CSC411 Fall 2014
Machine Learning & Data Mining

Reinforcement Learning I

Slides from Rich Zemel

Reinforcement Learning

Learning classes differ in information available to learner
* Supervised: correct outputs

* Unsupervised: no feedback, must construct measure of good
output

* Reinforcement learning

More realistic learning scenario:
e Continuous stream of input information, and actions
» Effects of action depend on state of the world

* Obtain reward that depends on world state and actions - not
correct response, just some feedback

Formulating Reinforcement Learning

World described by a discrete, finite set of states and actions

At every time step t, we are in a state s, and we:
* Take an action a, (possibly null action)

* Receive some reward r,,

* Move into a new state s,

Decisions can be described by a policy - a selection of which
action to take, based on the current state

Aim is to maximize the total reward we receive over time

Sometimes a future reward is discounted by y*1, where k is the
number of time-steps in the future when it is received

Tic-Tac-Toe
Make this concrete by considering specific example

Consider the game tic-tac-toe:

* reward: win/lose/tie the game (+1/-1/0) [only at final
move in given game]

» state: positions of Xs and Os on the board

* policy: mapping from states to actions - based on rules of
game: choice of one open position

e value function: prediction of reward in future, based on
current state

In tic-tac-toe, since state space is tractable, can use a table to
represent value function

RL & Tic-Tac-Toe

Each board position (taking into account
symmetry) has associated probability

Simple learning process:

e start with all values = 0.5

* policy: choose move with highest

probability of winning given current

legal moves from current state

* update entries in table based on

outcome of each game

* After many games value function will

represent true probability of
winning from each state

Can try alternative policy: sometimes
select moves randomly (exploration)

Acting Under Uncertainty

The world and the actor may not be deterministic, or our model of
the world may be incomplete

We assume the Markov property: the future depends on the past
only through the current state

We describe the environment by a distribution over rewards and
state transitions:

P(St+1 =S'97}+1 = I/"|St =58,d, = a)

The policy can also be non-deterministic:

P(Clt=a|St=S)

Policy is not a fixed sequence of actions, but instead a conditional
plan

Basic Problems

Markov Decision Problem (MDP): tuple <S,A,P,y>
where P is

P(s

t+1—s,lg+1—r|st—s,at—a)

Standard MDP problems:

1. Planning: given complete Markov decision problem as input,
compute policy with optimal expected return

2. Learning: Only have access to experience in the MDP, learn a
near-optimal strategy

Example of Standard MDP Problem

r(s,a) (immediate reward)

1. Planning: given complete Markov decision problem as input,
compute policy with optimal expected return

2. Learning: Only have access to experience in the MDP, learn a
near-optimal strategy

We will focus on learning, but discuss planning along the way

Exploration vs. Exploitation

If we knew how world works (embodied in P), then the policy
should be deterministic - just select optimal action in each
state.

But if we do not have complete knowledge of the world, taking
what appears to be the optimal action may prevent us from
finding better states/actions

Interesting trade-off:

immediate reward (exploitation) vs. gaining knowledge that
might enable higher future reward (exploration)

Bellman Equation

Decision theory: maximize expected utility (related to rewards)

Define the value function V(s): measures accumulated future
rewards (value) from state s

The relationship between a current state and its successor state is
defined by the Bellman equation:

Vis)=1+rV(s.)

Discount factor y: controls whether care only about immediate
reward, or can appreciate delayed gratification

Can show that if value functions updated via Bellman equation,
and y < 1, V() will converge to optimal (estimate of expected
reward given best policy)

Expected value of a policy

Key recursive relationship between value function at successive
states

[f we fix some policy, it (defines the distribution over actions for
each state), then the value of a state is the expected discounted

reward for following that policy from that state on:

()= ELS 7' I,

This value function will satisfy the following consistency equation
(generalized Bellman equation):

V7i(s)= EP”(a, =als, =s)x

EP(SHI =S',I/'t+1 = I”‘|St =S9at =Cl)(7‘ +)/VE(S'))

RL: Some Examples

Many natural problems have structure required for RL:

