

 Deep Learning Essentials

Supervised Learning

Russ	Salakhutdinov	

Machine Learning Department
Carnegie Mellon University

Impact of Deep Learning

�  Speech Recognition!
�  Computer Vision !
�  Recommender Systems !
�  Language Understanding!
�  Drug Discovery and Medical Image Analysis !

2!

Statistical Generative Models

3!

(Goodfellow 2018)

Generative Modeling:
Sample Generation

Training Data Sample Generator
(CelebA) (Karras et al, 2017)Training Data(CelebA)!

!
Model Samples (Karras et.al., 2018)!
!

(Goodfellow 2018)

3.5 Years of Progress on Faces

2014 2015 2016 2017

(Brundage et al, 2018)

4 years of progression on Faces!
!

Brundage et al., 2017!
!

Conditional Generation
�  Conditional generative model P(zebra images| horse images)!

4!

Zhou el al., Cycle GAN 2017

�  Style Transfer!

Monet Input Image Van Gogh

Conditional Generation
�  Conditional generative model P(zebra images| horse images)!

5!

�  Failure Case!

Zhou el al., Cycle GAN 2017

Important Breakthroughs

6!

�  Deep Convolutional Nets for Vision (Supervised) !
�  Krizhevsky, A., Sutskever, I. and Hinton, G. E., ImageNet Classification with Deep

Convolutional Neural Networks, NIPS, 2012. !

�  Deep Nets for Speech (Supervised)!
�  Hinton et. al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The

Shared Views of Four Research Groups, IEEE Signal Processing Magazine. 2012. !

!

1.2 million training images!
1000 classes!

Used Resources
�  Some material and slides for this lecture were borrowed from!
 !

� Hugo Larochelle’s class on Neural Networks:!
https://sites.google.com/site/deeplearningsummerschool2016/!

!
� Grover and Ermon IJCA-ECA Tutorial on Deep Generative Models!

https://ermongroup.github.io/generative-models/!
!
!

7!

Outline

8!

�  Definition of Neural Networks !
�  Forward propagation, Types of units, Capacity of neural networks!

�  Training Neural Networks !
�  Loss function, Backpropagation algorithm !

�  Optimization/Regularization techniques!
�  Dropout, Batch normalization, Best Practices !

�  Convolutional Neural Networks!
�  Definition, Architecture Search !

�  Unsupervised Learning, Statistical Generative Models!
�  Variational Autoencoders!
�  Generative Adversarial Networks!

Artificial Neuron

9!

�  Neuron pre-activation (or input activation):!

�  Neuron output activation:!

�  where!
�  are the weights (parameters)!
�  is the bias termConvolution!
�  is called the activation function !

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Activation Functions

10!

�  Neuron output activation:!

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Sigmoid Activation Function !

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Rectified Linear Unit (ReLU) !

Neural Networks

11!

�  Hidden layer pre-activation:!

�  Hidden layer activation:!

�  Output layer activation:!

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i w(2)

i b(2)

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i +

P
j W

(1)
i,j xj

⌘

• f(x) = o(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• p(y = 1|x)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i w(2)

i b(2)

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i +

P
j W

(1)
i,j xj

⌘

• f(x) = o
⇣
b(2) +w(2)>x

⌘

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 7, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• p(y = 1|x)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i w(2)

i b(2)

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i +

P
j W

(1)
i,j xj

⌘

• f(x) = o
⇣
b(2) +w(2)>h(1)x

⌘

1

Output activation
function!

2Réseaux de neurones

-1 1

-1

1

1
1

1 1

.5

-1.5

.7
-.4-1

x1 x2

x1

x2

z=+1

z=-1

z=-1

0

1
-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

R2

R2

R1

y1 y2

z

zk

wkj

wji

x1

x2

x1

x2

x1

x2

y1 y2

sortie k

entrée i

cachée j
biais

Input!

Hidden!

Output!

bias!

(from Pascal Vincent’s slides)!

Capacity of Neural Nets

12!

�  Consider a single layer neural network: !

Capacity of Neural Nets

13!

�  Consider a single layer neural network: !

(from Pascal Vincent’s slides)!

Outline

14!

�  Definition of Neural Networks !
�  Forward propagation, Types of units, Capacity of neural networks!

�  Training Neural Networks !
�  Loss function, Backpropagation algorithm !

�  Optimization/Regularization techniques!
�  Dropout, Batch normalization, Best Practices !

�  Convolutional Neural Networks!
�  Definition, Architecture Search !

�  Unsupervised Learning, Statistical Generative Models!
�  Variational Autoencoders!
�  Generative Adversarial Networks!

Supervised Learning
�  Given a set of labeled training examples: , we perform Empirical

Risk Minimization!

15!

where!

