:
Edges

Ve
il

A

V“V« >
va \ 4

Built from unlabeled inputs.

Input: Pixels

(Salakhutdinov 2008, Salakhutdinov & Hinton 2009)
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Deep Boltzmann Machines

Learn simpler representations,
then compose more complex ones

- Higher-level features:
\ / Combination of edges

Low-level features:
Edges

= \//IA\\/

LK

(/l‘vm Q,W N
ZeaStoNiy

@
@

Built from unlabeled inputs.

/4

A
()

Image

Input: Pixels

(Salakhutdinov 2008, Salakhutdinov & Hinton 2009)
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Model Formation

1
Z(0)

exp [vIWORD 4 M ' WARE 4 1@y ERe)

A\ J
Y

Same as RBMs
6 ={W? W2 W3} model parameters

Py(v, h) h®), h(3)) —

» Dependencies between hidden variables

» All connections are undirected

» Maximum Likelihood Learning:

0log Py(v)
owl

» Both expectations are intractable

T T
— EPdata [Vhl ] — EP@ [Vhl ]
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Approximate Learning

1

6 O vIWORD L h® "W @OR® L h@ R

Py(v, h) h®), h(3)) —

» Maximum Likelihood Learning:

0log Py (V)

T T
— EPdata [Vhl ] o EPH [Vhl ]

owl
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Approximate Learning

1

Py(v,h) h® h®)) = Z0

exp [vTW(l)h(l) +hO "R 4 h<2>TW<3>h<3>]

» Maximum Likelihood Learning:

0log Py(v) T
o

Variational Stochastic Approximation
Inference (MCMC-based)




Carnegie Mellon University

Good Generative Model?
» CIFAR Dataset

Training Samples
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Learning Part-Based Representations

Deep Belief Network maﬂjmm
ﬂﬂlﬁ]gmm Groups of parts

L | u i
/ | -
i - - -
. -
i el g B

Object Parts

Trained on face images.

Lee, Grosse, Ranganath, Ng, ICML 2009
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Learning Part-Based Representations

Lee, Grosse, Ranganath, Ng, ICML 2009
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Helmholtz Machines
» Hinton, G. E., Dayan, P., Frey, B. J. and Neal, R., Science 1995

s
=
N

Approximate
Inference

Q(h3h2)T
Q(h2hl)T
o]

Kingma & Welling, 2014
Rezende, Mohamed, Daan, 2014

Generative >
>

\WE P0h?) » Mnih & Gregor, 2014
>
>

Process

Bornschein & Bengio, 2015
Tang & Salakhutdinov, 2013

Input data
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Helmholtz Machines

Helmholtz Machine Deep Boltzmann Machine

P(h?)

Approximate
Inference h’

Q(h3h2)T
h2

Q(h2h1)T 1
h

Generative
Process

W lp(h%?’)
W2
l P(h'|h?)

Wl
l P(x|h')

Input data
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Deep Directed Generative Models
Code Z » Latent Variable Models

» Recognition 1 » Generative

» Bottom-up » Top-Down

> Q(z|x) > P(x|2) log pe(x) = log [ po(x,z)dz
v

» Conditional distributions are
parameterized by deep neural
networks




Carnegie Mellon University

Directed Deep Generative Models

» Directed Latent Variable Models with Inference Network

» Maximum log-likelihood objective

s 3" log pa(2)
xED

» Marginal log-likelihood is intractable:

log pg(x) = 10g/p9(X7Z)dZ

» Key idea: Approximate true posterior p(z|x) with a simple, tractable
distribution q(z|x) (inference/recognition network).

Grover and Ermon, DGM Tutorial
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Variational Autoencoders (VAEs)

» The VAE defines a generative process in terms of ancestral sampling through a
cascade of hidden stochastic layers:

p(x|0) = p(h”|0)p(h*~h", 6) . p(x/h',0)
hl,... hl ~

Each conditional term denotes a
nonlinear relationship

» L is the number of stochastic layers

w2 | Ph'[h?) » Sampling and probability evaluation is
tractable for each p(hf/h**1)

Kingma and Welling, 2014
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Variational Autoencoders (VAEs)

» Single stochastic (Gaussian) layer, followed by many deterministic layers
p(z) = N(0,1)

po(x|z) = N(,LL(Z, 0),>(z, 6’))
qs(2[x) N/

Deep neural network parameterized by 6.
(Can use different noise models)

4s(z[x) = N'(u(x, ¢), B(x, ¢))
N\

Deep neural network parameterized by ¢.

