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Bayesian approach to machine learning

Most methods discussed early in course find single best
model given the data

Ensemble methods represent a different approach:
develop multiple models (different parameter settings),
and combine

Bayesian alternative: compute distributions over
models, make predictions by averaging over model
predictions, weighted by their probability

Can take into account uncertainty in models, also can
take advantage of diverse models, which can make
independent errors — power of ensemble approach



Bayesian Reaso

ning

e Quantify all forms of uncertainty using probabilities

e Update probability distributions after observation of

new data using Bayes rule

D={xi}

p(01D) Hp(xi 16)

p(0)

e Assume data sampled from some distribution P(x|0),

where 0 is the parameter vector of

the distribution



Bayesian Reasoning: Simple Examples

e Bernoulli (coin flip; heads = 1; tails=0; 8=prob of
heads):

p(@ |D) 4 p(@)ﬂ(@)[xz =1](1 _ H)[X,- =0]

e Multinomial (die roll; ©,=prob die value = v):

p(@ |D) oC p(@)nn(gv)[x,:v]

=1 v=1



Bayesian Reasoning: Interesting Example

e Cognitive science problem: how do we learn to
understand the meaning of a word from only positive
examples?

e Parents and others point out positive examples of the
concept: “Look at that big dog” or “Don’t lick the dog”

e But not many negative examples: “Check out that non-
dog.”

e Can produce negative examples: “That’s not a dog,
dummy, that’s a goldfish.”

e But research has shown people can learn from positive
examples alone



Number Game

Learning the meaning of a word = concept learning =
binary classification

Learn indicator function f, which returns a 1 if x is an
element in the set C, and 0 otherwise

Simple example: | tell you | am thinking of an
arithmetical concept, such as “prime number” or
“number between 15 and 25”

| give you series of randomly chosen positive examples
D = {x,,...xy} drawn from C; classify x’

Only integers 1:100; | tell you 16 is a positive example
— which other numbers are in C?



Number Game: First Sample

e Xareonlyintegers 1:100
e | tell you 16 is a positive example: D= {16}
e Which other numbers are in C?

e 17 is similar because it is nearby; 6 shares a digit; 32 is
also even and a power of 2; 997

e Posterior predictive distribution:
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Hypothesis Space

Imagine hypothesis space of concepts H, such as h_,, =
{odd numbers}; h., = {powers of two}

Subset of H consistent with D is version space

two

Shrinks as observe more examples

But how are hypotheses combined to predict class of
test example?

Why is one consistent hypothesis favored over
another?



Likelihood

e Given this assumption, prob. of independently sampling
N items with replacement from h:

]
Dlh)=
4 )  size(h) |

e Size principle — model favors simplest (smallest)
hypothesis consistent with data (Occam’s razor)

e Example: D = {16}.
— p(Dlhy,) = 1/6; p(D|hee,) = 1/50
e Likelihoods after four examples: D = {16,8,2,64}.
— p(D|hy,,) = 1/6% p(D|h,.,) = 1/50°
— Likelihood ratio of ~ 5000:1 in favor of h

two



Priors
D = {16,8,2,64)

Concept h’ = “powers of two except 32” may seem
more likely than h = “powers of two”

h’ is maximum likelihood estimate

But seems conceptually unnatural — capture by
assigning low prior probability to such concepts

Different priors: subjective aspect of Bayesian reasoning



Posterior

e D1={16}; D2=1{16,8,2,64}

p(D 1) p(h) p(W[DER/ IR I

p(h|D) = = _
Y, pDIp(hY Y p(hHDER]/ 1K

e |llustrate with simple prior, supports 30 arithmetical
concepts, and two unnatural ones, with lower priors
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Bayesian Recipe

» We formulate our knowledge about the world probabilistically:
- We define the model that expresses our knowledge qualitatively
(e.g. independence assumptions, forms of distributions).
- Our model will have some unknown parameters.

- We capture our assumptions, or prior beliefs, about unknown
parameters (e.g. range of plausible values) by specifying the prior
distribution over those parameters before seeing the data.

e We observe the data.

* We compute the posterior probability distribution for the
parameters, given observed data.

e \We use this posterior distribution to:

- Make predictions by averaging over the posterior distribution
- Examine/Account for uncertainly in the parameter values.
- Make decisions by minimizing expected posterior loss.

(See Radford Neal’s NIPS tutorial on ""Bayesian Methods for Machine Learning”)



Posterior Distribution

e The posterior distribution for the model parameters can be found by
combining the prior with the likelihood for the parameters given the data.

e This is accomplished using Bayes’ Rule:

P(data | parameters) P(parameters)

P(parameters | data) =

P(data)

Probability of Prior probability of

observed data / weight vector w

given w

S(w(D) — PPIWIPw)
P(D)
Marginal likelihood

Posterior probability (normalizing constant):
of weight vector W o
given training data D P(D) = /p(D|W>P(W>dW

This integral can be high-dimensional and is
often difficult to compute.



The Rules of Probability

Sum Rule: p(X)=> p(X,Y)

Product Rule:




Predictive Distribution

* We can also state Bayes’ rule in words:

posterior & likelithood X prior.