�  is a (non-linear) function mapping inputs to outputs, parameterized
by θ -> Non-convex optimization

�  is the loss function!

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T))

•
p(x(1)

, . . . ,x(T)) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

5

Loss function !

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Supervised Learning
�  Given a set of labeled training examples: , we perform Empirical

Risk Minimization!

16!

where!

�  is a (non-linear) function mapping inputs to outputs, parameterized
by θ -> Non-convex optimization

�  is the loss function!

�  is a regularization term !

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T))

•
p(x(1)

, . . . ,x(T)) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

5

Loss function ! Regularizer!

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Supervised Learning
�  Given a set of labeled training examples: , we perform Empirical

Risk Minimization!

17!

�  Loss Functions:!
�  For classification tasks, we can use Cross-Entropy Loss!
�  For regression tasks, we can use Squared Loss!

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T))

•
p(x(1)

, . . . ,x(T)) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

5

Loss function ! Regularizer!

Training
�  Empirical Risk Minimization!

18!

�  To train a neural network, we need:!
�  Loss Function:!

�  A procedure to compute its gradients:!

�  Regularizer and its gradient: , !

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T))

•
p(x(1)

, . . . ,x(T)) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

5

Loss function ! Regularizer!

Stochastic Gradient Descent (SGD)
�  Perform updates after seeing each example: !

19!

-  Initialize: !
!

-  for each training example !
!

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• ✓ ⌘ {W(1),b(1), . . . ,W(L+1),b(L+1)}

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

-  For t=1:T!
!

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T))

•
p(x(1)

, . . . ,x(T)) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x(t)
, y

(t))

5

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T))

•
p(x(1)

, . . . ,x(T)) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

5

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1
T

P
t
r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ + ↵ �

• {x 2 Rd | rxf(x) = 0}

• v>r2
xf(x)v > 0 8v

• v>r2
xf(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x(t)
, y

(t))

• f
⇤

f

6

Learning rate: Difficult
to set in practice !

!

Mini-batch, Momentum

20!

�  Make updates based on a mini-batch of examples (instead of a single example):!
�  The gradient is the average regularized loss for that mini-batch!
�  More accurate estimate of the gradient!
�  Leverage matrix/matrix operations, which are more efficient!

�  Momentum: Use an exponential average of previous gradients:!

!
�  Can get pass plateaus more quickly, by ‘‘gaining momentum’’!

• g
0(a) = g(a)(1� g(a))

• g
0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k
||W(k)||2

F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j
|W (k)

i,j
|

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

• W(k)
i,j

U [�b, b] b =
p
6p

Hk+Hk�1
Hk h(k)(x)

• a(3)(x) = b(3) +W(3)h(2)

• a(2)(x) = b(2) +W(2)h(1)

• a(1)(x) = b(1) +W(1)x

• h(3)(x) = o(a(3)(x))

• h(2)(x) = g(a(2)(x))

• h(1)(x) = g(a(1)(x))

• b(3) b(2) b(1)

• W(3) W(2) W(1) x f(x)

• @f(x)
@x

⇡ f(x+✏)�f(x�✏)
2✏

• f(x) x ✏

• f(x+ ✏) f(x� ✏)

•
P1

t=1 ↵t = 1

•
P1

t=1 ↵
2
t
< 1 ↵t

• ↵t =
↵

1+�t

• ↵t =
↵

t�
0.5 < �  1 �

• r(t)
✓ = r✓l(f(x(t)), y(t)) + �r(t�1)

✓

4

Adapting Learning Rates

21!

�  Updates with adaptive learning rates (“one learning rate per parameter”)!
�  Adagrad: learning rates are scaled by the square root of the cumulative sum of squared

gradients!

!
!

�(t) = �(t�1) +
⇣
r✓l(f(x

(t)), y(t))
⌘2

r(t)
✓ =

r✓l(f(x(t)), y(t))p
�(t) + ✏

(Douchi et. al, 2011, Kingma and Ba, 2014)

Adapting Learning Rates

22!

�  Updates with adaptive learning rates (“one learning rate per parameter”)!
�  Adagrad: learning rates are scaled by the square root of the cumulative sum of squared

gradients!

�  RMSProp: instead of cumulative sum, use exponential moving average!

�  Adam: essentially combines RMSProp with momentum!

!

�(t) = �(t�1) +
⇣
r✓l(f(x

(t)), y(t))
⌘2

r(t)
✓ =

r✓l(f(x(t)), y(t))p
�(t) + ✏

�(t) = ��(t�1) + (1� �)
⇣
r✓l(f(x

(t)), y(t))
⌘2

r(t)
✓ =

r✓l(f(x(t)), y(t))p
�(t) + ✏

(Douchi et. al, 2011, Kingma and Ba, 2014)

Outline

23!

�  Definition of Neural Networks !
�  Forward propagation, Types of units, Capacity of neural networks!

