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Admin Details

e Liberal wrt waiving pre-requisites: but it is up to you to
determine if you have the appropriate background

e Tutorials:
— Thursdays, 8-9pm

e Do | have the appropriate background?

— Linear algebra: vector/matrix manipulations,
properties

— Calculus: partial derivatives
— Probability: common distributions; Bayes Rule
— Statistics: mean/median/mode; maximum likelihood

— Sheldon Ross: A First Course in Probability



Textbooks

e Christopher Bishop:
— "Pattern Recognition and Machine Learning”.

e Ethem Alpaydin:

e "Introduction to Machine Learning”, 2" edition,
2010.

e Other recommended texts

— Kevin Murphy: Machine Learning: a Probabilistic
Perspective

— David Mackay: Information Theory, Inference, and
Learning Algorithms



Requirements

Do the readings!

Assignments

— Three assignments, worth 40%

— Programming: take Matlab/Python code and extend it
— Derivations: pen(cil)-and-paper

Mid-term
— One hour exam
— Worth 25% of course mark

Final
— Focus on second half of course
— Worth 35% of course mark



What is Machine Learning?

e Learning systems are not directly programmed to solve
a problem, instead develop own program based on:

— Examples of how they should behave

— From trial-and-error experience trying to solve the
problem

e Different than standard CS: want to implement
unknown function, only have access to sample input-
output pairs (training examples)

e Learning simply means incorporating information from
the training examples into the system



Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.
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Example: Boltzmann Machine

Latent (hidden)
Model parameters variables

AN

1
P(x,y) = = Z exp [XTW(l)h +y ' W®h

N

Input data (e.g. pixel Target variables
intensities of an image, (response) (e.g. class
words from webpages, labels, categories,
speech signal). phonemes).

Markov Random Fields, Undirected Graphical Models.



Finding Structure in Data
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Vector of word counts
on a webpage
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Matrix Factorization

movielens @ (ﬁ (‘J‘ﬂ @ ﬂ
Collaborative FiItering/ NETELIN helping you find the right movies i Koeve| P y B B e
Matrix Factorization/ amazon i P | sorr]rn] P laan
i Kk P [Aokd|hkk| D
Hierarchical Bayesian Model
Rating value of Latent user feature Latent item
user i for item j (preference) vector feature vector

N\ N 7

rij| Wi, vji, o NN(uz‘TVj702>a
wlo, ~ N(0,021), i=1,...,N.
vilo, ~ N(0,021), j=1,.., M.

Prediction: predict a rating r’jj for user i and query movie j.

Latent variables that
we infer from

observed ratings.

P(rj;|R) = // P(rfj\ui,vj)ﬁ(ui,Vj\fi)duidvj

Y, .
Posterior over Latent Variables

Infer latent variables and make predictions using Markov chain Monte Carlo.




Finding Structure in Data
movielens ﬂ@ @@@

helping you find the right movies ﬁ v b 4 ey Yo Yo
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Collaborative Filtering/
Matrix Factorization/
Product Recommendation

Learned "‘genre”

Netflix dataset: Fahrgnheit 9/11 ' Independence Day
Bowling for Columbine The Day After Tomorrow
480,189 users :> The People vs. Larry Flynt Con Air
Canadian Bacon Men in Black Il

17,770 movies

_— . La Dolce Vit Men in Black
Over 100 million ratings. a polce Vit

Friday the 13th

The Texas Chainsaw Massacre
Children of the Corn

Child's Play

The Return of Michael Myers

* Part of the wining solution in the Netflix contest (1 million dollar prize).



Impact of Machine Learning

B Microsoft

* Speech Recognition

Google

* Computer Vision
-k

* Recommender Systems S

e Language Understanding

* Drug Discovery and Medical
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Multimodal Data

mosque, tower,
building, cathedral,
dome, castle

kitchen, stove, oven,
refrigerator,
microwave

ski, skiing,
skiers, skiiers,
snowmobile

bowl, cup,
soup, cups,
coffee



Example: Understanding Images

TAGS:

strangers, coworkers, conventioneers,
attendants, patrons

Nearest Neighbor Sentence:

people taking pictures of a crazy person

Model Samples

* a group of people in a crowded area .

* a group of people are walking and talking .

* a group of people, standing around and talking .
* a group of people that are in the outside .