Kingma and Welling, 2014



Variational Bound

» VAE is trained to maximize the variational lower bound:

logpo(x) = log [ pa(x.2)dz = log [ as(zix
Po(x, z>]

z|x)

.
woab
(

= logEg, (zx) [

= Basapolog |7 "0

= logpe(x) — KL(qy(2|x)||pe(zx)) =

L(x)

Carnegie Mellon University
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Variational Bound

» VAE is trained to maximize the variational lower bound:

Po\X, Z
logpo(x) = log/pg(x, z)dz = log/q¢(z\x) Q¢((Z|X)) dz
po(X,2) | ..
— log ]Equ (z|x) IQ¢(Z‘X) ] i Tightness Condition: i
po(x.2) | do(2k) = po(zlx) |
> Eg,(alx) log
Gy (2]x)

= logpy(x) — KL(qy(2(x)||pe(2[x)) = L(x)

» Trading off the data log-likelihood and the KL divergence from the true posterior
» Hard to optimize the variational bound with respect to the q recognition network (high variance)

» Key idea of Kingma and Welling is to use reparameterization trick
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Reparameterization

» Assume that the recognition distribution is Gaussian:
qu(ZlX) — N(M(Xv ¢)7 Z(Xa gb))

qs(z|x) » Alternatively, we can express this in term of
auxiliary variable:

z(€,%, ¢) = B(x, ) %e + u(x, ¢), €~ N(0,I)

po(x|2)

» The recognition distribution can be expressed as a deterministic mapping

Z(G, X, gb) » Distribution of € does not depend on ¢
|\

J

Y

Deterministic Encoder Kingma and Welling, 2014
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Computing Gradients

» The gradients of the variational bound w.r.t the recognition (similar w.r.t the
generative) parameters:

Peo (X, Z) ] Autoencoder
o(zx) |
po(x,2(€, X, 9))
»(Z(€, X, 9)|x) _
po(X,2(€,X, 9))
(z(€, %, 9)|x) _

V¢£(X) — V¢EZNQ¢(Z|X)[log

= VgEcon,n llog

— EGNN(O,I) [V¢ lOg

/ 4o \Z

Gradients can be The mapping z is a deterministic
computed by backprop neural net for fixed ¢
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VAE Assumptions

» Remember the variational bound:

L(x) = log p(x) — Dxw (¢(h[x))[|p(h[x))

» The variational assumptions must be approximately satisfied.

» The posterior distribution must be approximately factorial (common practice)
and predictable with a feed-forward net.

» We can relax these assumptions using a tighter lower bound on marginal log-
likelihood.
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Importance Weighted Autoencoder

» Improve VAE by using the following k-sample importance weighting of
the log-likelihood:

1
— Ezl,ZQ,...,zk~q¢(z|x) llog 7

-

: Po (X, Zi)]

“ q¢(2i|x)

(2

2y

1
— Ezl,ZQ,...,zk~q¢(z|x) llog E Wy
=1

(2

» where multiple z are sampled from the unnormalized
recognition network. importance weights

» Can improve the tightness of the bound.

Burda et al., ICLR 2016,
Mnih & Rezende, ICML 2016
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Tighter Lower Bound

» Using more samples can only improve the tightness of the bound.
» For all k, the lower bounds satisfy:

log p(x) > Lg11(x) > Lk(x)

» Moreover if p(h,x)/q(h|x) is bounded, then:

Li(x) — logp(x), as k — o
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Generative Adversarial Networks (GAN)

» Implicit generative model for
an unknown target density p(x)

» Converts sample from a known noise Unknown target density p(x) of
density p,(z) to the target p(x) data over domain X, e.g. R32X3

Distribution of generated samples
should follow target density p(x)

