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Formulating Reinforcement Learning

World described by a discrete, finite set of states and actions

At every time step t, we are in a state s, and we:
* Take an action a, (possibly null action)

* Receive some reward r,,

* Move into a new state s,

Decisions can be described by a policy - a selection of which
action to take, based on the current state

Aim is to maximize the total reward we receive over time

Sometimes a future reward is discounted by y*1, where k is the
number of time-steps in the future when it is received



Basic Problems

Markov Decision Problem (MDP): tuple <S,A,P,y>
where P is

P(s

t+1—s,lg+1—r|st—s,at—a)

Standard MDP problems:

1. Planning: given complete Markov decision problem as input,
compute policy with optimal expected return

2. Learning: Only have access to experience in the MDP, learn a
near-optimal strategy



MDP formulation

Goal: find policy 7t that maximizes expected accumulated future
rewards V™(S,), obtained by following 7t from state s;:

T _ 2
V (St)=rt+yrt+1+y rt+2+'"

oo [

Game show example:

e assume series of questions, increasingly difficult, but
increasing payoff

* choice: accept accumulated earnings and quit; or continue and
risk losing everything



What to Learn

We might try to learn the function V (which we write as V*)
V#(s) =max,[r(s,ayV *(d(s,a))]

We could then do a lookahead search to choose best action from
any state s:

7t * (s) = argmax [r(s,ayV * (0(s,a))]

where P(St+1 — S"rt+1 = 7'| s, =8,a, = a) —
P(St+1 = S'lst = Saat = a)P(rHl = r'lst = S’at = Cl) =
o(s,a)r(s,a)

But there’s a problem:
* This works well if we know ¢6() and r()
 But when we don’t, we cannot choose actions this way



What to Learn
Let us first assume that 6() and r() are deterministic:

Remember:

Reward

At every time step t, we are in a state s, and we: function

* Take an action a, (possibly null action)
* Receive some reward ry,, ri(s,a) —=r

* Move into a new state s, S:(s,a) —s
® b

/

Transition
function

How can we do learning?



Q Learning

Define a new function very similar to V*

Q(s,a)=r(s,aryV *(0(s,a))

If we learn Q, we can choose the optimal action even without
knowing 06!

7 *(s)=argmax [r(s,ayV *(0(s,a))]
7 *(s) =argmax_Q(s,a)

Q is then the evaluation function we will learn
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Training Rule to Learn Q

« .
Q and V* are closely related: V*(s) = max, O(s,a)

So we can write Q recursively:

Q(Stbat) = r(st,a,)+yV*(5(s,,at))

=r(s,,a,)+y max_, QO(s, ,a")
Let Q” denote the learner’s current approximation to Q

Consider training rule .

Q(s,a) < r(s,aymax Q(S',a')

where s’ is state resulting from applying action a in state s



Q Learning for Deterministic World
For each s,a initialize table entry Q”(s,a) < 0
Start in some initial state s

Do forever:

e Select an action a and execute it
 Receive immediate reward r
 Observe the new state s’

* Update the table entry for Q*(s,a) using Q learning rule:

O(s,a) < r(s,apymax, O(s',a")
e s& %

[f get to absorbing state, restart to initial state, and
run thru “Do forever” loop until reach absorbing state



Updating Estimated Q

Assume Robot is in state s;; some of its current estimates of Q
are as shown; executes rightward move

72 90
R 7 100 R 100
63 63
81 81
=
ariglzr
initial state: SI next state: S,

Q(Spam'ghf) < r+y max,, 0(s,,a')

< r +0.9max ,{63,81,100} < 90

Notice that if rewards are non-negative, then Q*
values only increase from 0, approach true Q



Q Learning: Summary

training set consists of series of intervals (episodes): sequence of
(state, action, reward) triples, end at absorbing state

Each executed action a results in transition from state s, to S;;
algorithm updates Q”(s;,a) using the learning rule

Intuition for simple grid world, reward only upon entering goal
state =2 Q estimates improve from goal state back

1. All Q*(s,a) startat 0

2. First episode - only update Q”(s,a) for transition leading
to goal state

3. Next episode - if go thru this next-to-last transition, will
update Q”(s,a) another step back

4. Eventually propagate information from transitions with
non-zero reward throughout state-action space



Q Learning: Convergence Proof

Q”(s,a) converges to Q(s,a)
Consider deterministic world, each (s,a) visited «ly often.

Proof: Define full interval as interval during which each (s,a)
visited. During each full interval largest error in Q” table
reduced by factor of y.

Let Q”  be table after n updates, A, be max. error in Q”

A, =max, | O(s,a)-O(s,a)]



Q Learning: Convergence Proof

Let Q”, be table after n updates, A, be max. error in Q*

A, =max, | O(s,a) - QO(s,a)|

For any entry updated on interval n+1, error in new estimate:

10,1(5,@) = O(s,a) |=| (r +y max O, (s',a")) = (r +y max O(s',a")) |
= yImax 0, (s',a') - max O(s', @) |
=y max| Q,(s',a") - O(s',a")|

<ymax|Q,(s",a") - O(s",a") |< yA,

S",a!




Q Learning: Convergence Proof (cont.)

Largest error in initial table is bounded, since values of Q_"(s,a)
and Q(s,a) are bounded for all s,a

Largest error in table after one interval will be at most YA,
After k intervals, error will be at most y*A_

Since O=y,<l error=>0asn=> o



Q Learning: Exploration/Exploitation

Have not specified how actions chosen (during learning)

Can choose actions to maximize Q”(s,a)
Good idea?

