CSC411 Fall 2014
Machine Learning & Data Mining

Ensemble Methods

Slides by Rich Zemel

Ensemble methods

Typical application: classification

Ensemble of classifiers is a set of classifiers whose individual
decisions combined in some way to classify new examples

Simplest approach:
1. Generate multiple classifiers
2. Each votes on test instance
3. Take majority as classification

Classifiers different due to different sampling of training data, or
randomized parameters within the classification algorithm

Aim: take simple mediocre algorithm and transform it into a super
classifier without requiring any fancy new algorithm

Ensemble methods: Summary

Differ in training strategy, and combination method
1. Parallel training with different training sets: bagging

2. Sequential training, iteratively re-weighting training
examples so current classifier focuses on hard examples:
boosting

3. Parallel training with objective encouraging division of labor:
mixture of experts

Notes:
* Also known as meta-learning

* Typically applied to weak models, such as decision stumps
(single-node decision trees), or linear classifiers

Variance-bias tradeoff?

Minimize two sets of errors:

1. Variance: error from sensitivity to small fluctuations in the
training set

2. Bias: erroneous assumptions in the model

Variance-bias decomposition is a way of analyzing the
generalization error as a sum of 3 terms: variance, bias and

irreducible error (resulting from the problem itself)

Why do ensemble methods work?

Based on one of two basic observations:

1. Variance reduction: if the training sets are completely
independent, it will always helps to average an ensemble
because this will reduce variance without affecting bias (e.g.,
bagging) -- reduce sensitivity to individual data pts

2. Bias reduction: for simple models, average of models has
much greater capacity than single model (e.g., hyperplane
classifiers, Gaussian densities). Averaging models can reduce
bias substantially by increasing capacity, and control variance
by fitting one component at a time (e.g., boosting)

Ensemble methods: Justification

Ensemble methods more accurate than any individual
members:

* Accurate (better than guessing)
 Diverse (different errors on new examples)

Independent errors: prob k of N classifiers (independent
error rate €) wrong:

N
P(#errrors = k) = (k)8k(1 .y

0.1

Probability

s r

Probability that majority vote
wrong: error under distribution |
where more than N/2 wrong

s
5 10 15
Number of classifiers in emror

Ensemble methods: Netflix

Clear demonstration of the power of ensemble methods

Original progress prize winner (BellKor) was ensemble of 107
models!

“Our experience is that most efforts should be concentrated in
deriving substantially different approaches, rather than
refining a simple technique.”

“We strongly believe that the success of an ensemble approach
depends on the ability of its various predictors to expose
different complementing aspects of the data. Experience
shows that this is very different than optimizing the
accuracy of each individual predictor.”

Bootstrap estimation

Repeatedly draw n samples from D

For each set of samples, estimate a statistic

The bootstrap estimate is the mean of the individual estimates
Used to estimate a statistic (parameter) and its variance

Bagging: bootstrap aggregation (Breiman 1994)

Bagging

Simple idea: generate M bootstrap samples from your original
training set. Train on each one to gety, , and average them

1

M
Vo (X) = 7 2ma Ym0

For regression: average predictions

For classification: average class probabilities (or take the
majority vote if only hard outputs available)

Bagging approximates the Bayesian posterior mean. The more
bootstraps the better, so use as many as you have time for

Each bootstrap sample is drawn with replacement, so each one
contains some duplicates of certain training points and leaves
out other training points completely

Cross-validated committees

Bagging works well for unstable algorithms: can change
dramatically with small changes in training data

But can hurt a stable algorithm: a Bayes optimal algorithm may
leave out some training examples in every bootstrap

Alternative method based on different training examples: cross-
validated committees:

* Here k disjoint subsets of data are left out of training sets
* Again uses majority for combination

Boosting

Also works by manipulating training set, but classifiers trained
sequentially

Each classifier trained given knowledge of the performance of
previously trained classifiers: focus on hard examples

Final classifier: weighted sum of component classifiers

Making weak learners stronger

e Suppose you have a weak learning module (a “base
classifier”) that can always get 0.5+epsilon correct when
given a two-way classification task

— That seems like a weak assumption but beware!

e (Can you apply this learning module many times to get a
strong learner that can get close to zero error rate on the
training data?

— Theorists showed how to do this and it actually led to

an effective new learning procedure (Freund & Shapire,
1996)

Boosting (ADAboost)

First train the base classifier on all the training
data with equal importance weights on each case.

Then re-weight the training data to emphasize the
hard cases and train a second model.

- How do we re-weight the data?
Keep training new models on re-weighted data

Finally, use a weighted committee of all the
models for the test data.

- How do we weight the models in the
committee?

Boosting

* Probably one of the most influential ideas in machine learning in the last
decade.

* In the PAC framework, boosting is a way of converting a “weak” learning
model (behaves slightly better than chance) into a “strong” learning mode
(behaves arbitrarily close to perfect).

e Strong theoretical result, but also lead to a very powerful and practical
algorithm which is used all the time in real world machine learning.

