Deep Learning Essentials
Supervised Learning

Russ Salakhutdinov

Machine Learning Department
Carnegie Mellon University
Impact of Deep Learning

- Speech Recognition
- Computer Vision
- Recommender Systems
- Language Understanding
- Drug Discovery and Medical Image Analysis
Statistical Generative Models

Training Data (CelebA)

Model Samples (Karras et al., 2018)

4 years of progression on Faces

Brundage et al., 2017
Conditional Generation

- Conditional generative model $P(\text{zebra images} \mid \text{horse images})$

- Style Transfer

 ![Input Image](image1)
 ![Monet](image2)
 ![Van Gogh](image3)

Zhou et al., Cycle GAN 2017
Conditional Generation

- Conditional generative model $P(\text{zebra images} | \text{horse images})$

 ![Horse and Zebra Images]

- Failure Case

 ![Human with Horse and Human with Zebra Images]
Important Breakthroughs

- Deep Convolutional Nets for Vision (Supervised)

- Deep Nets for Speech (Supervised)
Used Resources

- Some material and slides for this lecture were borrowed from
 - Hugo Larochelle’s class on Neural Networks:
 https://sites.google.com/site/deeplearningsummerschool2016/
 - Grover and Ermon IJCA-ECA Tutorial on Deep Generative Models
 https://ermongroup.github.io/generative-models/
Outline

- Definition of Neural Networks
 - Forward propagation, Types of units, Capacity of neural networks
- Training Neural Networks
 - Loss function, Backpropagation algorithm
- Optimization/Regularization techniques
 - Dropout, Batch normalization, Best Practices
- Convolutional Neural Networks
 - Definition, Architecture Search
- Unsupervised Learning, Statistical Generative Models
 - Variational Autoencoders
 - Generative Adversarial Networks
Artificial Neuron

- Neuron pre-activation (or input activation):
 \[a(x) = b + \sum_i w_i x_i = b + w^\top x \]

- Neuron output activation:
 \[h(x) = g(a(x)) = g(b + \sum_i w_i x_i) \]

- where
 - \(W \) are the weights (parameters)
 - \(b \) is the bias term
 - \(g(\cdot) \) is called the activation function
Activation Functions

- Neuron output activation:
 \[h(x) = g(a(x)) = g(b + \sum_i w_i x_i) \]

Rectified Linear Unit (ReLU)
\[g(a) = \text{reclin}(a) = \max(0, a) \]

Sigmoid Activation Function
\[g(a) = \text{sigm}(a) = \frac{1}{1 + \exp(-a)} \]
Neural Networks

- Hidden layer pre-activation:
 \[a(x) = b^{(1)} + W^{(1)}x \]

- Hidden layer activation:
 \[h(x) = g(a(x)) \]

- Output layer activation:
 \[f(x) = o \left(b^{(2)} + W^{(2)\top}h^{(1)}x \right) \]

Output activation function
Capacity of Neural Nets

- Consider a single layer neural network:
Capacity of Neural Nets

- Consider a single layer neural network:
Outline

- Definition of Neural Networks
 - Forward propagation, Types of units, Capacity of neural networks
- Training Neural Networks
 - Loss function, Backpropagation algorithm
- Optimization/Regularization techniques
 - Dropout, Batch normalization, Best Practices
- Convolutional Neural Networks
 - Definition, Architecture Search
- Unsupervised Learning, Statistical Generative Models
 - Variational Autoencoders
 - Generative Adversarial Networks
Supervised Learning

- Given a set of labeled training examples: \(\{ \mathbf{x}^{(t)}, y^{(t)} \} \), we perform **Empirical Risk Minimization**

\[
\arg \min_{\theta} \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \theta), y^{(t)}) + \lambda \Omega(\theta)
\]

where

- \(f(\mathbf{x}^{(t)}; \theta) \) is a (non-linear) function mapping inputs to outputs, parameterized by \(\theta \) \(-\) Non-convex optimization

- \(l(f(\mathbf{x}^{(t)}; \theta), y^{(t)}) \) is the loss function
Supervised Learning

- Given a set of labeled training examples: \(\{ \mathbf{x}^{(t)}, y^{(t)} \} \), we perform **Empirical Risk Minimization**

\[
\arg\min_{\theta} \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \theta), y^{(t)}) + \lambda \Omega(\theta)
\]

where

- \(f(\mathbf{x}^{(t)}; \theta) \) is a (non-linear) function mapping inputs to outputs, parameterized by \(\theta \) → Non-convex optimization