Caption Generation

Ty a wooden table and chairs
a car is parked in arranged in a room .
the middle of nowhere .

a ferry boat on a marina
with a group of people .

of friends on the street .




Word error rate on Switchboard

100%a

10%

4%

2%

1%

Speech Recognition

According to Microsoft’s
speech group:

Using DL

1990 2000

2010

v



Merck Molecular Activity Challenge

Tutorials and Winners' Interviews

Deep Learning How | Did It:
Merck 1st place interview

* To develop new medicines, it is important to identify molecules
that are highly active toward their intended targets.

* Deep Learning technique: Predict biological activities of different
molecules, given numerical descriptors generated from their
chemical structures.

Dahl et.al., 2014



NETFLIX The Netflix Tech Blog

Netflix uses:

— Restricted Boltzmann machines
— Probabilistic Matrix Factorization

Social Suppont

* From their blog:

To put these algorithms to use, we had to work to overcome some limitations, for
instance that they were built to handle 100 million ratings, instead of the more than
5 billion that we have, and that they were not built to adapt as members added
more ratings. But once we overcame those challenges, we put the two algorithms
into production, where they are still used as part of our recommendation engine.



Types of Learning

Consider observing a series of input vectors:
X1y X2, X3, X4y ...

e Supervised Learning: We are also given target outputs (labels,
responses): y,,Y,,..., and the goal is to predict correct output given a
new input.

e Unsupervised Learning: The goal is to build a statistical model of x,
which can be used for making predictions, decisions.

e Reinforcement Learning: the model (agent) produces a set of actions:
a,, a,,... that affect the state of the world, and received rewards r,,
r,... The goalis to learn actions that maximize the reward (we will not
cover this topic in this course).

e Semi-supervised Learning: We are given only a limited amount of
labels, but lots of unlabeled data.



Supervised Learning

4 '

Classification: target outputs y,
are discrete class labels. The goal
is to correctly classify new inputs.

Regression: target outputs y, are
continuous. The goal is to predict o
the output given new inputs. - o

0



Handwritten Digit Classification
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Unsupervised Learning

The goal is to construct statistical ‘~’ S

model that finds useful representation |

of data: @ .
e Clustering M o 2
 Dimensionality reduction R T
* Modeling the data density e

e Finding hidden causes (useful
explanation) of the data

Unsupervised Learning can be used for:
e Structure discovery
e Anomaly detection / Outlier detection
e Data compression, Data visualization

e Used to aid classification/regression
tasks




DNA Microarray Data

Expression matrix of 6830 genes (rows)
and 64 samples (columns) for the human
tumor data.

The display is a heat map ranging from
bright green (under expressed) to bright
red (over expressed).

T .‘ Questions we may ask:

e i * Which samples are similar to other
: : samples in terms of their expression levels
across genes.

e Which genes are similar to each other in
terms of their expression levels across

samples.



Why use learning?

e |tisvery hard to write programs that solve problems like
recognizing a handwritten digit

— What distinguishes a 2 from a 7?

— How does our brain do it?

e |nstead of writing a program by hand, we collect examples
that specify the correct output for a given input

e A machine learning algorithm then takes these examples and
produces a program that does the job

— The program produced by the learning algorithm may look
very different from a typical hand-written program. It may
contain millions of numbers.

— If we do it right, the program works for new cases as well
as the ones we trained it on.



Two classic examples of tasks that are best
solved by using a learning algorithm

Bate: Mon, 6 Sep 2027 05:08:33 -0400

From: Essence <Jonathan@wupperverband.de)
To: desprofs@cs. toronto. edu

Subject: Emerging Growth stock Opportunity

Big news expected.
This stock will explode.
Do not Wdlt untll lt s too ldte_




Learning algorithms are useful in other tasks

Recognizing patterns:

— Facial identities, expressions

— Handwritten or spoken words

Digital images and videos:

— Locating, tracking, and identifying objects

— Driving a car

Recognizing anomalies:

— Unusual sequences of credit card transactions
Spam filtering, fraud detection:

— The enemy adapts so we must adapt too
Recommendation systems:

— Noisy data, commercial pay-off (Amazon, Netflix).
Information retrieval:

— Find documents or images with similar content



Human learning

W

- Can vou pick out the tufas?