» Basic idea, for binary classification with t, = 1.
M
Yboost — Sigl’l <Z OmYm (X)> ’
m=1

where y,(x) are models trained with reweighted datasets D,, and the
weights o, are non-negative.

How to train each classifier

input : x, output: y(x)&{l,-1}
target: r&{l,-1},

weight on case n for classifierm: w)

Cost function for classifier m :

J = iw,’;” [ym (x,)=t]= E weighted errors
n=I

1 if error,
O if correct

How to weight each training case for
classifier m

J weighted error
Let ¢, - rate of classifier
W}’l
n

1 This is the quality of the

Inl = € <« Classifier. Itis zero if the

m classifier has weighted error

Em rate of 0.5 and infinity if the
classifier is perfect

w' o= w" exp{ o, [ym(xn);étn]}

How to weight each training case for
classifier m

* Weight the binary prediction of each
classifier by the quality of that classifier:

M
YM(X) = Slgn(E A ym(x)J
m=1

AdaBoost Algorithm

e Initialize the data weights w, = 1/N.
e For m=1,..,M:

-Fit a classifier y_,(x) to the training data by minimizing the
weighted error function'

Zw I(ym (Xn) # tn),

where I(yn(x,) #t,) is the indicator function and equals to one
when y,,(x,,) # t, and zero otherwise.

- Evaluate:

weighted measures of the

Weighting coefficients.
error rates.

AdaBoost Algorithm

e Initialize the data weights w, = 1/N.
e For m=1,..,M:

-Fit a classifier ym() to the training data by minimizing:

Zw I(Ym(xn) # tn),

- Evaluate: N (m)
1—e,, ~ Dpmr Wn I (ym(xn) # t)
Dy, — ln y €m — N (m) .
€Em anl Wn
- Update the data weights:

wi™) = w™ exp (I (ym (%2) # tn)) -

» Make predictions using the final model:

X) = sign (Z amym(x)> :

Some Intuitions

 The first classifier corresponds to the usual procedure for training a single
classifier.

» At each round, boosting:
- increases the weight on those examples the last classifier got wrong,
- decreases the weight on those it got right.

» Over time, AdaBoost focuses on the examples that are consistently difficult
and forgets about the ones that are consistently easy.

* The weight each intermediate classifier gets in the final ensemble depends
on the error rate it achieved on its weighted training set at the time it was
created.

» Hence the weighting coefficients «,, give greater weight to more accurate
classifiers.

Some Intuitions

» Schematic illustration of AdaBoost:;

Exponential Loss

* One explanation, which helps a lot to understand how boosting really
works, is that classification boosting is equivalent to sequential minimization
of the following loss (error) function:

L(t, F(x)) = exp(—tf(x)).

 This is called exponential loss and it is very similar to other kinds of loss,

e.g. classification loss.

» Green: exponential

* Red: cross-entropy

 Blue: hinge loss

 Black: misclassifications error (0-1 loss)

E(2)

Problem Setup

e Consider the exponential error:

E = Zexp b fm (Xn)),

where f_(X) is a classifier defined an terms of linear combination
of base classifiers:

1 m
=3 Z Yk (X)
k=1

and t, = 1.

e Our goal is to minimize this objective with respect to
parameters of the base classifiers and coefficients «.

Boosting as Forward Additive Modeling

» Suppose that the base classifiers: y,(x),...,y,.«(X) and their coefficients
ai,...,am—1 are fixed.

 We minimize onIy with respect to «,, and y(x). ~ Remember:

~ 1Y n(x
k=1

[\

E = ZeXp tnfm (Xn)),

N 1
- Z exp <—tnfm—1(xn) - §tn04mym(x’n))

n=1

|
M-

1
w7(lm) exp (—itnamym(xm)) .
fixed optimize
where we defined:
w'™ = exp (=t frn—1(Xn)).

Boosting as Forward Additive Modeling

« Let A be the set of points that are correctly classified by y,.(x), and B be
the set of points that are misclassified by y,,(x).

E = e—am/2 Z wrgbm) 4+ eam/Q Z w?(lm)

necA neB

_ (eam/2 am/2) Zw(m)I (Y (%) #) o~ /2 Z w

n=1

e SO minimizing with respect to y(X) is equivalent to minimizing:

Zw (Y (Xn) # tn),

e and minimizing with respect to o, leads to:

L —en o Lt W LY (%n) £ t)

Oy, — In y m N m
€ anl (m)

Updating the Weighting Coefficients

e The weights on the data points are updated as:

wq(lm+1) — w7(1m) exp (_%tn&mym(xm)) . Remember:

wy(fbm) = exp (_tnfm—l(xn» .
» Using the following identity:
tntm (Xn) = 1 = 21y (Xp) # tn),
we obtain:
wim™ T = ™) exp(ay, /2) exp (I (Ym (xn) # tn)).

\

Does not depend on n, just
rescales all the weights

 This is the update performed by the AdaBoost.

