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Speech Recognition

Computer Vision

Recommender Systems

Language Understanding

Drug Discovery and Medical Image Analysis
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Statistical Generative Models

Training Data(CelebA) Model Samples (Karras et.al., 2018)

4 years of progression on Faces

Brundage et al., 2017
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Conditional Generation

» Conditional generative model P(zebra images| horse images)

Input Image Monet Van Gogh
Zhou el al., Cycle GAN 2017
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Conditional Generation

» Conditional generative model P(zebra images| horse images)

Zhou el al., Cycle GAN 2017
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Important Breakthroughs

» Deep Convolutional Nets for Vision (Supervised)

» Krizhevsky, A., Sutskever, |. and Hinton, G. E., ImageNet Classification with Deep
Convolutional Neural Networks, NIPS, 2012.
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» Deep Nets for Speech (Supervised)

» Hinton et. al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The
Shared Views of Four Research Groups, IEEE Signal Processing Magazine. 2012.
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Used Resources

» Some material and slides for this lecture were borrowed from

» Hugo Larochelle’s class on Neural Networks:

https://sites.gcoogle.com/site/deeplearningsummerschool2016/

» Grover and Ermon IJCA-ECA Tutorial on Deep Generative Models
https://ermongroup.github.io/generative-models/
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» Forward propagation, Types of units, Capacity of neural networks
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» Loss function, Backpropagation algorithm
Optimization/Regularization techniques

» Dropout, Batch normalization, Best Practices

Convolutional Neural Networks

» Definition, Architecture Search

Unsupervised Learning, Statistical Generative Models
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» Generative Adversarial Networks
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Artificial Neuron

» Neuron pre-activation (or input activation):
a(x)=b+ > wr;,=b+w'x

» Neuron output activation:

h(x) = gla(x)) = g(b+ 2, wir;)

» where
» W are the weights (parameters)
» b is the bias termConvolution

> g() is called the activation function
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Activation Functions

» Neuron output activation: h(x) = g(a(x)) = g(b+ >, w;z;)

Rectified Linear Unit (ReLU) Sigmoid Activation Function

g(a) = reclin(a) = max(0, a)

g(a) = sigm(a) =

1

1+exp(—a)
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Neural Networks

» Hidden layer pre-activation:
a(x) =bM) + Wibx
» Hidden layer activation:

h(x) = g(a(x))

» Output layer activation:

f(x) = o (b<2> n W<2>Th<1>x>

\

Output activation
function
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Capacity of Neural Nets

» Consider a single layer neural network:

Input

(from Pascal Vincent's slides)
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Capacity of Neural Nets

» Consider a single layer neural network:

X

>x1

(from Pascal Vincent's slides)
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Supervised Learning

» Given a set of labeled training examples:{X(t), y(t)} , we perform Empirical
Risk Minimization

arg min — Zl x(0): 8), y") + XQ(0)

J

Y

Loss function
where

> f(x(t); 6’) is a (non—lingar.) fulnction mapping inputs to outputs, parameterized
by 6 -> Non-convex optimization

> l(f(x(t); 9)7 y(t)) is the loss function



Carnegie Mellon University

Supervised Learning
» Given a set of labeled training examples:{X(t), y(t)} , we perform Empirical
Risk Minimization
arg min — Zl x(0): 8), y") + XQ(0)
~ J W_J

Loss function Regularizer

where

> f(x(t); 6’) is a (non—lingar.) fulnction mapping inputs to outputs, parameterized
by 6 -> Non-convex optimization

> l(f(x(t); 9)7 y(t)) is the loss function

> Q(H) is a regularization term
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Supervised Learning
» Given a set of labeled training examples:{X(t), y(t)} , we perform Empirical
Risk Minimization
arg min — Zl x(0): 8), y") + XQ(0)
~ J W_J

Loss function Regularizer

» Loss Functions:
» For classification tasks, we can use Cross-Entropy Loss

» For regression tasks, we can use Squared Loss
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Training

» Empirical Risk Minimization
arg min — Zl x(0): 8), y") + XQ(0)

~ J W_J

Loss function Regularizer

» To train a neural network, we need:
> Loss Function: [(f(x(!); 9),y")
» A procedure to compute its gradients: Vgl (f(x); ), y())
> Regularizer and its gradient: €(6), V€2(0)
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Stochastic Gradient Descent (SGD)

» Perform updates after seeing each example:
— Initialize: 9 = {WW bW W+ pL+y
- For t=1:T

— for each training example (x®),y®)

A= —Vel(f(x\";0),y")) — AVeQ(8)
0—0+aAd

PEEE22A2ESS SRS SS 1
I Learning rate: Difficult !

| . . |
; to set In practice |
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Mini-batch, Momentum