Noise density p,(z) over space Z

[Slide Credit: Manzil Zaheer] Goodfellow et al, 2014



GAN Formulation

» GAN consists of two components

Generator

G:Z—> X

Random
input

Goal: Produce samples
indistinguishable from true data

[Slide Credit: Manzil Zaheer]

Discriminator

D: X — R

Carnegie Mellon University

Goal: Distinguish
true and generated

data apart

Goodfellow et al, 2014
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GAN Formulation: Discriminator

» Discriminator’s objective: Tell real and generated data apart like a classifier

max thp[log D(:IJ)] + Ep, [log (1 — D( (Z)))]

Real Data p(x) Discriminator

D outputs:
D(x) =1 real
D(x) = 0 generated

Generator

pal2) Frtr

[Slide Credit: Manzil Zaheer] Goodfellow et al, 2014
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GAN Formulation: Generator

» Generator's objective: Fool the best discriminator

min mngpr [log D(CIZ)] + Eomp, [log (1 — D( (Z)))}

Discriminator

D outputs:
D(x) =1 real
D(x) = 0 generated

Generator

pal2) Frtr

[Slide Credit: Manzil Zaheer] Goodfellow et al, 2014
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GAN Formulation: Optimization

» Overall GAN optimization

minmax V (¢, D) = Egnp[log D(x)] + Eznp, [log (1 - D(C(2)))]

» The generator-discriminator are iteratively updated using SGD to find
“equilibrium” of a “min-max objective” like a game

G+ G —ncVeV(G, D)

D<+ D — nDVDV(G: D)

[Slide Credit: Manzil Zaheer]
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Wasserstein GAN

» WGAN optimization

minmng( , D) =Egp [D(fl?)} —Bonp, [D( (Z))}

» Difference in expected output on real vs. generated images

» Generator attempts to drive objective = 0

» More stable optimization D outputs:
ol D(x) =1 real
\ Compare to training DBMs : D(x) = O generated
. Olog Py(v) T T, |
: oW1 — Epdata [Vhl ] — EPQ [Vhl ] :

Arjovsky et al., 2017
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Modelling Point Cloud Data

(d) Guitar

Zaheer et al. Point Cloud GAN 2018
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Interpolation in Latent Space

Interpolate

Chair Table

Zaheer et al. Point Cloud GAN 2018
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Normalizing Flows

» Directed Latent Variable Invertible models

» The mapping between x and z is deterministic and
invertible:

x = fy(z)
z = f,(x)

» Use change-of-variables to relate densities between z and x
—1
of, " (x)
0X

px(x;0) = pz(z)| det

X=x

Grover and Ermon DGM Tutorial, NICE (Dinh et al. 2014),
Real NVP (Dinh et al. 2016)
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Normalizing Flows

» Invertible transformations can be composed:
o(fg") "

det 5 7m

M
x:fé\/"o---of;(zo); px(x;0) :PZO(ZO) H
=1

7/ Mm—=gm

3

» Planar Flows

f(2z) =z +ug(w 'z +b)

Unit Gaussian

Rezendre and Mohamed, 2016

Rezendre and Mohamed, 2016, Grover and Ermon DGM Tutorial
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Normalizing Flows

» Maximum log-likelihood objective

0(fp) "

det 95X

max log px (D;6) = ) (lOgPZ(Z) — log
xeD

.

» Exact log-likelihood evaluation via inverse transformations

» Sampling from the model

z~pz(z), x="7F(z)

» Inference over the latent representations:
. —1
z = £ (x)

Rezendre and Mohamed, 2016, Grover and Ermon DGM Tutorial
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Example: GLOW

» Generative Flow with Invertible 1x1 Convolutions
https://blog.openai.com/glow/

| atent factors of variation

Image X

Kingma, Dhariwal, 2018
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Example: GLOW

Input Add Beard Increase Age

https://blog.openai.com /glow/



Fully Observed Models

» Given a sequence of length T: Density Estimation by Autoregression

Carnegie Mellon University

T T
p(xlax27 ...,ZCT> — Hp(xi‘xi—la °'°7CU1) ~ Hp(x1|g(xz—17 ...,1'1))
1=1 1 =1

0 —
@ —

@ —

Tdg—1 _>

hl = g((Z)a hO)
1

hy = g(x1, h1)
L

hs = g(x3, ha)
+

ha = 9(xq—1, ha—1)