�  Training Neural Networks !
�  Loss function, Backpropagation algorithm !

�  Optimization/Regularization techniques!
�  Dropout, Batch normalization, Best Practices !

�  Convolutional Neural Networks!
�  Definition, Architecture Search !

�  Unsupervised Learning, Statistical Generative Models!
�  Variational Autoencoders!
�  Generative Adversarial Networks!

Regularization

24!

�  L2 regularization:!

�  L1 regularization:!

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T))

•
p(x(1)

, . . . ,x(T)) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

•
argmin

✓

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

5

• g0(a) = g(a)(1� g(a))

• g0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W (k)

i,j

⌘2
=

P
k ||W(k)||2F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j |W

(k)
i,j |

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1 0

4

• g0(a) = g(a)(1� g(a))

• g0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W (k)

i,j

⌘2
=

P
k ||W(k)||2F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j |W

(k)
i,j |

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1 0

4

Dropout

25!

�  Key idea: Cripple neural network by removing hidden units stochastically!

�  Each hidden unit is set to 0 with probability 0.5!

�  Hidden units cannot co-adapt to other units!

�  Hidden units must be more generally useful!

!
�  Could use a different dropout probability, but

0.5 usually works well!

!

Srivastava et al., JMLR 2014

Dropout

26!

�  Use random binary masks m(k) !
!
�  Layer pre-activation for k>0!

�  hidden layer activation (k=1 to L):!

�  Output activation (k=L+1)!

!

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)(x) (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

Srivastava et al., JMLR 2014

Dropout at Test Time

27!

�  At test time, we replace the masks by their expectation!
�  This is simply the constant vector 0.5 if dropout probability is 0.5!

�  Beats regular backpropagation on many datasets and has become a standard
practice !

�  Ensemble: Can be viewed as a geometric average of exponential number of
networks.!

Batch Normalization

28!

�  Normalizing the inputs will speed up training (Lecun et al. 1998)!
�  Could normalization be useful at the level of the hidden layers?!

�  Batch normalization is an attempt to do that (Ioffe and Szegedy, 2015)!
�  each hidden unit’s pre-activation is normalized (mean subtraction, stddev division)!
�  during training, mean and stddev is computed for each mini-batch!
�  backpropagation takes into account the normalization!
�  at test time, the global mean and stddev is used!

�  Why normalize the pre-activation?!
�  helps keep the pre-activation in a non-saturating regime

à helps with vanishing gradient problem!

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)(x) (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

Batch Normalization

29!

Learned linear transformation to adapt to non-linear
activation function (𝛾 and β are trained)! and β are trained)!

Model Selection

30!

�  Training Protocol:!
�  Train your model on the Training Set!

�  For model selection, use Validation Set !

–  Hyper-parameter search: hidden layer size, learning rate, number of iterations, etc.!

�  Estimate generalization performance using the Test Set!

�  Generalization is the behavior of the model on unseen examples. !

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T))

•
p(x(1)

, . . . ,x(T)) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

5

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T))

•
p(x(1)

, . . . ,x(T)) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

5

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T))

•
p(x(1)

, . . . ,x(T)) =
Y

t

p(x(t))

• T�1
T

b⌃ = 1
T

P
t
(x(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain = {(x(t)
, y

(t))}

• f(x;✓)

• Dvalid Dtest

5

Early Stopping

31!

�  To select the number of epochs, stop training when validation set error
increases à Large Model can Overfit!

But in Practice

32!

�  To select the number of epochs, stop training when validation set error
increases à Large Model can Overfit!

�  Optimization plays a crucial role in
generalization!

�  Generalization ability is not
controlled by network size but rather
by some other implicit control!

Implicit Regularization!

Generalization
Error! Behnam Neyshabur, PhD thesis 2017

Neyshabur et al., Survey Paper, 2017

Best Practice

33!

�  Given a dataset D, pick a model so that: !
�  You can achieve 0 training error à Overfit on the training set.!

�  Regularize the model (e.g. using Dropout).!

�  Initialize parameters so that each feature across layers has similar
variance. Avoid units in saturation.!

�  SGD with momentum, batch-normalization, and dropout usually
works very well.!

Outline

34!

�  Definition of Neural Networks !
�  Forward propagation, Types of units, Capacity of neural networks!

�  Training Neural Networks !
�  Loss function, Backpropagation algorithm !

�  Optimization/Regularization techniques!
�  Dropout, Batch normalization, Best Practices !

�  Convolutional Neural Networks!
�  Definition, Architecture Search !

�  Unsupervised Learning, Statistical Generative Models!
�  Variational Autoencoders!
�  Generative Adversarial Networks!

Computer Vision

35!

�  Object recognition: Given an input image, identify which object it contains!

Computer Vision

36!