» Make updates based on a mini-batch of examples (instead of a single example):
» The gradient is the average regularized loss for that mini-batch
» More accurate estimate of the gradient

» Leverage matrix/matrix operations, which are more efficient

» Momentum: Use an exponential average of previous gradients:

VY = Vel(f(x®),y®) + gVy Y

» Can get pass plateaus more quickly, by “‘gaining momentum”
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Adapting Learning Rates

» Updates with adaptive learning rates (“one learning rate per parameter”)

» Adagrad: learning rates are scaled by the square root of the cumulative sum of squared
gradients

(£)) 4,(t) B 2
vl _ Vol(f(x'"),y'") A1) = (0 1>+<vel(f(x<t>),y<t>))

(Douchi et. al, 2011, Kingma and Ba, 2014)
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Adapting Learning Rates

» Updates with adaptive learning rates (“one learning rate per parameter”)

» Adagrad: learning rates are scaled by the square root of the cumulative sum of squared
gradients

(£)) 4,(t) B 2
vl _ Vol(f(x'"),y'") A1) = (0 1>+<vel(f(x<t>),y<t>))

» RMSProp: instead of cumulative sum, use exponential moving average

2
o _ Vel(f(x'"), y®) ~B = g1 4 (1 - B) (VQZ(f(X“)), y(t)))

SO

» Adam: essentially combines RMSProp with momentum

(Douchi et. al, 2011, Kingma and Ba, 2014)
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Regularization

arg min — Zl x():0), yV) + XQ(0)

» L2 regularization:

00) = 2,5, (W) = S, WO

» L1 regularization:

Q0) =3, 3, 5 (W)
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Dropout

» Key idea: Cripple neural network by removing hidden units stochastically

» Each hidden unit is set to 0 with probability 0.5
» Hidden units cannot co-adapt to other units

» Hidden units must be more generally useful

» Could use a different dropout probability, but
0.5 usually works well

Srivastava et al., JIMLR 2014
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Dropout

» Use random binary masks m(¥

» Layer pre-activation for k>0

a®) (x) = bK) £ WERKE-1) (x)

» hidden layer activation (k=1 to L):
h(®) (x) = g(a®) (x)) em»
» Output activation (k=L+1)

h(E+D) (x) = o(al“+1) (x)) = £(x)

Srivastava et al., JIMLR 2014
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Dropout at Test Time

» At test time, we replace the masks by their expectation
» This is simply the constant vector 0.5 if dropout probability is 0.5

» Beats regular backpropagation on many datasets and has become a standard
practice

» Ensemble: Can be viewed as a geometric average of exponential number of
networks.
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Batch Normalization

» Normalizing the inputs will speed up training (Lecun et al. 1998)

» Could normalization be useful at the level of the hidden layers?

» Batch normalization is an attempt to do that (loffe and Szegedy, 2015)
» each hidden unit's pre-activation is normalized (mean subtraction, stddev division)
» during training, mean and stddev is computed for each mini-batch
» backpropagation takes into account the normalization al®)(x) = bk) £ WEIph(=1)(x)
» at test time, the global mean and stddev is used

» Why normalize the pre-activation?

» helps keep the pre-activation in a non-saturating regime
=> helps with vanishing gradient problem




Batch Normalization

Input: Values of x over a mini-batch: B = {z1. ,};
Parameters to be learned: v, 8
Output: {y; = BN, 5(z;)}

1 m
— — i // mini-batch

HB < — ; x mini-batch mean
1 m

0% — (x; — pg)z // mini-batch variance
i=1

T; Ti” BB // normalize

e Noemte
: Yi < YZ; + B = BN, g(z;) : // scale and shift

Carnegie Mellon University

Learned linear transformation to adapt to non-linear

activation function (y and B are trained)
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Model Selection

» Training Protocol:
» Train your model on the Training Set Ptrain

» For model selection, use Validation Set Dva’hd

— Hyper-parameter search: hidden layer size, learning rate, number of iterations, etc.

» Estimate generalization performance using the Test Set Dtest

» Generalization is the behavior of the model on unseen examples.



Early Stopping
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» To select the number of epochs, stop training when validation set error

increases = Large Model can Overfit

0,5

0,4

0,3

0,2

0,1

0,0

O Training O Validation

underfitting overfitting

—0—

number of epochs

—0-



But in Practice
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» To select the number of epochs, stop training when validation set error

increases = Large Model can Overfit

0,5

0,4

0,3

0,2

0,1

0,0

O Training O Validation

underfitting overfitting

Generalization

number of epochs

Error

Implicit Regularization

» Optimization plays a crucial role in
generalization

» Generalization ability is not
controlled by network size but rather
by some other implicit control

Behnam Neyshabur, PhD thesis 2017
Neyshabur et al., Survey Paper, 2017
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Best Practice

» Given a dataset D, pick a model so that:

» You can achieve 0 training error = Overfit on the training set.