\

— | p(x1) Each conditional can be a

deep neural network
— | p(x2|x1)

— [:] p(x3|x2, X1)

— [ ) plrler_y, .., n)

NADE (Larochelle, 2013), MADE (Germain 2015),
PixelCNN (van den Oord, et al, 2016)




Carnegie Mellon University

Language Modeling

» Given a corpus of T sequential tokens (words) x = [x1, x2, ..., 7], we model:

=1 Ptee | fotxco)

CXp (fQ(X<t)T€xt)
t=1 ZZCEX exXp (fH(X<t)T€x)

» Here, we will focus on the choice f,
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Generation:

In a series of conflicts from 1803-15 known as the Napoleonic Wars, various European powers formed five coalitions against the First French Empire. Like the wars sparked by
the French Revolution (1789 ), these further revolutionized the formation, organization and training of European armies and led to an unprecedented militarization, mainly due
to mass conscription. Under the leadership of Napoleon, French power rose quickly as the Grande Armée conquered most of Europe, and collapsed rapidly

Reference:

after the disastrous invasion of Russia in 1812. Napoleon’s empire ultimately suffered
complete military defeat in the 1813 — 14 campaigns, resulting in the restoration of
the Bourbon monarchy in France. Although Napoleon made a spectacular return in
1815, known as the Hundred Days, his defeat at the Battle of Waterloo, the pursuit
of his army and himself, his abdication and banishment to the Island of Saint Helena
concluded the Napoleonic Wars.

= = Danube campaign = =

From 1803-06 the Third Coalition fought the First French Empire and its client states
(see table at right ). Although several naval battles determined control of the seas,
the outcome of the war was decided on the continent, predominantly in two major
land operations in the Danube valley: the Ulm campaign in the upper Danube and the
Vienna campaign, in the middle Danube valley. Political conflicts in Vienna delayed
Austria’s entry into the Third Coalition until 1805. After hostilities of the War of the
Second Coalition ended in 1801, Archduke <unk> emperor’s <unk> advantage of the
subsequent years of peace to develop a military restructuring plan. He carefully put
this plan into effect beginning in 1803 — 04, but implementation was incomplete in
1805 when Karl Mack, Lieutenant Field Marshal and Quartermaster-General of the
Army, implemented his own restructuring. Mack bypassed Charles * methodical ap-
proach. Occurring in the field, Mack’s plan also undermined the overall command
and organizational structure. Regardless, Mack sent an enthusiastic report to Vienna
on the military’s readiness. Furthermore, after misreading Napoleon’s maneuvers in
Wiirttemberg, Mack also reported to Vienna on the weakness of French dispositions.
His reports convinced the war party advising the emperor, Francis I, to enter the con-
flict against France, despite Charles * own advice to the contrary. Responding to the
report and rampant anti-French fever in Vienna, Francis dismissed Charles from his
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XL Generation:

after the French conquest of Italy. This victory marked the beginning of the
Second Coalition. Napoleon’s rapid advance caused Austria — Russia, Britain
and Russia to make peace negotiations. The Russian army under Prince Mikhail
Mikhailovich Mikhailovich Chaffee, commander of the Imperial Russian Army
in Switzerland, was able to drive off the Austrians in the Battle of Stockach
(1805) and to take Pressburg (modern O3 Austria) from the Austrians. At an
early stage the Austro-Hungarian fleet had been damaged in a storm off Cape
Matapan; this allowed the Allies to launch a full-scale invasion of Italy in Febru-
ary 1805. The Battle of Austerlitz was the decisive French victory against
Napoleon and the largest naval battle in history, involving more modern-day
European navies. The French military situation worsened as Napoleon faced
several threats related to his newly formed Army of Europe, particularly Russia
itself, which was now on the verge of collapse. The Russian general and friend
of Napoleon, Alexander, had been dissatisfied with the conduct of the Austri-
ans; he was still in conflict with Emperor Napoleon, the French Republic’s king,
who had declared war on Austria during the summer of 1804. With the war over,
Napoleon decided to launch a second invasion of Italy in October 1805.
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Napoleon decided to launch a second invasion of Italy in October 1805.