1. Game playing: know win/lose but not specific moves (TD-
gammon)

2. Control: for traffic lights, can measure delay of cars, but not
how to decrease it

3. Robotjuggling

4. Robot path planning: can tell distance traveled, but not how
to minimize

MDP formulation

Goal: find policy 7t that maximizes expected accumulated future
rewards V™(S,), obtained by following 7t from state s;:

T _ 2
V (St)=rt+yrt+1+y rt+2+'"

oo l

Game show example:

e assume series of questions, increasingly difficult, but
increasing payoff

* choice: accept accumulated earnings and quit; or continue and
risk losing everything

What to Learn

We might try to learn the value function V (which we write as V*)
V#(s) =max,[r(s,ayV *(d(s,a))]

We could then do a lookahead search to choose best action from
any state s:

¥ (s) =argmax [r(s,a)+yV * (0(s,a))]

where
P(s,, =5, =rls =sa =a)=
P(s,,, =s'ls =s,a =a)P(r,,, =r'ls, =s,a, =a) =
o(s,a)r(s,a)

But there’s a problem:
* This works well if we know 6() and r()
 But when we don’t, we cannot choose actions this way

What to Learn
Let us first assume that 6() and r() are deterministic:
V # (s) = max, [(s,)V * (8(s,a))]
¥ (s) =argmax [r(s,ayV *(0(s,a))]

Remember:
Reward
At every time step t, we are in a state s,, and we: function
* Take an action a, (possibly null action)
* Receive some reward ry,, r:(s,a) —=r

* Move into a new state s, S:(s,a) —s
° o

/

Transition

How can we do learning? function

Q Learning

Define a new function very similar to V*

Q(s,a)=r(s,aryV *(0(s,a))

If we learn Q, we can choose the optimal action even without
knowing 06!

7 *(s)=argmax [r(s,ayV *(0(s,a))]
7 *(s) =argmax_Q(s,a)

Q is then the evaluation function we will learn

ol 100l (@
g —
0
0 0 *
0 0 100
- 0

r(s,a) (immediate reward) values

S0 100 I .
o T G 90 g 100 G
81 0
Ao Ao A_l T A AA
A |72 | WES! AY l* A* AV
I] o[Y 100] [| I
- B v —p— ——
- - 81 4 90 g 100
Q(s,a) values V*(s) values
Vi(s)=0+y100+y°0+...=90
—1 — G
—fi— —1

One optimal policy

Training Rule to Learn Q

« .
Q and V* are closely related: V*(s) = max, O(s,a)

So we can write Q recursively:

Q(Stbat) = r(st,a,)+yV*(5(s,,at))

=r(s,,a,)+y max_, QO(s, ,a")
Let Q” denote the learner’s current approximation to Q

Consider training rule .

Q(s,a) < r(s,aymax Q(S',a')

where s’ is state resulting from applying action a in state s

Q Learning for Deterministic World
For each s,a initialize table entry Q”(s,a) < 0
Start in some initial state s

Do forever:

e Select an action a and execute it
 Receive immediate reward r
 Observe the new state s’

* Update the table entry for Q*(s,a) using Q learning rule:

O(s,a) < r(s,apymax, O(s',a")
e s& %

[f get to absorbing state, restart to initial state, and
run thru “Do forever” loop until reach absorbing state

Updating Estimated Q

Assume Robot is in state s;; some of its current estimates of Q
are as shown; executes rightward move

72 90
R 7 100 R 100
63 63
81 81
=
ariglzr
initial state: SI next state: S,

Q(Spam'ghf) < r+y max,, 0(s,,a')

< r +0.9max ,{63,81,100} < 90

Notice that if rewards are non-negative, then Q*
values only increase from 0, approach true Q

Q Learning: Summary

training set consists of series of intervals (episodes): sequence of
(state, action, reward) triples, end at absorbing state

Each executed action a results in transition from state s, to S;;
algorithm updates Q”(s;,a) using the learning rule

Intuition for simple grid world, reward only upon entering goal
state =2 Q estimates improve from goal state back

1. All Q*(s,a) startat 0

2. First episode - only update Q”(s,a) for transition leading
to goal state

3. Next episode - if go thru this next-to-last transition, will
update Q”(s,a) another step back

4. Eventually propagate information from transitions with
non-zero reward throughout state-action space

