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Today

Unsupervised learning

Clustering

I k-means
I Soft k-means
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Unsupervised Learning

Supervised learning algorithms have a clear goal: produce desired outputs for
given inputs

Goal of unsupervised learning algorithms (no explicit feedback whether
outputs of system are correct) less clear:

I Reduce dimensionality
I Find clusters
I Model data density
I Find hidden causes

Key utility

I Compress data
I Detect outliers
I Facilitate other learning
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Major types

Primary problems, approaches in unsupervised learning fall into three classes:

1. Dimensionality reduction: represent each input case using a small
number of variables (e.g., principal components analysis, factor
analysis, independent components analysis)

2. Clustering: represent each input case using a prototype example (e.g.,
k-means, mixture models)

3. Density estimation: estimating the probability distribution over the
data space
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Clustering

Grouping N examples into K clusters one of canonical problems in
unsupervised learning

Motivations: prediction; lossy compression; outlier detection

We assume that the data was generated from a number of different classes.
The aim is to cluster data from the same class together.

I How many classes?
I Why not put each datapoint into a separate class?

What is the objective function that is optimized by sensible clusterings?
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The K-means algorithm

Assume the data lives in a Euclidean space.

Assume we want k classes/patterns

Initialization: randomly located cluster centers

The algorithm alternates between two steps:
I Assignment step: Assign each datapoint to the closest cluster.
I Refitting step: Move each cluster center to the center of gravity of the

data assigned to it.

Assignments Refitted 
means 
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K-means Objective

Objective: minimize sum squared distance of datapoints to their assigned
cluster centers

min
{m},{r}

E ({m}, {r}) =
∑
n

∑
k

r
(n)
k ||mk − x(n)||2

s.t.
∑
k

r
(n)
k = 1,∀n, r

(n)
k ∈ {0, 1},∀k, n

Optimization method is a form of coordinate descent (”block coordinate
descent”)

I Fix centers, optimize assignments (choose cluster whose mean is
closest)

I Fix assignments, optimize means (average of assigned datapoints)
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K-means

Initialization: Set K means {mk} to random values

Assignment: Each datapoint n assigned to nearest mean

k̂n = arg min
k

d(mk , x
(n))

and Responsibilities (1 of k encoding)

r
(n)
k = 1←→ k̂(n) = k

Update: Model parameters, means, are adjusted to match sample means of
datapoints they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k

Repeat assignment and update steps until assignments do not change
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Figure from Bishop
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K-means for Image Segmentation and Vector Quantization

Figure from Bishop
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K-means for Image Segmentation

How would you modify k-means to get super pixels?
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Questions about K-means

Why does update set mk to mean of assigned points?

Where does distance d come from?

What if we used a different distance measure?

How can we choose best distance?

How to choose K?

How can we choose between alternative clusterings?

Will it converge?

Hard cases – unequal spreads, non-circular spreads, inbetween points
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Why K-means converges

Whenever an assignment is changed, the sum squared distances of
datapoints from their assigned cluster centers is reduced.

Whenever a cluster center is moved the sum squared distances of the
datapoints from their currently assigned cluster centers is reduced.

Test for convergence: If the assignments do not change in the assignment
step, we have converged (to at least a local minimum).

K-means cost function after each E step (blue) and M step (red). The
algorithm has converged after the third M step
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Local Minima

There is nothing to prevent k-means
getting stuck at local minima.

We could try many random starting points

We could try non-local split-and-merge
moves:

I Simultaneously merge two nearby
clusters

I and split a big cluster into two

A bad local optimum 
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Soft k-means

Instead of making hard assignments of datapoints to clusters, we can make
soft assignments. One cluster may have a responsibility of .7 for a datapoint
and another may have a responsibility of .3.

I Allows a cluster to use more information about the data in the refitting
step.

I What happens to our convergence guarantee?
I How do we decide on the soft assignments?
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Soft K-means Algorithm

Initialization: Set K means {mk} to random values

Assignment: Each datapoint n given soft ”degree of assignment” to each
cluster mean k , based on responsibilities

r
(n)
k =

exp[−βd(mk , x(n))]∑
j exp[−βd(mj , x(n))]

Update: Model parameters, means, are adjusted to match sample means of
datapoints they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k

Repeat assignment and update steps until assignments do not change
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Questions about soft K-means

How to set β?

What about problems with elongated clusters?

Clusters with unequal weight and width
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A generative view of clustering

We need a sensible measure of what it means to cluster the data well.

I This makes it possible to judge different models.
I It may make it possible to decide on the number of clusters.

An obvious approach is to imagine that the data was produced by a
generative model.

I Then we can adjust the parameters of the model to maximize the
probability that it would produce exactly the data we observed.
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Image	  Segmenta*on	  
• 	  Another	  applica*on	  of	  K-‐means	  algorithm.	  	  
• 	  Par**on	  an	  image	  into	  regions	  corresponding,	  for	  example,	  to	  object	  parts.	  	  
• 	  Each	  pixel	  in	  an	  image	  is	  a	  point	  in	  3-‐D	  space,	  corresponding	  to	  R,G,B	  channels.	  

• 	  For	  a	  given	  value	  of	  K,	  the	  algorithm	  represent	  an	  image	  using	  K	  colors.	  	  

• 	  Another	  applica*on	  is	  image	  compression.	  



Image	  Compression	  
• 	  For	  each	  data	  point,	  we	  store	  only	  the	  iden*ty	  k	  of	  the	  assigned	  cluster.	  	  
• 	  We	  also	  store	  the	  values	  of	  the	  cluster	  centers	  µk.	  	  
• 	  Provided	  K	  ¿	  N,	  we	  require	  significantly	  less	  data.	  	  

• 	  Requires	  43,200	  £	  24	  =	  1,036,800	  bits	  to	  transmit	  directly.	  	  	  

• 	  With	  K-‐means,	  we	  need	  to	  transmit	  K	  code-‐book	  vectors	  µk	  -‐-‐	  24K	  bits.	  	  

• 	  The	  original	  image	  has	  
240	  £	  180	  =	  43,200	  
pixels.	  	  

• 	  Each	  pixel	  contains	  
{R,G,B}	  values,	  each	  of	  
which	  requires	  8	  bits.	  	  

• 	  For	  each	  pixel	  we	  need	  to	  transmit	  log2K	  bits	  (as	  there	  are	  K	  vectors).	  	  
• 	  Compressed	  image	  requires	  43,248	  (K=2),	  86,472	  (K=3),	  and	  173,040	  (K=10)	  bits,	  which	  
amounts	  to	  compression	  ra*ons	  of	  4.2%,	  8.3%,	  and	  16.7%.	  

Original	  image	   K=3	   K=10	  