== Prelude ==

In July 1805, the French 1st Army entered southern Italy. The army, under the
command of Marshal Marmont, were reinforced by a few battalions of infantry
under Claude General Auguste de Marmont at the town of Philippsburg and
another battalion at Belluno. On 17 September 1805, the army marched from
Belluno towards Krems. By 29 September, they had reached Belluno and con-
ducted its advance against a small Austrian force. By 31 September, the whole
force had been reinforced by a brigade from the Army of Tyrol under the com-
mand of Pierre Augereau. The Austrians were now under the command of Mar-
shal Jean Victor Marie Moreau, a member of the Directory. Moreau had taken
command of the Austrian invasion force in the spring of 1805. His command
included the VI Corps commanded by Jean Baptiste Drouet de Ney and the VI
Corps commanded by Generals Jean Victor Marie Moreau and Joseph Souham.
Ney’s corps consisted of the III. Corps and VI. Corps, which consisted of the
III Corps and VI. Corps, located in the Austrian Netherlands, was commanded
by Friedrich Joseph, Count Baillet de Latour. Moreau’s army consisted of six
divisions and several associated brigades.
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Vanilla Transformer Language Models

POIxp1)  P(slXiz)  P(X4lX)  P(Xs|Xq4) Step 1: break the corpus into segments
A A A A —

i i i i X = (xlawa")xL))"' 7(I(T—l)L+17x(T—1)L+2?"'JxTT)?'..
O O O O

N\ -~ 4 . -~ /
i segment 1 segment T
= (331,1, L1,25 - ,iUl,L), T, (1137,1, Lr2y.-- 7x7',L)7 T
S1 S+

Step 2: Model each segment independently (limited memory)

P(x) = H P(s; |s<;) = H P(s;) (independence assumption)

L

L
O O O © = H HP(xT,i | Xr <i) = H H P(zr; | f(%r,<1))

T =1 T I=1

Forward Pass
Al-Rfou et al., 2016
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Training with Transformer-XL

P(Xz | %4.1) P(X3[X1:2) P(X4|x13)  P(X5]Xq.4)
A A A A

© © o0 ©

@) O O O

Current segment
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Training with Transformer-XL

P(Xs | X<5) P(x71X<7) P(Xg | X<g) P(Xg | X<g)

Fixed Memory (No Grad) Current segment



Training with Transformer-XL

Fixed Memory (No Grad)
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P(Xi0lXg9)  P(X411Xg.10)  P(Xq42|Xg.11)  P(X43|Xg.12)

Current segment
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Modeling Much Longer Context

P(Xi0lXg9)  P(X411Xg.10)  P(Xq42|Xg.11)  P(X43|Xg.12)
A A A A

o o o O O O O O o 0o o

O O O
O O O
O O @

Extra-Long context span: linearly increasing w.r.t. both segment length and number of layers
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Evaluation with Transformer-XL

P(Xi0lXg9)  P(X411Xg.10)  P(Xq42|Xg.11)  P(X43|Xg.12)
A A A A

O O O O O 7:

X4 X3 X3 X4 X5 Xg X7 Xg Xg X10 X141 X12

Process the tokens in a segment in one forward pass, without any recomputing — 1800X faster



Transformer-XL

P(xs|xs) P(X7|X7) PXglX<g) PlXg|Xo)

A « )l
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p ; hn—l _ [SG(mz—l) o h?_l}

» h? ¢ RY*? n-th layer hidden state sequence
O produced for sequence T

» m” ! is memory cashed before segment ©

@)
» SG stands for stop gradient
@ © o o » [- o] stands for concatenation
R » Incorporate extended context

Fixed Memory Current

(No Grad) segment

n 1.n—1
qr =h""W,

n 1.n—1
kT n_ Wk N

~ n

v = h"~1W, h” = Transformer-Layer (qT, k- )