- \(l(f(\mathbf{x}^{(t)}; \theta), y^{(t)}) \) is the loss function

- \(\Omega(\theta) \) is a regularization term
Supervised Learning

- Given a set of labeled training examples: \(\{x^{(t)}, y^{(t)}\} \), we perform **Empirical Risk Minimization**

\[
\arg\min_{\theta} \frac{1}{T} \sum_{t} l(f(x^{(t)}; \theta), y^{(t)}) + \lambda \Omega(\theta)
\]

- **Loss Functions:**
 - For classification tasks, we can use Cross-Entropy Loss
 - For regression tasks, we can use Squared Loss
Training

- **Empirical Risk Minimization**

\[
\arg \min_{\theta} \frac{1}{T} \sum_{t} l(f(x^{(t)}; \theta), y^{(t)}) + \lambda \Omega(\theta)
\]

Loss function

Regularizer

- To train a neural network, we need:
 - Loss Function: \(l(f(x^{(t)}; \theta), y^{(t)}) \)
 - A procedure to compute its gradients: \(\nabla_{\theta} l(f(x^{(t)}; \theta), y^{(t)}) \)
 - Regularizer and its gradient: \(\Omega(\theta), \nabla_{\theta} \Omega(\theta) \)
Stochastic Gradient Descent (SGD)

- Perform updates after seeing each example:
 - Initialize: \(\theta \equiv \{ \mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \ldots, \mathbf{W}^{(L+1)}, \mathbf{b}^{(L+1)} \} \)
 - For \(t=1:T \)
 - for each training example \((\mathbf{x}^{(t)}, y^{(t)})\)
 \[
 \Delta = -\nabla_{\theta} l(f(\mathbf{x}^{(t)}; \theta), y^{(t)}) - \lambda \nabla_{\theta} \Omega(\theta)
 \]
 \[
 \theta \leftarrow \theta + \alpha \Delta
 \]

Learning rate: Difficult to set in practice
Mini-batch, Momentum

- Make updates based on a mini-batch of examples (instead of a single example):
 - The gradient is the average regularized loss for that mini-batch
 - More accurate estimate of the gradient
 - Leverage matrix/matrix operations, which are more efficient

- **Momentum**: Use an exponential average of previous gradients:

 \[
 \nabla_{\theta}^{(t)} = \nabla_{\theta} l(f(x^{(t)}), y^{(t)}) + \beta \nabla_{\theta}^{(t-1)}
 \]

 - Can get pass plateaus more quickly, by “gaining momentum”
Adapting Learning Rates

- Updates with adaptive learning rates ("one learning rate per parameter")
 - Adagrad: learning rates are scaled by the square root of the cumulative sum of squared gradients

\[
\nabla_{\theta}^{(t)} = \frac{\nabla_{\theta} l(f(x^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}} \\
\gamma^{(t)} = \gamma^{(t-1)} + \left(\nabla_{\theta} l(f(x^{(t)}), y^{(t)}) \right)^2
\]

(Douchi et. al, 2011, Kingma and Ba, 2014)
Adapting Learning Rates

- Updates with adaptive learning rates (“one learning rate per parameter”)
 - Adagrad: learning rates are scaled by the square root of the cumulative sum of squared gradients
 \[
 \nabla_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{x}^{(t)}, y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}
 \]
 \[
 \gamma^{(t)} = \gamma^{(t-1)} + \left(\nabla_{\theta} l(\mathbf{x}^{(t)}, y^{(t)}) \right)^2
 \]
 - RMSPProp: instead of cumulative sum, use exponential moving average
 \[
 \nabla_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{x}^{(t)}, y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}
 \]
 \[
 \gamma^{(t)} = \beta \gamma^{(t-1)} + (1 - \beta) \left(\nabla_{\theta} l(\mathbf{x}^{(t)}, y^{(t)}) \right)^2
 \]
 - Adam: essentially combines RMSPProp with momentum

(Douchi et. al, 2011, Kingma and Ba, 2014)
Outline

- Definition of Neural Networks
 - Forward propagation, Types of units, Capacity of neural networks
- Training Neural Networks
 - Loss function, Backpropagation algorithm
- Optimization/Regularization techniques
 - Dropout, Batch normalization, Best Practices
- Convolutional Neural Networks
 - Definition, Architecture Search
- Unsupervised Learning, Statistical Generative Models
 - Variational Autoencoders
 - Generative Adversarial Networks
Regularization

\[
\arg\min_\theta \frac{1}{T} \sum_t l(f(x^{(t)}; \theta), y^{(t)}) + \lambda \Omega(\theta)
\]