» Regularize the model (e.g. using Dropout).

» Initialize parameters so that each feature across layers has similar
variance. Avoid units in saturation.

» SGD with momentum, batch-normalization, and dropout usually
works very well.
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Computer Vision

» Object recognition: Given an input image, identify which object it contains

| 12 pixels

» “sun flower”

|50 pixels
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Computer Vision

» Design neural networks that are specifically adapted for such problems:

» Must deal with very high-dimensional inputs: 150 x 150 pixels = 22500 inputs,
or 3 x 22500 if RGB pixels

» Can exploit the 2D topology of pixels (or 3D for video data)

» Can build in invariance to certain variations: translation, illumination, etc.

» Convolutional networks leverage these ideas
» Local connectivity
» Parameter sharing
» Convolution

» Pooling / subsampling
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Local Connectivity

» Local connectivity of hidden units
» Each hidden unit is connected only to a sub-region (patch) of the input image

» Spatial correlation is local

Fully Connected: 200x200 image, 40K hidden Locally Connected: 200x200 image, filter size
units, ~“2B parameters 10x10, 4M parameters!



Carnegie Mellon University

Parameter Sharing

» Share matrix of parameters across some units
» Units that share parameters represent “feature map"

» Units within a feature map cover different positions in the image

feature map | feature map 2 feature map 3

Q0 Q0000 O
\‘\ |

!

same color

same matrix of
connection
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Convolution

» Each feature map forms a 2D grid of features

» Can be computed with a discrete convolution of a kernel matrix K,-j which is the weights

matrix VV,-J- with its rows and columns flipped

o NoNe
_
[
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Convolution

» Each feature map forms a 2D grid of features

» Can be computed with a discrete convolution of a kernel matrix k,-j which is the weights

matrix VV,-J- with its rows and columns flipped

==
>
=1l

Learned
Input Image filters 4 feature maps

Slide Credit: Honglak Lee
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Pooling

» Make the detection robust to the exact location of the eye
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Convolutional Neural Network (ConvNet)

L B A LW W A A ALV B T A A L Ll S B A L L L K A LT W BN LM AR OE B AL S LA E R L L LN EN A N L -

Convolutions and RelLU
s S s O s T & S T Sy L& £ £ e o o o L L NS s g s &g N =

Convolutions and RelLU

L - - - - L SV L5 L L5 S

I

The outputs (not the filters) of each layer (horizontally) of a typical convolutional network
architecture applied to the image of a Samoyed dog

Source: LeCun, Bengio, Hinton, Nature 2015



Carnegie Mellon University

Choosing Architecture

» How can we select the right architecture:

» Manual tuning of features is now replaced with the manual tuning of architectures

» Many hyper-parameters:

» Number of layers, number of feature maps

» Cross Validation
» Grid Search (need lots of GPUs)

» Smarter Strategies

» Bayesian Optimization



AlexNet

» 8 layers total

» Trained on Imagenet dataset [Deng et al. CVPR'09]

» 18.2% top-5 error

[From Rob Fergus’ CIFAR 2016 tutorial]

Krizhevsky et al., NIPS 2012
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AlexNet

» Remove top fully connected layer 7

» Drop 716 million parameters

» Only 1.1% drop in performance!

[From Rob Fergus’ CIFAR 2016 tutorial]

Krizhevsky et al., NIPS 2012
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AlexNet

» Remove layers 3 4,6 and 7

» Drop 750 million parameters

» 33.5% drop in performance!

» Depth of the network is the key

[From Rob Fergus’ CIFAR 2016 tutorial]

Krizhevsky et al., NIPS 2012
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GoogleNet

Convolution
Pooling

» 24 layer model

Other

(Szegedy et al., Going Deep with Convolutions, 2014)



Residual Networks

» Really, really deep convnets do not train well, e.g. CIFAR10:

201

training error (%)

56-layer

20-layer

L
2

3 3
iter. (le4)

1
5 6

20

test error (%)

56-layer
20-layer

L
2

3 s
iter. (1e4)

» Key idea: introduce “pass through” into each layer

» Thus only residual now needs to be learned:

X

Y

weight layer

relu
\ 4

weight layer

X
identity

(He, Zhang, Ren, Sun, CVPR 2016)

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43"
GoogLeNet [44] ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except | reported on the test set).

With ensembling, 3.57% top-5
test error on ImageNet

output
size: 224

output
size: 112

output
size: 56

output
size: 28

output
size: 14

output
size: 7

output
size: 1
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