Transformer-XL
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Pixelx) Plr1%g)  PlXglXeg) PXgIXeo) o — —
byt = [SG(my ) o by ]
| O
» h? ¢ RY*? n-th layer hidden state sequence
O produced for sequence Tt
> m?_l is memory cashed before segment t
! @, _
» SG stands for stop gradient
e e © o o » [- o] stands for concatenation
S S N S SR » Incorporate extended context
Fixed Memory Current
(No Grad) segment
/oN
n n—1 Model parameters
qr = h! W,
n 1 n— W.!
k; 1, ]: ki
' h” = Transformer-Layer (q7, k", v")
— 1 ransiormer-Lnayer
V? h " 1\VV15 T Y q,,. 9



Transformer-XL

P(Xs1Xs)  Plx7|%<7)

___________________________

Fixed Memory
(No Grad)

qn —Ihn\ l/ \ql

T

k! =l hnﬂlwk:

7—
n_N
7—

v

P(xg|X<g) P(Xq|X<o)

segment

Model parameters
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L= [SG(my ) o by ]

» h? ¢ RY*? n-th layer hidden state sequence

produced for sequence T

mn— 1

"~ is memory cashed before segment t

SG stands for stop gradient

[' O ] stands for concatenation

vV v v VY

Incorporate extended context

Extended context at layer n-1

= Transformer-Layer (q7, k7, v})
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Model #Param PPL
> WikiText-103 Test Corpus: Grave et al. (2016b) - LSTM 487
» 103M tokens from 28K articles Bai et al. (2018) - TCN - 45.2
_ ] Dauphin et al. (2016) - GCNN-8 - 44.9
» Average length is 3.6K per article Grave et al. (2016b) - LSTM + Neural cache - 40.8
Dauphin et al. (2016) - GCNN-14 - 37.2
Merity et al. (2018) - QRNN ISIM 330
A Rae et al. (2018) - Hebbian + Cache - 29.9
>

Traini ng Ours - Transformer-XL Standard I5IM  24.0
> Training segment length 400 Baevski and Auli (2018) - Adaptive Input® | 247M  20.5
» Test segment Iength 1600 Ours - Transformer-XL Large 257M  18.3

» 16 layers

» Achieves State-of-the-Art on 5 publicly available datasets
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Visualization of Attention:

» Average attention over the previous 640 tokens,

» There are totally 160 attention weights across 16 layers
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After finishing the 2010 season strong, the Dodgers named Kershaw as the Opening Day Starter for the 2011 season. On May 29, he pitched the second complete-
game shutout of his career, striking out 10 while winning a two-hitter against the Florida Marlins, 8 — 0; he also had two singles and an RBI, scoring twice in the
game. He produced his third career shutout on June 20, a two-hit, 11-strikeout effort against the Detroit Tigers. Kershaw became the first Dodgers starter to strike
out the side in the 9th inning since Sandy Koufax’s perfect game. In his next start, on June 26, Kershaw pitched another complete game (against the Los Angeles
Angels of Anaheim ). He became the first Dodger starter to have back-to-back complete game victories since Jeff Weaver in the 2005 season and the first Dodger
to have double-digit strikeouts in consecutive starts since Chan-Ho Park in the 2000 season. He was awarded the National League Player of the Week award for the
week of June 20 — 26 as a result of those two starts. Midway through June, Kershaw had amassed 32 career victories

XL Generation:

, tying him with Luis Castillo for the third best start total in the league and trail-
ing only Johnny Bench and Eddie Mathews (37). The Dodgers signed Kershaw
to a one-year deal on July 14, 2011, with a player option for 2012, in a deal
worth just under $ 300,000. The Dodgers entered the 2011 season as the major
league leaders, and Kershaw had the best record in the National League in saves
(39), games started (78) and walks (120); he also had the lowest win / loss ratio
in the league (1.87), and he had the worst on-base percentage (.349). He had
the best ERA (2.00 ), most wins (16 ), or most shutouts (29) in his career (25),
while leading the league in losses per nine innings pitched (4.01). Following the
2011 season, the Dodgers traded Kershaw to the Kansas City Royals on July 29
for pitcher Javier Torres.