I3

Josh Tenenbaum



Machine Learning & Data Mining

Data-mining: Typically using very simple machine learning
techniques on very large databases because computers are
too slow to do anything more interesting with ten billion
examples

Previously used in a negative sense — misguided statistical
procedure of looking for all kinds of relationships in the data
until finally find one

Now lines are blurred: many ML problems involve tons of
data

But problems with Al flavor (e.g., recognition, robot
navigation) still domain of ML



Machine Learning & Statistics

ML uses statistical theory to build models — core task is inference
from a sample

A lot of ML is rediscovery of things statisticians already knew; often
disguised by differences in terminology

But the emphasis is very different:

— Good piece of statistics: Clever proof that relatively simple
estimation procedure is asymptotically unbiased.

— Good piece of ML: Demo that a complicated algorithm
produces impressive results on a specific task.

Can view ML as applying computational techniques to statistical
problems. But go beyond typical statistics problems, with different
aims (speed vs. accuracy).



Cultural gap (Tibshirani)

Machine Learning---

e network, graphs

e weights

e |earning

e generalization

e supervised learning

e unsupervised learning.

e large grant: $1,000,000

e conference location:
Snowbird, French Alps

------ Statistics

model

parameters

fitting

test set performance
regression/classification

density estimation,
clustering

large grant: $50,000

conference location: Las
Vegas in August



Initial Case Study

What grade will | get in this course?

Data: entry survey and marks from previous years
Process the data

— Split into training set; test set

— Determine representation of input features; output

Choose form of model: linear regression

Decide how to evaluate the system’s performance: objective
function

Set model parameters to optimize performance

Evaluate on test set: generalization



Outline

e Linear regression problem
— continuous outputs
— simple model

e |ntroduce key concepts:
— loss functions
— generalization
— optimization
— model complexity
— regularization



Very simple example: 1-D regression

Green shows the true curve — not known

The data points are uniform in x
but may be displaced iny

t(x)=f(x)+¢

Aim: fit a curve to these points

Key questions:

— How do we parametrize the model?

from Bishop

— What loss (objective) function should we use to judge

fit?

— How do we optimize fit to unseen test data

(generalization)?

32




Example: Boston

e Estimate median house price in
a neighborhood based on
neighborhood statistics

e Look at first (of 13) attributes:
per capita crime rate

e Use this to predict house prices
in other neighborhoods

Median House Price ($1000)

Housing data

1
30

1 1
40 50
Per Capita Crime Rate

1
60

1
70

1
g0

33
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Represent the Data

Data described as pairs D = ((x{1,t(1), (x(2),t(2)),..., (x(N) t(N)))
— X is the input feature (per capita crime rate)
— tis the target output (median house price)

e Here tis continuous, so this is a regression problem
Model outputs y, an estimate of t y(x) =w, +wx

Could take first 300 examples as training set, remaining 206 as test
set

— Use the training examples to construct hypothesis, or function
approximator, that maps x to predicted y

— Evaluate hypothesis on test set

34



Noise

A simple model typically does not exactly fit the data — lack
of fit can be considered noise

Sources of noise
— Imprecision in data attributes (input noise)

— Errors in data targets (mis-labeling)

— Additional attributes not taken into account by data
attributes, affect target values (latent variables)

— Model may be too simple to account for data targets

35



Least-squares Regression

e Standard loss/cost/objective | from Bishop
function measures the squared 1
error in y [the prediction of t(x)] :
from x. of

N
Jw) = S ~(wy +w 2P
n=1

e The loss for the red hypothesis is
the sum of the squared vertical /
errors. -

36



Optimizing the Objective

One straightforward method: initialize w randomly;,
repeatedly update based on gradient descent inJ

W ew—)tﬂ
ow

Here A is the learning rate

For a single training case, this gives the LMS update rule:

W w243 - y(x))x™

Note: as error approaches zero, so does update

37



Optimizing Across the Training Set

Two ways to generalize this for all examples in training
set:

1. Stochastic/online updates — update the parameters for
each training case in turn, according to its own gradients

2. Batch updates: sum or average updates across every
example i, then change the parameter values

N
W o<W+ 2)LE (" — y(x™))x"
n=1

» Underlying assumption: sample is independent and
identically distributed (i.i.d.) 38



When is minimizing the squared error equivalent to
Maximum Likelihood Learning?