Example

e Base learners are simple thresholds applied to one or another axis.

2-0 ' Ioo m:1 2-° I °'° m:2 2.. ..l m:3
O o (-] - L]
ofP Q) ° qo e o .
Of (o] | Of ot =1 J O ol ol . O .
oo %@o o5 | :
Oo $ ° o 4 el b
B S IS Ko A B B o A
. | °
| 0 1 2 1 0 | 5 1 0] >
27 — 2. Cm=10] 2f | = 150]
-]
™ .o . s 0 . DI'
'° ® []
_______ — I . i I
0f 3 @ gl IRY 3 O 0 -
0., | F-=-—- L 7T
[] o ® O 8 °
2t °o Q 2t o 2 2t qe .Q
g N . L] . . | I - .
=1 0 1 2 | 0 1 %) -1 0 1 2

An impressive example of boosting

e Viola and Jones created a very fast face detector that can be
scanned across a large image to find the faces.

e The base classifier/weak learner just compares the total
intensity in two rectangular pieces of the image.

— There is a neat trick for computing the total intensity in
a rectangle in a few operations.
e So its easy to evaluate a huge number of base classifiers and
they are very fast at runtime.
— The algorithm adds classifiers greedily based on their
quality on the weighted training cases.

AdaBoost in face detection

Famous application of boosting: detecting faces in images

Two twists on standard algorithm
1) Pre-define weak classifiers, so optimization=selection

2) Change loss function for weak learners: false positives less
costly than misses

AdaBoost face detection results

What are the base classifiers?

Popular choices of base classifier for boosting
and other ensemble methods:

- Linear classifiers
- Decision trees

31

Random/Decision Forests

- Definition: Ensemble of decision trees

» Algorithm:

- Divide training examples into multiple training
sets (bagging)

- Train a decision tree on each set (can randomly
select subset of variables to consider)

- Aggregate the predictions of each tree to make
classification decision (e.g., can choose mode
vote)

32

Ensemble learning: Boosting and Bagging

e Experts cooperate to predict output

e Vote of each expert has consistent weight for each test
example

W yX)= Y g,3,(X)

- o

Yar (X)

33

Mixture of Experts

- Weight of each expert not constant — depends on input x

- Gating network encourages specialization (local experts)
instead of cooperation

p Y=Y g, (X)y, (%)

g, (x)

X
< o

g, (x)

Gating
Network 34

Mixture of Experts: Summary

. Cost function designed to make each expert estimate
desired output independently

. Gating network softmax over experts: stochastic selection
of who is the true expert for given input

. Allow each expert to produce distribution over outputs

Cooperation vs. Specialization

Consider regression problem

To encourage cooperation, can train to reduce discrepancy
between average of predictors with target

1 >
E = (t_M;ym)

This can overfit badly. It makes the model much more
powerful than training each predictor separately.

Leads to odd objective: consider adding models/experts
sequentially - if its estimate for tis too low, and the average
of other models is too high, then model m encouraged to
lower its prediction

Cooperation vs. Specialization

To encourage specialization, train to reduce the average of
each predictor’s discrepancy with target

E = %;(t—ym)z

use a weighted average: weights are probabilities of picking
that “expert” for the particular training case.

E - ﬁ;gmm(r—ym(x)f

Gating output is softmax of z = Ux

g, (X) = exp(z, (X))/ ¥ exp(z,, (X))

Derivatives of simple cost function

e Look at derivatives to see what cost function will do

E - ﬁggmu)(r—ym(x»z

e For gating network, increase weight on expert when its
error less than average error of experts

oF 2
E = Mgm(x)(t—ym(x))
oF

2)
P Mgm(X)[(t—ym(X)) - E]

m

Mixture of Experts: Final cost function

e (Can improve cost function by allowing each expert to
produce not just single value estimate, but distribution

e Resultis a mixture model

p(yIMOE) = ¥ ¢, (x)N(yly, (x),Z)

—log p(t IMOE) = —lomgzgm(x)exp(— lt-y (x) 1> /2)

e (Gradient: Error weighted by posterior probability of the
expert

oFE g (x)exp(-llt—y (x)IF /2)
2= _9n_%m m —
dy,, E g (x)exp(=llt—y (x)I’/2) (1=,(x))

m

Mixture of Experts: Summary

1. Cost function designed to make
each expert estimate desired
output independently

ion
. dary of
2. Gating network softmax over rt 1 boundary of

_ _ gating net
experts: stochastic selection of
who is the true expert for given
input

decision

3. Allow each expert to produce
distribution over outputs

N~)

Ensemble methods: Summary

Differ in training strategy, and combination method

* Parallel training with different training sets: bagging
(bootstrap aggregation) - train separate models on
overlapping training sets, average their predictions

* Sequential training, iteratively re-weighting training
examples so current classifier focuses on hard examples:
boosting

* Parallel training with objective encouraging division of labor:
mixture of experts

Notes:

* Differ in: training strategy; selection of examples; weighting
of components in final classifier