= = = Kansas City Royals ===

====2012season====

During spring training, Kershaw played very well. He was selected to spring
training as a relief pitcher for the Royals for the 2012 season. After an injury
to closer Javier Vazquez, he was activated on April 29 to replace Matt Holliday
in the Royals ’ starting rotation. In his only start with the Royals, on August 6,
2012, Kershaw struck out five batters in seven innings pitched to help the Royals
to their first victory in franchise history. On September 27, 2012, it appeared
Kershaw was going to pitch a complete game shutout against the Detroit Tigers,
but did not manage to do so since the Tigers won 3 — 1. At the conclusion
of the season, Kershaw was named Major League Baseball’s Most Valuable
Player, was chosen to the All-Star Game at Busch Stadium and was named to
the All-Star Game as the starting pitcher at shortstop. The Royals announced on

Reference:

,a3.15 ERA and 593 career strikeouts in 568.2 innings. According to the Elias
Sports Bureau, Kershaw was the first 23-year-old pitcher to have that many
victories, an ERA that low and an average of more than one strikeout per inning
since ERA became an official statistic in 1910. Kershaw was selected to the
National League team for the 2011 Major League Baseball All-Star Game, his
first All-Star selection. In the month of July, Kershaw was 4 — 1 with a 2.02
ERA and NL-leading 45 strikeouts, earning him the National League Pitcher of
the Month Award. On August 23, he struck out Matt Holliday of the St. Louis
Cardinals for his 200th strikeout of the season and became the 10th Dodger
pitcher to record back-to-back 200 strikeout seasons and the first since Chan-
Ho Park did it in the 2001 season. Kershaw finished the 2011 season by leading
the NL with 21 wins, 248 strikeouts and a 2.28 ERA, winning the NL pitching
Triple Crown, the first Triple Crown winner since Jake Peavy of the 2007 San
Diego Padres and the first Dodger since Sandy Koufax won it in the 1966 season.
Justin Verlander of the Detroit Tigers won the American League Triple Crown
the same season, marking the first major-league season since 1924 to feature
Triple Crown-winning pitchers in both leagues. Kershaw’s 21 wins were the
most by a Dodger pitcher since Orel Hershiser won 23 during the 1988 season.
His ERA was the lowest by a Dodger since Hershiser’s 2.03 in the 1985 season,
his strikeouts were the most by a Dodger since Koufax’s 317 in 1966 and his 233
1 / 3 innings pitched were the most since Chan Ho Park pitched 234 in 2001.
Since 1965 when Koufax did it, Peavy and Kershaw are only two pitchers in the
National League have led the league in wins, strikeouts, ERA, and WHIP (walks
plus hits per inning pitched). Kershaw also became just the second <unk> to
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, tying him with Luis Castillo for the third best start total in the league and trail-
ing only Johnny Bench and Eddie Mathews (37). The Dodgers signed Kershaw
to a one-year deal on July 14, 2011, with a player option for 2012, in a deal
worth just under $ 300,000. The Dodgers entered the 2011 season as the major
league leaders, and Kershaw had the best record in the National League in saves
(39), games started (78) and walks (120); he also had the lowest win / loss ratio
in the league (1.87), and he had the worst on-base percentage (.349). He had
the best ERA (2.00 ), most wins (16 ), or most shutouts (29) in his career (25),
while leading the league in losses per nine innings pitched (4.01). Following the
2011 season, the Dodgers traded Kershaw to the Kansas City Royals on July 29
for pitcher Javier Torres.
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During spring training, Kershaw played very well. He was selected to spring
training as a relief pitcher for the Royals for the 2012 season. After an injury
to closer Javier Vazquez, he was activated on April 29 to replace Matt Holliday
in the Royals ’ starting rotation. In his only start with the Royals, on August 6,
2012, Kershaw struck out five batters in seven innings pitched to help the Royals
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====2013season====

On May 17, 2013, Kershaw sustained another back injury and did not start in
August and October 2013. He appeared in 22 starts, all starts, finishing with
a strikeout-to-walk ratio of 1.50 and a 2.91 ERA. He also had the third most
strikeouts in the league: 10. On May 20, 2013, he
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