- L2 regularization:
 \[
 \Omega(\theta) = \sum_k \sum_i \sum_j (W^{(k)}_{i,j})^2 = \sum_k \lVert W^{(k)} \rVert_F^2
 \]

- L1 regularization:
 \[
 \Omega(\theta) = \sum_k \sum_i \sum_j |W^{(k)}_{i,j}|
 \]
Dropout

- **Key idea**: Cripple neural network by removing hidden units stochastically
 - Each hidden unit is set to 0 with probability 0.5
 - Hidden units cannot co-adapt to other units
 - Hidden units must be more generally useful

- Could use a different dropout probability, but 0.5 usually works well

Srivastava et al., JMLR 2014
Dropout

- Use random binary masks $m^{(k)}$
 - Layer pre-activation for $k>0$
 $$a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}(x)$$
 - hidden layer activation ($k=1$ to L):
 $$h^{(k)}(x) = g(a^{(k)}(x)) \odot m^{(k)}$$
 - Output activation ($k=L+1$)
 $$h^{(L+1)}(x) = o(a^{(L+1)}(x)) = f(x)$$

Srivastava et al., JMLR 2014
Dropout at Test Time

- At test time, we replace the masks by their expectation
 - This is simply the constant vector 0.5 if dropout probability is 0.5

- Beats regular backpropagation on many datasets and has become a standard practice

- Ensemble: Can be viewed as a geometric average of exponential number of networks.
Batch Normalization

- Normalizing the inputs will speed up training (Lecun et al. 1998)
 - Could normalization be useful at the level of the hidden layers?

- **Batch normalization** is an attempt to do that (Ioffe and Szegedy, 2015)
 - each hidden unit’s pre-activation is normalized (mean subtraction, stddev division)
 - during training, mean and stddev is computed for each mini-batch
 - backpropagation takes into account the normalization
 - at test time, the global mean and stddev is used

- Why normalize the pre-activation?
 - helps keep the pre-activation in a non-saturating regime
 - helps with vanishing gradient problem

\[
a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}(x)
\]
Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1...m\}$;
Parameters to be learned: γ, β
Output: $\{y_i = \text{BN}_{\gamma,\beta}(x_i)\}$

- $\mu_\mathcal{B} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$
 \hspace{1cm} // mini-batch mean

- $\sigma^2_\mathcal{B} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_\mathcal{B})^2$
 \hspace{1cm} // mini-batch variance

- $\hat{x}_i \leftarrow \frac{x_i - \mu_\mathcal{B}}{\sqrt{\sigma^2_\mathcal{B} + \epsilon}}$
 \hspace{1cm} // normalize

- $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$
 \hspace{1cm} // scale and shift

Learned linear transformation to adapt to non-linear activation function (γ and β are trained)
Model Selection

- Training Protocol:
 - Train your model on the Training Set D^{train}
 - For model selection, use Validation Set D^{valid}
 - Hyper-parameter search: hidden layer size, learning rate, number of iterations, etc.
 - Estimate generalization performance using the Test Set D^{test}

- Generalization is the behavior of the model on unseen examples.
Early Stopping

- To select the number of epochs, stop training when validation set error increases → Large Model can Overfit
But in Practice

- To select the number of epochs, stop training when validation set error increases \(\Rightarrow\) Large Model can Overfit

Implicit Regularization

- Optimization plays a crucial role in generalization
- Generalization ability is not controlled by network size but rather by some other implicit control

Behnam Neyshabur, PhD thesis 2017
Neyshabur et al., Survey Paper, 2017
Best Practice

- Given a dataset D, pick a model so that:
 - You can achieve 0 training error \rightarrow Overfit on the training set.

- Regularize the model (e.g. using Dropout).

- Initialize parameters so that each feature across layers has similar variance. Avoid units in saturation.

- SGD with momentum, batch-normalization, and dropout usually works very well.
Outline

- Definition of Neural Networks
 - Forward propagation, Types of units, Capacity of neural networks
- Training Neural Networks
 - Loss function, Backpropagation algorithm
- Optimization/Regularization techniques
 - Dropout, Batch normalization, Best Practices
- Convolutional Neural Networks
 - Definition, Architecture Search
- Unsupervised Learning, Statistical Generative Models
 - Variational Autoencoders
 - Generative Adversarial Networks
Computer Vision

- **Object recognition**: Given an input image, identify which object it contains.

![Sunflower Image]

“sun flower”

- Dimensions: 112 pixels (height) x 150 pixels (width)
Computer Vision

- Design neural networks that are specifically adapted for such problems:
 - Must deal with very *high-dimensional inputs*: 150 × 150 pixels = 22500 inputs, or 3 × 22500 if RGB pixels
 - Can exploit the *2D topology* of pixels (or 3D for video data)
 - Can build in *invariance* to certain variations: translation, illumination, etc.