Can instead employ stochastic action selection (policy):
exp(kO(s, a,
Pla |5) — SPHOG-4))
Y exp(kQ(s.a,))

J

Can vary k during learning - more exploration early on, shift
towards exploitation




Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V,Q based on probabilistic estimates, expected
values of them:

Vi(s)=sE[r, +yr,, + yzlsz +...]
= E[Y 7'

O(s,a) = E[r(s,ayyV *(d(s,a))]
= E[r(s,a) +)/2S'P(S' ls,a)max Q(s',a')]



Nondeterministic Case: Learning Q

Training rule does not converge (can keep changing Q” even if
initialized to true Q values)

So modify training rule to change more slowly

0,(s,a) < (1-a,)0, (s,a) +a,[r+ymax,, 0, ,(s',a")]

where s’ is the state land in after s, and a’ indexes the actions that
can be taken in state s’

a, =1/(1+visits, (s,a))

where visits is the number of times action a is taken in state s



Summary

e What to study?

— Material covered in lectures and tutorial

— Use the books/readings as back-up, to help understand
the methods and derivations

e Focus mainly on material since the mid-term

e The exam is closed book and notes

— Do not focus on memorizing formulas, but
instead main ideas and methods



Topics to Study

e Unsupervised Learning
- what is the difference between hard/soft clustering?

— Gaussian mixture models / EM:
e what is a mixture?
e what does it mean that this is a generative model?
e whatis E step?
e whatis M step?
e EM vs. gradient descent?
e is convergence guaranteed?
e what are responsibilities?
e understand (but not memorize) eqns, objective

- PCA and autoencoders:
e whatis PCA used for?
e what is the objective function(s)?
e whatis a principal component?
e PCA vs. clustering?
e How does PCA compare to autoencoders



Topics to Study (cont.)

e Support Vector Machines
e what is the kernel trick?
e when can the kernel trick be applied?
e what is its purpose

e how is an SVM similar and different than a linear
classifier?

e what is a support vector?
e What is the objective function?
e Primal vs. dual formulation

e Reinforcement Learning
e Compare to other forms of learning
e Q learning algorithm: updates, objective
e Exploration/exploitation



Topics to Study (cont.)

Ensemble Methods

— Basic motivation, approach

- Bagging, boosting - compare and contrast

- AdaBoost: steps of algorithm

— Mixture of experts: compare/contrast to others

Bayesian Methods

- Motivation

— Posterior predictive distribution
- Learning & prediction



Future Looks Bright

*Data is everywhere! It’s an exciting time to

know how to make the most of it.

—lnternet

—Web traffic

—Store purchases

—Online ads

—Social connections (Facebook, Twitter, etc)
—Etc., etc., etc., etc,, ...

—Robotics and Computer Vision
—Images, videos, range scans
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Autonomous driving (2012)

Videos:

- Google car touring

- Gooqle car racing




Assistive Technology
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Navigation and Obstacle Avoidance Help

Collisi Route P mpter
Planner (POMDP

.% E\@»

System prevented user from driving into detected
obstacles, audio prompts for wayfinding assistance
(“off-route — turn left!”, “move forward”, etc.)
Tested with six cognitively-impaired older adults in
Toronto: Single-Subject Research Design: A-B (B-
A) trials with training session prior to each phase




Speech Recognition
thanks to deep learning)
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driving cars and working in
factories, raising the specter of
automated robots that could replace
human workers.

The technology, called deep
learning, has already been put to
use in services like Apple’s Siri
virtual personal assistant, which is
based on Nuance Communications’
speech recognition service, and in
Google’s Street View, which uses
machine vision to identify specific
addresses.
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Computational Biology

*Protein folding
*Gene expression

*HIV/AID vaccines

*Machine Learning

*in Comp. Biology
Workshops at NIPS

*Etc.




Flight Delays

fligmaﬂ
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FLIGHT DETAILS

Flight No. Route Gate No.
TRAVEL AIRWAYS 89 JFKTO MIA 3

Scheduled: 8:30am - 11:30am

Predicted Arrival Status:

Probably 3%  onTme

1 4% Less than 60m late

Delayed

83% More than 60m late

Official Airline Reported Status

(powered by FlightStats)



Political Campaigns

...In our own campaign, polling was just one way we viewed how we were doing in a
state in the general election. We had a lot of voter identification work. We had a lot of
field data. So we'd put all that together and model out the election in those states
every week. So we'd say, okay, if the election were held this week based on all our
data, put it all in a blender, where are we? ...It makes you enormously agile.

-David Plouffe, Campaign Manager, Obama for America 2008

Video: How We Used Data to Win the Presidential Election
— Dan Siroker, Director of Analytics for the 2008 Obama Presidential Campaign

... We could [predict] people who were going to give online.

We could model people who were going to give through mail.

We could model volunteers,” said one of the senior advisers about the

predictive profiles built by the data. “In the end, modeling became something

way bigger for us in '12 than in ‘08 because it made our time more efficient...
-Senior adviser to the Obama 2012 campaign
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Machine Learning for Sustainability

*Emerging topic (NIPS Mini Symposium)
—Machine learning for the NYC power grid: lessons
learned and the future
—What it takes to win the carbon war. Why even Al
is needed.

—Ecological Science and Policy: Challenges for
Machine Learning

—Optimizing Information Gathering in
Environmental Monitoring

—Approximate Dynamic Programming in Energy
Resource Management