Minimizing the squared residuals is
equivalent to maximizing the log
probability of the correct answer
under a Gaussian centered at the
model's guess.

t=the Yy =models
correct estimate of most

(”), W) answer probable value

W= y(x

1 _(t(l’l)_y(n))2

e 207
N27mO

() _ ()32
~log p(t" 1y = log\27 + logo + -y )

2

) 9 canbe ignored if
can be ignored sigma is same
if sigma is fixed for every case

p(" 1" = p(y" + noise =t 1x'",w) =




Linear Least Squares

e Given a vector of d-dimensional inputs x = (21,22, ...,zq)", we want

to predict the target (response) using the linear model:
d

y(xr,w) = wg + w11 + wels + ... + Waxqy = wo + ijxj.
j=1
* The term w, is the intercept, or often called bias term. It will be
convenient to include the constant variable 1 in x and write:

y(x,w) = x'w.

T

)

* Observe a training set consisting of N observations X = (x1, %2, ..., Xx)
together with corresponding target values t = (¢,t,...,tn)".

* Note that Xisan N x (d + 1) matrix.



Linear Least Squares

One option is to minimize the sum of the squares of the errors between
the predictions y(x,,w) for each data point x, and the corresponding
real-valued targetst,.

10} :
| ¢ _®Data Loss function: sum-of-squared error
| function:

N
Bw) = =3 (fw—t,)

(Xw —t)T(Xw — t).

N — N~

Source: Wikipedia



Linear Least Squares

If XTX is nonsingular, then the unique solution is given by:

optjimal vector of

T P— ‘/welghts target values
9:_ — curve fit | /

o w* = (XTX)" X"t

\

6; the design matrix has one
5F input vector per row

2L 1

Source: Wikipedia

e At an arbitrary input xo, the prediction is y(xo, W) = x{ w*.

e The entire model is characterized by d+1 parameters w".



Example: Polynomial Curve Fitting

Consider observing a training set consisting of N 1-dimensional observations:
X = (1, T2, ..., CCN)T, together with corresponding real-valued targets:

t = (t1,t, ..., tn)"

* The green plot is the true function sin(27x).
o | e The training data was generated by taking

o ol X,spaced uniformly between [0 1].

0f 1 ¢ The target set (blue circles) was obtained

° o by first computing the corresponding values

all © | of the sin function, and then adding a small

Gaussian noise.

0 _—
Goal: Fit the data using a polynomial function of the form:
M
y(r,w) = wy + wix + wox? + ... + wy M = ij:cj.
j=0
Note: the polynomial function is a nonlinear function of x, but it is a linear
function of the coefficients w — Linear Models.



Example: Polynomial Curve Fitting

As for the least squares example: we can minimize the sum of the

squares of the errors between the predictions y(z,,w) for each data

P

t

oint x,, and the corresponding target values t ..
'y
Pin Loss function: sum-of-squared
f / error function:
/ y(mnaw) N

/ E(W) — %Z(y(xnav‘f) - tn>2°

=1
°

x

wln
e Similar to the linear least squares: Minimizing sum-of-squared error
function has a unique solution w”.

* The model is characterized by M+1 parameters w’.
e How do we choose M? — Model Selection.



Some Fits to the Data

M=0 A 1 o0

0

M=9

T 1 0

For M=9, we have fitted the training data perfectly.

—




Overfitting

e Consider a separate test set containing 100 new data points generated
using the same procedure that was used to generate the training data.

—©— Training
—O— Test

0L— - - :

e For M=9, the training error is zero — The polynomial contains 10
degrees of freedom corresponding to 10 parameters w, and so can be
fitted exactly to the 10 data points.

e However, the test error has become very large. Why?



Overfitting

M=0 M=1 M=3 M =9
wy 0.19 0.82 0.31 0.35
wy -1.27 7.99 232.37 Lr M=9
w) -25.43 -5321.83 {
w3 17.37 48568.31 0
wh -231639.30 0f 1
ws 640042.26
Wwe -1061800.52
w3 1042400.18 1t
wg -557682.99
we 125201.43 (‘)

e As M increases, the magnitude of coefficients gets larger.
e For M=9, the coefficients have become finely tuned to the data.

e Between data points, the function exhibits large oscillations.

More flexible polynomials with larger M tune to the random noise
on the target values.



Varying the Size of the Data

9th order polynomial

e For a given model complexity, the overfitting problem becomes less
severe as the size of the dataset increases.

e However, the number of parameters is not necessarily the most
appropriate measure of the model complexity.