» We can make predictions for a new data point x*, given the training
dataset by integrating over the posterior distribution:

p(x*|D) = / p(<* | w, D)p(w|D)dw = Ep(wimy [p(x*|w, D),

which is sometimes called predictive distribution.

e Note that computing predictive distribution requires knowledge of the
posterior distribution:

p(w|D) = p(Dg?;)P;(W)’ where P(D) = [ p(Dlw)P(w)dw

which is usually intractable.



Predictive distribution

For new data exampley,

P(ynew |XnewlD) = IP(yneW |Xnewle) P(GlD) de
Utility of this posterior distribution

1. Select most likely prediction: arg max, P( | D)

2. Compute confidence in prediction: variance of P(y,.,, | D)

ynew

3. Make decisions so as to minimize posterior expected loss

Evaluating the posterior often difficult (intractable integral,
exponentially large summations)

— often rely on numerical approximations (e.g., Monte
Carlo sampling)



Representing distributions using samples

For many prior and posterior distributions, often hard to
represent or understand using formulas

An alternative, general technique is to represent the
distribution using a sample of many values drawn

random

— Cant
visua

y from it

nen use samples or their projections to

ize the distribution

— Can make Monte Carlo estimate for probabilities or
expectations wrt distribution by taking averages
over these sample values

Sampling is a very popular approach to Bayesian learning



Modeling Challenges

 The first challenge is in specifying suitable model and suitable prior
distributions. This can be challenging particularly when dealing with
high-dimensional problems we see in machine learning.

- A suitable model should admit all the possibilities that are
thought to be at all likely.

- A suitable prior should avoid giving zero or very small
probabilities to possible events, but should also avoid spreading
out the probability over all possibilities.

* We may need to properly model dependencies between parameters
iIn order to avoid having a prior that is too spread out.

e One strategy is to introduce latent variables into the model and
hyperparameters into the prior.

e Both of these represent the ways of modeling dependencies in a
tractable way.



Computational Challenges

The other big challenge is computing the posterior distribution. There
are several main approaches:

» Analytical integration: If we use “conjugate” priors, the posterior
distribution can be computed analytically. Only works for simple models
and is usually too much to hope for.

e Gaussian (Laplace) approximation: Approximate the posterior
distribution with a Gaussian. Works well when there is a lot of data
compared to the model complexity (as posterior is close to Gaussian).

e Monte Carlo integration: Once we have a sample from the posterior
distribution, we can do many things. The dominant current approach is
Markov Chain Monte Carlo (MCMC) -- simulate a Markov chain that
converges to the posterior distribution. It can be applied to a wide variety
of problems.

 Variational approximation: A cleverer way to approximate the
posterior. It often works much faster compared to MCMC. But often not
as general as MCMC.



Example: Bayesian Regression
Observe pairs (x",y") for n = 1:N; X = (X, X,,...); y is real-
valued output. Want to predict y given x.
T
y=x'w+n, n~N(0,0°)
Need prior distribution over weights p(w)

w~ N(0,a™'T)
Data likelihood

N
Py | Xy, W) = Hp(yi | X, W)

. N
Posterior ]_‘[p(y,- | X, W)p(W)
p(W|Xl:N9y1:N)= =

Py | Xy)



Bayesian Regression Posterior

—log p(W | Xy, Vix)

N
— _E log p(y, | x,,w)—logp(w)+Hog p(y.y | X\.»)
1

: 5 i (v, —-x. W) + %HWH2 + const.
i=1

20
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v=[y... vy’ K=x'x/0*+al)” w=Kx'y/o’



Bayesian

Regression: Posterior

Derivation shows us that posterior distribution over

parametersis a mu

tidimensional Gaussian

p(W l Xl:N ’ylzN) = N(W;;’K)

Most likely (MAP) estimate of model is the mean.

Covariance describes uncertainty in these parameters

Posterior distribution

is Gaussian -- can visualize

distributions over parameters via sampling



Bayesian Linear Regression

 Consider a linear model of the form: y(z,w) = wg + wyx.

« The training data is generated from the function f(x,a) = ag + a1
with ap = 0.3;a; = 0.5, by first choosing x,, uniformly from [-1;1],
evaluating f(x, a), and adding a small Gaussian noise.

» Goal: recover the values of ag,a1 from such data.

0 data points are observed:
Data Space




Bayesian Linear Regression

0 data points are observed:

Data Space

1

w1 h

1 data point is observed:

Likelihood Data Space




Bayesiar

Linear Regression
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Bayesian Regression: Prediction

Predictive distribution for new point:

p(y,.. Ix D)= fp(ynew Ix . .D,w)p(wlD)dw

. T __ T
= N(ynew’xnew W’GZ + Xnew KX

new )

Simple case — everything Gaussian -- can visualize
distributions over parameters via sampling

y=[y,..vv]' K=x'x/0>+al)”’ w=Kx'y/o’



Predictive Distribution: Bayes vs. ML

Predictive distribution based on . o o
maximum likelihood estimates Bayesian predictive distribution
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p(tlz, wyr, Auw) = N (ty(z, wae), Byr)  ptx, t,X) = N (Hmyé(z), ox (z))



Predictive Distribution

Sinusoidal dataset, 9 Gaussian basis functions.

Predictive distribution Samples from the posterior

t t
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Predictive Distribution

Sinusoidal dataset, 9 Gaussian basis functions.

_Predictive distribution ~ Samples from the posterior