�  Design neural networks that are specifically adapted for such problems:!
�  Must deal with very high-dimensional inputs: 150 x 150 pixels = 22500 inputs,

or 3 x 22500 if RGB pixels !
�  Can exploit the 2D topology of pixels (or 3D for video data)!
�  Can build in invariance to certain variations: translation, illumination, etc.!

�  Convolutional networks leverage these ideas!
�  Local connectivity!
�  Parameter sharing!
�  Convolution!
�  Pooling / subsampling!

Local Connectivity

37!

�  Local connectivity of hidden units!
�  Each hidden unit is connected only to a sub-region (patch) of the input image!
�  Spatial correlation is local!
!

Fully Connected: 200x200 image, 40K hidden
units, ~2B parameters!

Locally Connected: 200x200 image, filter size
10x10, 4M parameters!!

Parameter Sharing

38!

�  Share matrix of parameters across some units!
�  Units that share parameters represent “feature map”!
�  Units within a feature map cover different positions in the image !

!

same color
=

same matrix of
connection	

Convolution

39!

�  Each feature map forms a 2D grid of features!
�  Can be computed with a discrete convolution of a kernel matrix Kij which is the weights

matrix Wij with its rows and columns flipped!

!

Convolution

40!

�  Each feature map forms a 2D grid of features!
�  Can be computed with a discrete convolution of a kernel matrix kij which is the weights

matrix Wij with its rows and columns flipped!

!

Input Image	 4 feature maps	
Learned !
filters	

Slide Credit: Honglak Lee!

Pooling

41!

�  Make the detection robust to the exact location of the eye!

!

Convolutional Neural Network (ConvNet)

42!

The outputs (not the filters) of each layer (horizontally) of a typical convolutional network
architecture applied to the image of a Samoyed dog !

! Source: LeCun, Bengio, Hinton, Nature 2015 !

Choosing Architecture

43!

�  How can we select the right architecture:!
�  Manual tuning of features is now replaced with the manual tuning of architectures!

�  Many hyper-parameters:!
�  Number of layers, number of feature maps!

�  Cross Validation!
�  Grid Search (need lots of GPUs)!
�  Smarter Strategies !

�  Bayesian Optimization !

AlexNet

44!

�  8 layers total!

�  Trained on Imagenet dataset [Deng et al. CVPR’09]!

�  18.2% top-5 error !

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Layer 7: Full

[From Rob Fergus’ CIFAR 2016 tutorial]

Krizhevsky et al., NIPS 2012

AlexNet

45!

�  Remove top fully connected layer 7 !

�  Drop ~16 million parameters!

�  Only 1.1% drop in performance!!

[From Rob Fergus’ CIFAR 2016 tutorial]

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Krizhevsky et al., NIPS 2012

AlexNet

46!

[From Rob Fergus’ CIFAR 2016 tutorial]

�  Remove layers 3 4,6 and 7 !

�  Drop ~50 million parameters!

�  33.5% drop in performance!!

�  Depth of the network is the key!

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool

Krizhevsky et al., NIPS 2012

GoogleNet

47!

Convolution
Pooling
Softmax
Other

(Szegedy et al., Going Deep with Convolutions, 2014)

�  24 layer model !

Residual Networks

48!

�  Really, really deep convnets do not train well, e.g. CIFAR10:!

(He, Zhang, Ren, Sun, CVPR 2016)

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1
http://image-net.org/challenges/LSVRC/2015/ and

http://mscoco.org/dataset/#detections-challenge2015.

0 1 2 3 4 5 60

10

20

iter. (1e4)

tra
in

in
g

er
ro

r (
%

)

0 1 2 3 4 5 60

10

20

iter. (1e4)

te
st

 e
rr

or
 (%

)

56-layer

20-layer

56-layer

20-layer

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that

1

ar
X

iv
:1

51
2.

03
38

5v
1

 [c
s.C

V
]

10
 D

ec
 2

01
5

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

identity

weight layer

weight layer

relu

relu

F(x)�+�x

x

F(x) x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

�  Key idea: introduce “pass through” into each layer!

�  Thus only residual now needs to be learned:!

model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56⇥56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1⇥1, 3⇥3, and 1⇥1 convolutions, where the 1⇥1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3⇥3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.

6

With ensembling, 3.57% top-5
test error on ImageNet

Outline

49!

�  Definition of Neural Networks !
�  Forward propagation, Types of units, Capacity of neural networks!

�  Training Neural Networks !
�  Loss function, Backpropagation algorithm !

�  Optimization/Regularization techniques!
�  Dropout, Batch normalization, Best Practices !

�  Convolutional Neural Networks!
�  Definition, Architecture Search !

�  Unsupervised Learning, Statistical Generative Models!
�  Variational Autoencoders!
�  Generative Adversarial Networks!