OF

Generalization

e The goal is achieve good generalization by making accurate predictions
for new test data that is not known during learning.

e Choosing the values of parameters that minimize the loss function on
the training data may not be the best option.

e We would like to model the true regularities in the data and ignore the
noise in the data:

— It is hard to know which regularities are real and which are accidental
due to the particular training examples we happen to pick.

M

* Intuition: We expect the model to generalize
if it explains the data well given the complexity
of the model.

e If the model has as many degrees of freedom
as the data, it can fit the data perfectly. But this

is not very informative.
e Some theory on how to control model

complexity to optimize generalization.



A Simple Way to Penalize Complexity

One technique for controlling over-fitting phenomenon is regularization,
which amounts to adding a penalty term to the error function.

penalized error target value regularization

function parameter
\ 1 N \ )\/
~ 5 5
B(w) =3 3 {v(encw) = ta} + 5w’

T 2 2 2 .
where ||W|| = W' w = wi + w3 + ... + wy, called the regularization term.

Note that we do not penalize the bias term w,.

e The idea is to “shrink” estimated parameters
towards zero (or towards the mean of some other
weights).

e Shrinking to zero: penalize coefficients based on
their size.

e For a penalty function which is the sum of the

i squares of the parameters, this is known as a
“weight decay”, or “ridge regression”.



Regularization

I i i ] _ InNA=-00 InA=-18 InA=0
Training w 0.35 0.35 0.13

Test w} 232.37 474 -0.05

w} -5321.83 -0.77  -0.06

. w} 48568.31 -31.97  -0.05
Z 05 1 wi| -231639.30 -3.89 -0.03
h / wi | 640042.26 55.28 -0.02
/ wg | -1061800.52 4132 -0.01

wk | 1042400.18 -45.95  -0.00

e . ‘ wg | -557682.99 -91.53 0.00
- 30 s S0 ws | 125201.43 72.68 0.01

Graph of the root-mean-squared training and test errors vs. In\
for the M=9 polynomial.

How to choose \?



Cross Validation

If the data is plentiful, we can divide the dataset into three subsets:

* Training Data: used to fitting/learning the parameters of the model.

» Validation Data: not used for learning but for selecting the model, or
choosing the amount of regularization that works best.

e Test Data: used to get performance of the final model.

For many applications, the supply of data for training and testing is limited.
To build good models, we may want to use as much training data as possible.
If the validation set is small, we get noisy estimate of the predictive performance.

S fold cross-validation * The data is partitioned into S groups.

run 1  ® Then S-1 of the groups are used for training

the model, which is evaluated on the

Un 2 remaining group.

run 3 *® Repeat procedure for all S possible choices

of the held-out group.

run 4

e Performance from the S runs are averaged.




Probabilistic Perspective

e So far we saw that polynomial curve fitting can be expressed in terms
of error minimization. We now view it from probabilistic perspective.

e Suppose that our model arose from a statistical model:
t =y(x,w) + €,

where € is a random error having Gaussian distribution with zero
mean, and is independent of x.

4 Thus we have:

y(z, w)
- p(tlx, w,B) = N(tly(x,w),57"),

L

9% Where (is a precision parameter,
p(t|zo, w, B) corresponding to the inverse variance.

yY(xo, w)

| will use probability distribution and
—» probability density interchangeably. It
N should be obvious from the context.




Maximum Likelihood

If the data are assumed to be independently and identically
distributed (i.i.d assumpt'ion) the likelihood function takes form:

p(tjx, w, ) = HN n|Y(Xn, W 6_1>°

It is often convenient to maximize the log of the likelihood function:

I p(tfx, w. ) = 2 S (y(xmsw) — £a)? + Mg - S,
U=l J
Y
BE(w)

e Maximizing log-likelihood with respect to w (under the assumption of a
Gaussian noise) is equivalent to minimizing the sum-of-squared error
function.

e Determine Wxm L by maximizing log-likelihood. Then maximizing
w.r.t. G 1 1

G N > (Y W) — tn)”.

n



Predictive Distribution

Once we determined the parameters w and 3, we can make prediction
for new values of x:

p(t[x, Warr, Barr) = N (t|y(x, war), By )-

| <0
t \\
o\ O
0f -
o
)
s 1

0