- Convolutional networks leverage these ideas
 - Local connectivity
 - Parameter sharing
 - Convolution
 - Pooling / subsampling
Local Connectivity

- Local connectivity of hidden units
 - Each hidden unit is connected only to a sub-region (patch) of the input image
 - Spatial correlation is local

Fully Connected: 200x200 image, 40K hidden units, ~2B parameters

Locally Connected: 200x200 image, filter size 10x10, 4M parameters!
Parameter Sharing

- Share matrix of parameters across some units
 - Units that share parameters represent "feature map"
 - Units within a feature map cover different positions in the image

same color = same matrix of connection
Convolution

- Each feature map forms a 2D grid of features
 - Can be computed with a discrete convolution of a kernel matrix K_{ij} which is the weights matrix W_{ij} with its rows and columns flipped
Convolution

- Each feature map forms a 2D grid of features
 - Can be computed with a discrete convolution of a kernel matrix k_{ij} which is the weights matrix W_{ij} with its rows and columns flipped
Pooling

- Make the detection robust to the exact location of the eye
Convolutional Neural Network (ConvNet)

The outputs (not the filters) of each layer (horizontally) of a typical convolutional network architecture applied to the image of a Samoyed dog

Choosing Architecture

- How can we select the right architecture:
 - Manual tuning of features is now replaced with the manual tuning of architectures

- Many hyper-parameters:
 - Number of layers, number of feature maps

- Cross Validation
- Grid Search (need lots of GPUs)
- Smarter Strategies
 - Bayesian Optimization
AlexNet

- 8 layers total
- Trained on Imagenet dataset [Deng et al. CVPR’09]
- 18.2% top-5 error

[From Rob Fergus’ CIFAR 2016 tutorial] Krizhevsky et al., NIPS 2012
AlexNet

- Remove top fully connected layer 7
- Drop ~16 million parameters
- Only 1.1% drop in performance!

[From Rob Fergus’ CIFAR 2016 tutorial] Krizhevsky et al., NIPS 2012
AlexNet

- Remove layers 3, 4, 6, and 7
- Drop ~50 million parameters
- 33.5% drop in performance!

- Depth of the network is the key

[From Rob Fergus’ CIFAR 2016 tutorial] Krizhevsky et al., NIPS 2012
GoogleNet

- 24 layer model

(Szegedy et al., Going Deep with Convolutions, 2014)
Residual Networks

- Really, really deep convnets do not train well, e.g. CIFAR10:

![Training and test error vs iteration](image)

- **Key idea**: introduce “pass through” into each layer

- Thus only residual now needs to be learned:

![Residual function](image)

(He, Zhang, Ren, Sun, CVPR 2016)

<table>
<thead>
<tr>
<th>Method</th>
<th>Top-1 Err.</th>
<th>Top-5 Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG [41] (ILSVRC’14)</td>
<td>-</td>
<td>8.43 †</td>
</tr>
<tr>
<td>GoogLeNet [44] (ILSVRC’14)</td>
<td></td>
<td>7.89</td>
</tr>
<tr>
<td>VGG [41] (v5)</td>
<td>24.4</td>
<td>7.1</td>
</tr>
<tr>
<td>BN-inception [16]</td>
<td>21.99</td>
<td>5.81</td>
</tr>
<tr>
<td>ResNet-34 B</td>
<td>21.84</td>
<td>5.71</td>
</tr>
<tr>
<td>ResNet-34 C</td>
<td>21.53</td>
<td>5.60</td>
</tr>
<tr>
<td>ResNet-50</td>
<td>20.74</td>
<td>5.25</td>
</tr>
<tr>
<td>ResNet-101</td>
<td>19.87</td>
<td>4.60</td>
</tr>
<tr>
<td>ResNet-152</td>
<td>19.38</td>
<td>4.49</td>
</tr>
</tbody>
</table>

Table 4. Error rates (%) of single-model results on the ImageNet validation set (except † reported on the test set).

With ensembling, 3.57% top-5 test error on ImageNet
Outline

- Definition of Neural Networks
 - Forward propagation, Types of units, Capacity of neural networks
- Training Neural Networks
 - Loss function, Backpropagation algorithm
- Optimization/Regularization techniques
 - Dropout, Batch normalization, Best Practices
- Convolutional Neural Networks
 - Definition, Architecture Search
- Unsupervised Learning, Statistical Generative Models
 - Variational Autoencoders
 - Generative Adversarial Networks